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Somatic symptoms include a range of physical experiences, such as pain, muscle 
tension, body shaking, difficulty in breathing, heart palpitation, blushing, fatigue, and 
sweating. Somatic symptoms are common in major depressive disorder (MDD), anxiety 
disorders, and some other psychiatric disorders. However, the etiology of somatic 
symptoms remains unclear. Somatic symptoms could be a response to emotional distress 
in patients with those psychiatric conditions. Increasing evidence supports the role of 
aberrant serotoninergic and noradrenergic neurotransmission in somatic symptoms. The 
physiological alterations underlying diminished serotonin (5-HT) and norepinephrine (NE) 
signaling may contribute to impaired signal transduction, reduced 5-HT, or NE release 
from terminals of presynaptic neurons, and result in alternations in function and/or number 
of receptors and changes in intracellular signal processing. Multiple resources of data 
support each of these mechanisms. Animal models have shown physiological responses, 
similar to somatic symptoms seen in psychiatric patients, after manipulations of 5-HT and 
NE neurotransmission. Human genetic studies have identified many single-nucleotide 
polymorphisms risk loci associated with somatic symptoms. Several neuroimaging findings 
support that somatic symptoms are possibly associated with a state of reduced receptor 
binding. This narrative literature review aimed to discuss the involvement of serotonergic 
and noradrenergic systems in the pathophysiology of somatic symptoms. Future research 
combining neuroimaging techniques and genetic analysis to further elucidate the biological 
mechanisms of somatic symptoms and to develop novel treatment strategies is needed.

Keywords: somatic symptoms, mono-aminergic neurotransmitters, norepinephrine (NE), serotonin (5-HT), 
pathophysiology

Somatic symptoms in psychiatric disorders are symptoms that have persistent bodily complaints 
but have found no explanatory structural, organic causes, or other specified pathology after a 
sufficient physical examination or investigation by physician or healthcare providers (1). The most 
common somatic symptoms include musculoskeletal pain, abdominal pain, fatigue, dizziness, ear, 
nose, throat symptoms and gastrointestinal symptoms. Somatic symptoms, including a range of 
physical symptoms, such as pain (e.g., stomachache, headache, and neuropathy), muscle tension, 
body shaking, difficulty breathing, heart palpitation, fatigue, and gastrointestinal symptoms, are 
commonly seen in individuals with major depressive disorder (MDD), anxiety disorders, and other 
psychiatric disorders (2). About 76% of patients diagnosed with depression had somatic symptoms, 
such as back pain, headache, stomach pain, migraine, and neuropathic pain (3, 4). Severity of 

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2019.00286
https://www.frontiersin.org/journals/psychiatry#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2019.00286&domain=pdf&date_stamp=2019-05-21
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry
https://creativecommons.org/licenses/by/4.0/
mailto:guowenbin76@csu.edu.cn
https://doi.org/10.3389/fpsyt.2019.00286
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00286/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00286/full
https://www.frontiersin.org/article/10.3389/fpsyt.2019.00286/full
https://loop.frontiersin.org/people/503419
https://loop.frontiersin.org/people/497003


Serotonergic and Noradrenergic Systems in Somatic SymptomsLiu et al.

2 May 2019 | Volume 10 | Article 286Frontiers in Psychiatry | www.frontiersin.org

depression is positively associated with the frequency and severity 
of somatic symptoms (5, 6). Somatic symptoms were able to 
predict subsequent self-reported symptoms of depress in women 
patients with MDD (7). Somatic symptoms are also a common 
feature of anxiety disorders (8). Patients suffering from anxiety 
disorders often have somatic complaints, such as feeling jittery, 
muscular tension, stomachache, headache, and sweating (9). 
Young patients with anxiety disorders are more likely to report 
somatic symptoms than their healthy peers (10). Moreover, 
studies have found that somatic symptoms are related to acute 
stress disorder, posttraumatic stress disorder, and personality 
disorders (11).

