
1 May 2019 | Volume 10 | Article 296

ORIGINAL RESEARCH

doi: 10.3389/fpsyt.2019.00296
published: 03 May 2019

Frontiers in Psychiatry | www.frontiersin.org

Edited by:
Kai Zhang,  

Chiba University,  
Japan

Reviewed by:
Li-Zhuang Yang,  

Hefei Institutes of Physical Science 
(CAS), China  

Huanzhong Liu, 
Anhui Medical University,  

China

*Correspondence:
Xiaochu Zhang  

zxcustc@ustc.edu.cn

Specialty section:
This article was submitted to  

Addictive Disorders, 
a section of the journal 
Frontiers in Psychiatry

Received: 12 November 2018
Accepted: 16 April 2019
Published: 03 May 2019

Citation:
Bu J, Ma R, Fan C, Sun S, 

Cheng Y, Piao Y, Zhang P, Liu C 
and Zhang X (2019) Low-Theta 

Electroencephalography Coherence 
Predicts Cigarette Craving 

in Nicotine Addiction.  
Front. Psychiatry 10:296. 

doi: 10.3389/fpsyt.2019.00296

Low-Theta Electroencephalography 
Coherence Predicts Cigarette 
Craving in Nicotine Addiction
Junjie Bu 1,2, Ru Ma 2, Chuan Fan 3,4, Shinan Sun 5, Yan Cheng 3, Yi Piao 3, Pengyu Zhang 2, 
Chialun Liu 2 and Xiaochu Zhang 1,2,3,5*

1 Hefei Medical Research Center on Alcohol Addiction, Anhui Mental Health Center, Hefei, China, 2 Hefei National Laboratory 
for Physical Sciences at the Microscale and School of Life Sciences, University of Science & Technology of China, Hefei, 
China, 3 School of Humanities & Social Science, University of Science & Technology of China, Hefei, China, 4 Department 
of Medical Psychology, the First Affiliated Hospital of Anhui Medical University, Hefei, China, 5 Academy of Psychology and 
Behavior, Tianjin Normal University, Tianjin, China

Addicts are often vulnerable to drug use in the presence of drug cues, which elicit 
significant drug cue reactivity. Mounting neuroimaging evidence suggests an association 
between functional magnetic resonance imaging connectivity networks and smoking 
cue reactivity; however, there is still little understanding of the electroencephalography 
(EEG) coherence basis of smoking cue reactivity. We therefore designed two independent 
experiments wherein nicotine-dependent smokers performed a smoking cue reactivity 
task during EEG recording. Experiment I showed that a low-theta EEG coherence 
network occurring 400–600 ms after onset during long-range (mainly between frontal and 
parieto-occipital) scalp regions, which was involved in smoking cue reactivity. Moreover, 
the average coherence of this network was significantly correlated with participants’ level 
of cigarette craving. In experiment II, we tested an independent group of smokers and 
demonstrated that the low-theta coherence network significantly predicted changes in 
individuals’ cigarette craving. Thus, the low-theta EEG coherence in smokers’ brains 
might be a biomarker of smoking cue reactivity and can predict addiction behavior.

Keywords: electroencephalography coherence, nicotine addiction, smoking cue reactivity, external validation, 
functional connectivity

INTRODUCTION

Nicotine addiction is a psychiatric disorder that is one of the leading causes of avoidable morbidity 
and mortality globally (1). One common feature of nicotine addiction is smoking cue reactivity, which 
refers to how nicotine-dependent patients show significant physiological and subjective reactions 
to cigarette-related cues (2). According to addiction theory, smoking cue reactivity is a central 
characteristic of nicotine addiction (3), and emerging evidence suggests that it is a precipitating 
factor in many relapse episodes (4). The reverse may also be true: that is, brain reactivity to smoking 
cues might predict the ability to maintain nicotine abstinence (5). Many studies have since explored 
the brain basis of smoking cue reactivity, given the potential clinical benefit this knowledge would 
have for the treatment of nicotine addiction.

Functional magnetic resonance imaging (fMRI) studies have shown that smoking cue reactivity 
involves many brain regions, including the anterior cingulate cortex, the superior frontal gyrus, the 
posterior cingulate cortex, etc. This suggests that the brain connectivity network is an important 
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basis of smoking cue reactivity (4, 6, 7). However, the low 
temporal resolution of blood-oxygen-level-dependent (BOLD) 
fMRI provides limited understanding of the temporal process of 
smoking cue reactivity (8). Numerous electroencephalography 
(EEG) findings suggest that smoking cue reactivity might be a 
relatively fast cognitive process (taking milliseconds). These 
findings showed that smoking cue reactivity tends to occur 300 
to 800 ms after cue onset (9, 10). Although previous EEG studies 
have shown that smoking cue reactivity is related to the P300 
(11), the slow positive wave (12), and the alpha power (10), these 
studies at best reveal that event-related potentials (ERPs) or time-
frequency power were related to smoking cue reactivity, which 
provides rather limited understanding of the brain networks 
involved.