A heightened awareness of certain body sensations may 
trigger somatic symptoms (12). Somatic symptoms may be 
a mechanism through which patients with depression or 
anxiety react to their emotional distress (13). Childhood 
neglect and adversity, childhood abuse, chaotic lifestyle, 
stress, alcohol abuse, and substance abuse are the risk factors 
for somatic symptoms. Women more likely present somatic 
symptoms than men. Antidepressant drugs, including selective 
serotonin (5-HT) reuptake inhibitors (SSRIs), dual 5-HT 
and norepinephrine (NE) reuptake inhibitors (SNRIs), and 
tricyclics are effective in treating somatic syndromes. The 
therapeutic effects of these drugs may be due to their effects 
on the 5-HT and NE systems. Hence, abnormal serotonergic 
and noradrenergic systems, which are indicated by low level 
of monoamine neurotransmitters, reduced production and/
or release, pre- and/or post-synaptic receptor dysfunction, 
excessive self-inhibition, and decreased excitatory inputs, may 
play a predominant role in the pathophysiology of somatic 
symptoms. This narrative review paper was to summarize 
the role of serotonergic and noradrenergic systems in the 
development somatic symptoms.

5-HT AND NE NEUROTRANSMITTER 
SYSTEMS

5-HT is a monoamine neurotransmitter. Serotonergic neurons 
exist mainly in the dorsal and median raphe nuclei in the brainstem. 
5-HT is released into the extracellular space from presynaptic 
nerve terminal, and is cleared primarily by neurotransmitter 
uptake, mediated by the 5-HT transporter. 5-HT receptors contain 
presynaptic autoreceptors and postsynaptic receptors. The 5-HT 
autoreceptors are key factors in the self-inhibitory mechanism 
of serotonergic neuronal activity. Activation of inhibitory 5-HT 
autoreceptors regulates 5-HT neuronal firing and maintains the 
homeostasis of the serotonergic system. 5-HT exerts its effects 
through its interaction with 5-HT receptors, including the 5-HT1 
to 5-HT7 families, some of which have several subtypes (14, 15). 
The effects of 5-HT depend on the cell type and subtype of the 
receptor it acts on. A growing body of evidence has suggested 
the role of the serotonergic system in somatic symptoms. Most 
previous studies focused on 5-HT1, 5-HT2A, 5-HT2C, 5-HT3, 
5-HT4, and 5-HT7 receptors.

NE is also a monoamine neurotransmitter in the brain. The 
primary source of NE is neurons in the locus coeruleus, which is 

situated at the floor of the fourth ventricle in the pontine brain 
(16). Other noradrenergic neurons include nuclei of the lateral 
tegmentum and the solitary tract. NE released from the locus 
coeruleus regulates brain function through various ways. The 
locus coeruleus receives afferent projections from the various 
brain regions, such as the insular cortex, the hypothalamus, the 
central amygdala, and the cerebral cortex (17–20). Adrenoceptors 
can be classified into two groups, the α-adrenergic family 
(comprising the α1 and α2 subtypes) and the β-adrenergic 
family (comprising the β1, β2, and β3 subtypes). NE exerts its 
action through either α1-, α2-, β1-, or β2-adrenoceptors in the 
central nervous system. α2-adrenoceptors located presynapticlly 
(autoreceptors) on the neural terminals inhibit NE release, 
whereas presynaptic β2-adrenoceptors enhance NE release upon 
activation. The release and effect of NE are modulated through 
interaction with these receptors. The action of NE in the synaptic 
cleft is ended largely through the neuron terminal reuptake by 
the NE transporter.

ANIMAL MODEL OF 5-HT AND NE  
IN SOMATIC SYMPTOMS

Rodent models of nociception demonstrate altered 5-HT and 
NE system function, and certain antidepressants enhance 
5-HT and NE transmission. Both 5-HT and NE play a role in 
the descending inhibitory pathway, formed by projections 
descending from the brainstem or the midbrain to the spinal 
cord, which normally suppress painful inputs; thus, malfunction 
of these neurotransmitters may play a role in somatic syndromes, 
such as fibromyalgia and chronic headache (21).

It has been proposed that changes in 5-HT levels are part of 
pathophysiology of neuropathic pain. In mice deficient in 5-HT 
transporter (5-HTT-/- mice), the extracellular levels of 5-HT are 
increased in the brain; but the overall tissue concentrations of 
5-HT are decreased. In contrast to wild-type mice, the 5-HTT-/- 
mice show absence of thermal hyperalgesia but present bilateral 
mechanical allodynia after an incomplete unilateral chronic 
constrictive injury of the sciatic nerve. The 5-HTT-/- mice also 
demonstrate higher levels of 5-HT in injured nerves and lower 
overall tissue levels of 5-HT than the wild-type mice (22, 23). 
Furthermore, the wild-type mice experience a longer period of 
thermal hyperalgesia and show higher levels of 5-HT in the sciatic 
nerves than the 5-HTT-/- mice after intra-plantar injection of 
Freund’s complete adjuvant (23). These findings suggest that 
5-HT participates in nociception transmission and in reducing 
spinal inhibition in bilateral mechanical allodynia.

Using a rodent model of neuropathy induced by inflammatory 
mediator and nerve injury, Liu found that the intrathecal 
administration of the 5-HT1A receptor antagonist, rather than 
the 5-HT2 or 5-HT3 receptor antagonist, significantly attenuates 
the increased anti-nociception induced by the administration of 
morphine in intra-periaqueductal gray. Therefore, the 5-HT1A 
receptor is involved in the spinal descending inhibition pathway 
that suppresses nociception transmission in rats with nerve injury 
or inflammation (24). Abbott et al. found that the intra-plantar 
injection of 5-HT2A receptor antagonists may lead to peripheral  
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analgesic effect (25). Another study found that neuropathic pain 
coincides with noradrenergic system disruption, as indicated 
by increased locus coeruleus bursting activity; enhanced 
expression of tyrosine hydroxylase, NE transporter, and α2 
adrenergic receptors in the locus coeruleus; and hypersensitive 
α2 adrenergic receptors (26). Moreover, parathyroid hormone 
2 receptor and TIP39 knockout mice display lower baseline 
nociceptive threshold and decreased inflammatory effect, and 
a blockade of α2-adrenoceptors could increase the thermal 
and tactile sensitivity in the knockout mice recovered from 
neuropathic injury (27). Antidepressant treatment of the SSRI 
fenfluramine was able to prevent mechanical allodynia, cold 
allodynia, and tonic pain in the model of neuropathic pain 
(28). Furthermore, treatment of venlafaxine (a serotonin-
norepinephrine reuptake inhibitor (SNRI)), immediately after 
nerve injury, was able to inhibit the development of neuropathic 
pain; the antinociceptive effect of venlafaxine likely involves the 
α2-adrenoceptor (29).

Using a tail-flick rodent model, Eide et al. demonstrated that 
intrathecal injection of 5-HT1A and 5-HT1B receptor agonists 
could suppress the nociceptive tail-flick reflex at the spinal cord 
level, but none of them can change the temperature of tail skin (30). 
Dogrul et al. reported that the administration of the 5-HT7 receptor 
antagonist SB-269970 could inhibit the antinociceptive effect 
produced by systemic morphine administration, indicating that 
the spinal 5-HT7 receptor influences systemic morphine-induced 
antinociceptive actions (31). The authors also demonstrated that 
intrathecal injection of the 5-HT7 receptor antagonist abolishes 
the antinociceptive and antihyperalgesic effects produced by the 
systemic administration of paracetamol. Systemically administered 
paracetamol could stimulate 5-HT7 receptors at the spinal cord 
and activate descending serotonergic pathways (32).

Other animal models also suggest that somatic symptoms 
might be associated with impaired serotonergic and noradrenergic 
systems. In an exercise-induced chronic fatigue rat model, 
significantly increased levels of 5-HT and 5-HT transporter, 
decreased 5-HT1A mRNA expression (33), and significantly 
elevated 5-HT2A mRNA expression were found in various 
regions of the brain (34). Using an animal model with irritable 
bowel syndrome (IBS), a study found significantly upregulated 
expression of 5-HT7 receptor in the ileum and colon tissues 
compared with the control rats (35). Furthermore, treatment with 
5-HT1A agonist/5-HT3 antagonist could inhibit the Bezold–
Jarisch reflex and stress-induced defecation in this rat model; 
thus, agents that exert effects via 5-HT1A agonistic and/or 5-HT3 
antagonistic activities might be beneficial for IBS treatment (36, 
37). Another study also reported abnormal expression of colonic 
α2-adrenoceptors and NE reuptake transporter in different brain 
regions in a rat model of IBS (38).