EEG coherence, as a measure of the brain network, which 
involves calculating the linear relationship between two 
electrode signals based on their cross-spectrum and estimating 
the synchronization between neural populations at a high 
temporal resolution, is believed to reflect functional cortical 
connectivity at the centimeter scale (13). This coherence is 
regarded as a direct reflection of the operation of corticocortical 
fiber systems or as an indirect reflection of the interactions of 
various brain networks including other cortical or subcortical 
structures (14). Therefore, EEG coherence has advantages on 
high temporal resolution and measuring brain network between 
populations of neurons. Recently Li et al. (15) used resting 
EEG coherence measure to explore the mechanism of hypnotic 
aversion suggestions on reducing cigarette craving. However, the 
EEG coherence basis of smoking cue reactivity is still unknown. 
In addition, so far few studies used other EEG measures of 
connectivity in nicotine addiction.

We designed two independent experiments to explore the 
EEG coherence basis of smoking cue reactivity. In experiment 
I, we found that smoking cue reactivity was related to increased 
low-theta (3–5 Hz) coherence at 400–600 ms after stimulus 
onset in long-range (between frontal and parieto-occipital) scalp 
regions. Additionally, craving—a core symptom of addiction 
that is often accompanied by drug cue reactivity—for cigarettes 
was significantly correlated with the average coherence of the 
low-theta network. In experiment II, an external validation 
demonstrated that the average coherence of the low-theta 
network predicted individuals’ cigarette craving.

METHODS

Experiment I
Participants
Through online advertisements, we recruited 25 right-handed, 
unmedicated male nicotine-dependent smokers (≥10 cigarettes/
day, ≥2 smoking years, aged 18–30 years) who met the Diagnostic 
and Statistical Manual of Mental Disorders, Fourth Edition, Text 
Revision (DSM-IV-TR) criteria for nicotine addiction as the 
smoker group, as well as 22 right-handed, healthy male adults 
(aged 18–30 years) as the nonsmoker group. All were studying 
at the University of Science and Technology of China. Because of 
the very low prevalence (only 2.7%) of female smokers in China, 

we enrolled only male smokers in this study. All had normal or 
corrected-to-normal vision. All participants gave their written 
informed consent before the experiment began and received 
financial compensation for completing it. The research protocol 
was approved by the Human Ethics Committee of the University 
of Science and Technology of China.

Experimental Procedure
Both groups completed a classical smoking cue reactivity task 
during EEG recording. Before the task, all participants recorded 
their demographic information including age and education years 
and completed the Toronto Alexithymia Scale (TAS) and the 
Positive and Negative Affect Schedule (PANAS). Furthermore, 
in the smoker group, we assessed cigarette craving before and 
after the smoking cue reactivity task using the Tobacco Craving 
Questionnaire (TCQ). Using the TCQ, we evaluated the change 
(i.e., increase) in cigarette craving pre-task to post-task. Participants 
were required to be abstinent from smoking cigarette for 2 h before 
the experiment. To ensure smokers’ 2 h abstinence before the 
experiment, an experimenter would tell the participants not to 
smoke by telephone. And these smokers were also required to self-
report the time of last cigarette smoked after arriving at the lab.

In the smoking cue reactivity task [adopted from our previous 
study (15); Figure 1], three kinds of cues [smoking (130 pictures), 
neutral (130 pictures), and animal (40 pictures)] were randomly 
presented to the participants. They were instructed to press the 
space bar on a keyboard as soon as possible when the animal picture 
appeared on the screen, in order to get them to focus their attention 
on the task. All these pictures were taken from our previous study 
(16). Each picture was displayed for 1 s and a fixation was presented 
during interstimulus intervals, which randomly varied from 1 to 1.5 
s. For every 100 pictures displayed (about 3.7 min), participants were 

FIGURE 1 | Smoking cue reactivity task. During the task, participants were 
required to press the space button as soon as possible when the animal 
picture appeared. Three hundred pictures in total (including 130 smoking, 
130 neutral, and 40 animal pictures) were displayed randomly. After 
participants viewed 100 pictures, they rested for 1 min.
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asked to rest for 1 min. The smoking cue reactivity task lasted for 
about 15 min in total. All participants pressed the button correctly 
when the animal picture appeared (100% accuracy).