NEUROIMAGING FINDINGS

Relatively few studies have examined 5-HT and NE system 
alterations in patients with somatic complaints using neuroimaging 
methods; published imaging studies primarily focused on 5-HT 
and NE receptors or 5-HT transporter and NET occupancies.

Several positron emission tomography (PET) studies have 
reported decreased 5-HT1A receptor binding in patients 
with panic disorder (39, 40), and the low 5-HT1A receptor 
binding may contribute to somatic symptoms associated with 
anxiety (41). Similarly, another PET study found a decrease 
in 5-HT1A binding in patients with chronic fatigue syndrome 
(42). Decreased 5-HT receptor binding may reflect a reduced 
number of 5-HT1A receptors or a decreased affinity of 5-HT 
or other ligands to the receptor. PET studies examining the 
relationship between 5-HT receptor/transporter binding and 
responses to noxious heat stimulation in healthy volunteers 
found a positive correlation between 5-HT2A binding and 
noxious stimulation (43). However, a negative correlation was 
observed between 5-HT transporter binding and response 
to tonic pain (44). Decreased 5-HT1A binding and changed 
5-HT2A binding were detected in brain regions, including 
the hippocampus, amygdala, raphe nucleus, cingulate, insular 
cortex, prefrontal, parietal, temporal, and occipital cortices. 
These results suggest that the 5-HT neuronal function affects 
the activity of various brain regions. Abnormal 5-HT function 
in various brain regions may contribute to the development and 
modulation of somatic symptoms.

Shan et al. conducted a longitudinal MRI study to examine 
progressive brain changes in chronic fatigue syndrome. They 
found that white matter volumes in the left inferior fronto-
occipital fasciculus was significantly reduced in patients with 
chronic fatigue syndrome (45). This result suggested that white 
matter abnormality in the inferior fronto-occipital fasciculus is 
associated with chronic fatigue syndrome. In addition, Chang 
et al. found subregions of the anterior cingulate cortex may play 
a role in the pathophysiology of chronic pain syndromes (46).

HUMAN GENETIC STUDIES AND 
NEUROPHARMACOLOGICAL STUDIES

Markoutsaki et al. reported an association between the population 
susceptibility of IBS and two single-nucleotide polymorphisms 
(SNPs) -1438 (G/A) and 102 (C/T) in the 5-HT2A receptor gene. 
They found that A allele and AA genotype of the -1438 (G/A) 
polymorphism in the 5-HT2A receptor gene show a significant 
association with IBS (47). Therefore, the carrier of A allele in this 
specific polymorphism in the 5-HT2A receptor gene might be a 
good candidate for IBS susceptibility.

Smith et al. conducted a study in 137 individuals that 
included patients with chronic fatigue syndrome, patients 
with mild fatigue, and those with no fatigue as controls. The 
study examined 77 polymorphisms in genes associated with 
5-HT signaling (HTR1A, HTR1E, HTR2A, HTR2B, HTR2C, 
HTR3A, HTR3B, HTR4, HTR5A, HTR6, and HTR7), synthesis 
(TPH2), catabolism (MAOA), and transport (SLC6A4). Three 
biomarkers (-1438G/A, C102T, and rs1923884), located in 
the HTR2A gene of these polymorphisms examined, were 
identified to have a significant association with chronic fatigue 
syndrome. The HTR2A-1438 (rs6311) A allele, allele T of 
HTR2A C102T (rs6313), and C allele of HTR2A rs1923884 are 
more common in patients with chronic fatigue syndrome than 
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in controls. Furthermore, silico analysis revealed that the A 
allele of -1438 is located in the core of the Th1/E47 consensus 
sequence and creates an allele-specific binding locus for 
neurodevelopment-associated transcription factor Th1/E47. 
These results indicate that polymorphism in the HTR2A gene 
is involved in the pathophysiology of chronic fatigue syndrome 
(48). A previous study also reported that the promoter activity 
in cells or tissues was higher in the A allele carrier of HTR2A-
1438 (rs6311) than in the HTR2A G allele carrier. The authors 
suggest that HTR2A-1438 A polymorphism plays a role in 
promoter activity (49).

Felippotti et al. examined the role of noradrenergic mechanisms 
in the locus coeruleus in postictal antinociceptive effects. They 
microinjected yohimbine (an α2-receptor antagonist) and 
propranolol (a β-receptor antagonist) into the unilateral locus 
coeruleus and found that both yohimbine and propranolol 
injection to the locus coeruleus area caused a distinct decrease 
in antinociceptive effects. The blockade effect of yohimbine 
was more prominent compared with that of propranolol, 
possibly due to the presynaptically located α2-adrenoceptors in 
locus coeruleus neurons. These effects are associated with the 
noradrenergic regulation in locus coeruleus, suggesting that both 
α2- and β-adrenoceptors in locus coeruleus are involved in the 
mechanism underlying postictal antinociception (50).

CLINICAL THERAPEUTICS

Drugs used to treat somatic symptoms include antidepressants, 
antipsychotics, antiepileptics, and natural products, such as 
St. John’s wort (51). The effectiveness of these drugs has been 
reported by a limited number of studies (52–54). The proposed 
mechanisms include inhibition of spinal cord painful inputs, 
inhibition of prefrontal cortical areas that are involved in noxious 
activity, treatment of comorbid disease, and the direct effects on 
somatic symptoms.

Antidepressants are usually classified according to their impacts 
on neuronal synapses, such as inhibiting presynaptic transporters 
to block the reuptake of certain neurotransmitters, blocking 
certain neurotransmitter receptors, or the blockade of monoamine 
oxidase enzymes. Tricyclic antidepressants block the reuptake 
of NE and 5-HT neurotransmitters to achieve antidepressant 
therapeutic effects. However, tricyclic antidepressants also block 
M1, α1, and H1 receptors simultaneously, which can lead to diverse 
side effects, such as thirst, constipation, blurred vision, dizziness, 
orthostatic hypotension, sedation, lethargy, and weight gain in 
clinical applications. Other antidepressants include SSRIs such 
as fluoxetine, sertraline, paroxetine, and citalopram, SNRIs such 
as duloxetine and venlafaxine, and 5-HT receptor inhibitors such as 
mirtazapine. Evidence suggests that 5-HT and NE play an analgesic 
role in treating somatic symptoms through the spinal cord inhibitory 
descending pain pathway; however, their effects become aberrant in 
patients with somatic complaints (55–57). 5-HT and NE projection 
from brainstem descending the spinal cord could suppress painful 
inputs. The long-term administration of antidepressant treatments 
may enhance the efficacy of 5-HT synaptic transmission. Tricyclics 
enhance 5-HT synaptic transmission by increasing the sensitivity 

of postsynaptic 5-HT1A receptors, whereas SSRIs produce this 
effect by reducing the function of terminal 5-HT autoreceptors, 
thereby increasing the amount of 5-HT released. In addition, 
antidepressants may improve somatic symptoms, such as fatigue, 
anergy, or trouble sleeping, through their immunoregulatory effect 
(58–61).

The possible benefit of antipsychotics in somatic symptoms may  
be due to their analgesic effects (62), but the underlying mechanisms 
remains unclear. Their analgesic effect may be mediated by 5-HT 
antagonism (63), α2-adrenoreceptor stimulation (64), or other 
mechanisms. The mechanisms by which natural products such 
as St. John’s wort treat somatic symptoms also remain unclear. 
The efficacy of St. John’s wort on treating somatic complaints, 
including headache or gastrointestinal symptoms, is possibly 
secondary to the improvement in depression (65, 66). The effect 
of Hypericum extracts for somatic symptoms might be due to 
the inhibition of the reuptake of 5-HT, NE, and dopamine (67).

The application of antidepressants acting on 5-HT and 
NE systems for the treatment of somatic symptoms has been 
supported by many clinical trials and systematic reviews. 
For instance, a meta-analysis including 94 trials shows that 
antidepressants can substantially improve somatic symptoms 
(52). Another meta-analysis has shown that antidepressants 
appear to be effective in treatment of functional gastrointestinal 
disorders (68). In general, antidepressants have been used in 
the treatment of chronic pain syndromes, such as IBS (68, 69), 
chronic fatigue syndrome (70), fibromyalgia (71, 72), and other 
related somatic symptoms. Patients with fibromyalgia show low 
a threshold to pain that is caused by noxious stimuli, possibly 
due to the deficits in 5-HT and NE systems, which result in 
the failure to inhibit the painful inputs at the spinal cord level 
(73, 74). Jackson et al. summarized that antidepressants might 
be beneficial to treat 11 somatic symptoms including headache, 
chronic back pain, chronic facial pain, chronic pelvic pain, non-
cardiac chest pain, fibromyalgia, IBS, tinnitus, chronic fatigue 
syndrome, interstitial cystitis, and menopausal symptoms (75).

Recent studies have found that the number of somatic 
symptoms in patients with depression who have not achieved 
remission show a significantly greater number of somatic 
symptoms than those who have achieved remission after 8 weeks 
of treatment with fluoxetine (76). Fluoxetine is also effective 
in improving somatic symptoms in adolescent patients with 
anxiety disorders and depression comorbid with severe somatic 
symptoms, such as stomachaches, restlessness, palpitations, 
blushing, sweating, muscle tension, and trembling/shaking (8). 
The relief of somatic symptoms may be due to the pharmacologic 
action to increase the levels of 5-HT in the synaptic cleft. 
In addition, another study reported that somatic symptoms 
markedly decreased in patients with depression after treatment 
with mirtazapine, a 5-HT receptor inhibitor (77). These results 
suggest that the 5-HT system dysfunctions are involved in the 
pathological mechanism of somatic symptoms.

Litoxetine is an antidepressant drug that combines 5-HT3 
antagonism and 5-HT transporter inhibition to prevent the  
gastrointestinal and pain-augmenting side effects induced by  
SSRIs, such as sertraline (78). 5-HT3 receptor antagonists are  
effective in relieving symptoms, inhibiting urgency, and 
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prolonging the transit of small and large bowel in IBS patients 
with diarrhea. However, agonists of 5-HT3 receptor was able 
to activate intestinal motility and shorten transit times in IBS 
patients with constipation (79). Revexepride, a 5-HT4 receptor 
agonist, could be a safe and effective candidate treatment 
for gastroparesis, a chronic gastric disorder characterized by 
clinical symptoms such as abdominal pain, vomiting, nausea, 
early satiety, postprandial fullness, and bloating (80).

Dolasetron, a 5-HT3 alternative inhibitor, is efficacious in 
the treatment of fibromyalgia (81). Administration of 5-HT3 
receptor antagonists can significantly decrease pain intensity 
in patients with fibromyalgia and neuropathic pain (55). Thus, 
specific antagonism of 5-HT3 receptors is considered a possible 
treatment method for fibromyalgia, a condition characterized by 
chronic fatigue and pain (81).

Furthermore, several drugs acting on the 5-HT1A, 5-HT1B, 
and 5-HT1D receptors have been evaluated for their efficacy 
in treating migraine. Peroutka et al. demonstrated that 
migraine drugs, including ergotamine, dihydroergotamine, 
and sumatriptan, show affinity for the 5-HT1A, 5-HT1B, and 
5-HT1D receptors, suggesting that these 5-HT receptors are 
involved in the action of the these antimigraine drugs (82, 83). 
Peroutka et al. summarized that acute antimigraine drugs, such 
as ergotamine and sumatriptan, show great affinity for 5-HT1D 
receptors and low affinity for 5-HT1A receptors. It has also been 
suggested that sumatriptan may not work through 5-HT1B 
receptors (84). These 5-HT receptors are located on certain 
intracranial blood vessels. In theory, the reduction of 5-HT 
may associate with the increased production of pain-inducing 
or vasoactive substances in the perivascular space, which may 
lead to angiectasis and migraine. 5-HT1D receptor agonists may 
facilitate 5-HT release and inhibit noxious stimulation (82). This 
phenomenon possibly explains the high prevalence of migraine 
in patients with depression.

Drugs acting on the noradrenergic system also have been 
implicated in the treatment of somatic symptoms. The SNRI 
duloxetine (60mg/day) can effectively reduce overall pain, 
shoulder pain, back pain, and time in pain while awake in 
patients with depression (85, 86). Another SNRI, venlafaxine, 
is also effective in improving neuropathic pain, as suggested 
by a randomized, double-blind, 10-week crossover trial (87). 
In addition, several double-blind, placebo-controlled trials 
reported that depressive patients with fatigue symptoms 
experienced overall improvement as well as remission in fatigue-
related complaints following the treatment of levomilnacipran 
extended-release, a type of SNRI antidepressant. These results 
suggest that SNRIs are effective in the treatment of somatic 
symptoms (88).

Tricyclics, dual-acting antidepressants seem to be more 
effective than SSRIs in treating somatic symptoms. A meta-
analysis suggested that tricyclics are superior to SSRI 
antidepressants in the therapy of various somatic symptoms, 
such as headache, idiopathic pain, fibromyalgia, tinnitus, 
irritable bowel disorder, and chronic fatigue in patients with 
chronic depression (52). Amitriptyline, the most studied 
tricyclic medication, is effective in treating at least one of the 
following complaints: pain, sleep, morning stiffness, overall 

improvement, fatigue, function symptoms, and tenderness. 
Desipramine predominantly inhibits the reuptake of NE and, 
to a minor extent, inhibits the reuptake of 5-HT. Dinan et al. 
suggested that treatment of desipramine may alleviate IBS by 
blocking the abnormal function of central α2 noradrenergic 
receptors (89). Tricyclic antidepressants are effective in treating 
somatic symptoms, possibly because of their ability to block 
the reuptake of 5-HT and NE.

5-HT AND NE INTERACTION

Substantial interactions exist between the serotonergic and 
noradrenergic systems in the central nervous system. Both 
5-HT neurons and noradrenergic neurons are active and affect 
each other in the locus coeruleus (90–92). In addition, the  
serotonergic system interacts with other neurotransmitter 
systems such as dopaminergic inputs from the midbrain corpus 
striatum (93) and glutamatergic and inhibitory γ-aminobutyric 
acid-ergic inputs from forebrain regions (94) and local 
interneurons (95–97).

Projections from 5-HT neurons to NE neurons are inhibitory. 
For instance, rats with damage in 5-HT neurons show a greater 
firing activity of NE neurons than intact animals (98). Previous 
studies also demonstrated that long-term administration with 
SSRIs might increase 5-HT transmission, presumably increasing 
the effectiveness of 5-HT projections to locus ceruleus and 
forebrain neurons (99). For instance, Szabo et al. found that the 
short-term administration of citalopram exerts no effect on the 
firing activity of NE neurons; however, the long-term treatment 
of citalopram could produce a progressive reduction of the 
spontaneous firing activity of NE neurons (100).

Other evidence suggests that the interaction between NE 
transporter (NET182C) and 5-HT transporter (5-HTTLPR) 
polymorphisms is associated with susceptibility and electroconvulsive 
therapy treating response in antidepressant treatment resistant 
depression patients. Patients with combined NET and 5-HT 
transporter polymorphism genotypes had poorer treatment 
responses (101). Moreover, functional and structural interactions with 
NE, 5-HT and dopamine systems that are known to have an impact 
on executive control processes (102, 103). Furthermore, researchers 
observed interactions between 5-HT transporter and a functional 
NET polymorphism, suggesting 5-HT and NE interplay in shaping 
goal-directed behavior (103, 104). Most interestingly, interactions of 
5-HT transporter and NET polymorphism also influence cognitive 
and executive functioning, such as target accuracy and event-related 
potential, latency in n-back task (105).

In addition, studies have shown that mirtazapine can 
significantly increase the firing of 5-HT neurons and trigger 
a small but distinct increase in the firing of NE neurons (106, 
107). Behavioral tests suggest that depletion of NE might block 
the effects of some SSRIs as well (108). These results have 
provided evidence that antidepressants selectively working 
on the serotonergic system may also indirectly influence the 
function of the noradrenergic system. In addition, blockade of 
the 5-HT2A receptor may potentiate the release of NE under the 
treatment of SSRI (109).
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CONCLUSION

Somatic symptoms are highly prevalent in patients with 
depression, anxiety and some other psychiatric disorders. In this 
narrative review, we examined the potential role of serotonergic 
and noradrenergic systems in the development and treatment of 
various somatic symptoms. Antidepressants may play an important 
role in the therapy of somatic symptoms by regulating 5-HT and 
NE neurotransmitter systems at central and peripheral levels. 
Future research combining neuroimaging techniques and genetic 
analysis to further elucidate the biological mechanisms of somatic 
symptoms and to develop novel treatment strategies is needed.
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