Electroencephalography Acquisition
The experiment task was run using the Psychophysics Toolbox for 
Matlab (http://psychtoolbox.org/). The EEG data were recorded 
using a SynAmps RT amplifier (NeuroScan, Charlotte, NC, U.S). 
Sixty-four Ag/AgCl electrodes were placed on participants’ scalp 
at specific locations according to the extended International 10–20 
System. Additionally, the electrical activities were recorded over the 
right and left mastoids. Vertical electrooculograms (EOGs) were 
recorded using bipolar channels placed above and below the left eye, 
and horizontal EOGs were recorded using bipolar channels placed 
lateral to the outer canthi of both eyes. The reference electrode 
was attached to the tip of each participant’s nose and the ground 
electrode was attached to AFz. Impedance between the reference 
electrode and any recording electrode was kept under 5 kΩ. All the 
signals were digitized at 500 Hz during data collection.

Data Analysis
The raw EEG data during the smoking cue reactivity task were 
pre-processed, first via visual inspection to remove obvious 
technical artifacts, after which a high-pass filter was used to 
remove low-frequency noise and an independent component 
analysis was used to correct for blink artifacts. The continuous 
EEG data were then extracted into epochs from −200 ms (pre-
stimulus) to 1,000 ms (post-stimulus) and baseline corrected 
using the interval from −200 to 0 ms. Epochs containing 
amplitude changes exceeding ±100 μv were rejected.

For the remaining epochs, spectral coherence, which reflects 
the connectivity between two electrodes, was calculated for every 
condition (e.g., smoking condition and the neutral condition) during 
the smoking cue reactivity task. To reduce the volume conduction 
effect, the electrode pairs for calculating spectral coherence were 
separated by at least 10 cm (14). Given that every trial lasted for 
about 1 s and the possible electromyography (EMG) artifacts for 
high frequency data, we calculated the spectral coherence from 3 to 
30 Hz. To calculate the spectral coherence between two electrodes 
across epochs at each time-frequency region (TFR), the average 
cross-spectrum was calculated from the complex conjugate of the 
wavelet coefficients, after which it was squared and normalized using 
the average residual power spectrum of the individual electrodes. 
For each participant, the spectral coherence value between two 
electrodes at each TFR was calculated using the EEGLAB function 
newcrossf. For each TFR, the coherence matrix was constructed by 
calculating the coherence value between each electrode pair (>10 
cm). The long range is that the interelectrode distances are greater 
than 10 cm. Previous studies have suggested that the short distances 
(<10 cm) may influence coherence measurements such that increased 
coherence can be measured even when the underlying sources 
are uncorrelated (14). Therefore, the long range (>10 cm) seems  
to reflect genuine group differences in coherent neuronal activity. 
To identify the significant TFR of the coherence network, we 
followed previous coherence analysis methods (14, 15): that is, the 
overall pattern of spectral coherence was computed by averaging all 
electrode pairs and then compared between the two experimental 

conditions across participants using nonparametric permutation 
test and false discovery rate (FDR) correction. Furthermore, the 
topography of the difference between the two conditions was plotted 
based on the significant TFR. The correlation between the average 
coherence within the network and the change in cigarette craving 
was measured using Pearson’s correlation coefficient.

Experiment II
We recruited an independent group of nicotine-dependent patients 
(13 males; mean ± SD age, 26.8 ± 2.8 years; mean ± SD years 
of education, 15.9 ± 1.5 years) for experiment II. The EEG data 
during the smoking cue reactivity task were taken from another 
neurofeedback study of ours, obtained in the same manner as in 
experiment I. The participants of this study also completed several 
other cognitive tasks while the EEG was recording; however, 
these task data were used only in the other study. We used the 
EEG coherence network for smoking cue reactivity obtained 
in experiment I to define that in experiment II. Subsequently, the 
average coherence of the network was used to predict the change 
in cigarette craving through the same correlation model as 
in experiment I. The change in cigarette craving predicted by the  
EEG coherence network was then entered into a Pearson’s 
correlation analysis with the observed change in cigarette craving. 
As in experiment I, we measured cigarette craving before and after 
the smoking cue reactivity task using the TCQ.

RESULTS

Experiment I
As shown in Table 1, there were no significant differences 
between the smoker and nonsmoker groups in age, education 
years, and TAS and PANAS scores, suggesting that both groups 
were homogenous in their characteristics.

To identify the significant TFR for coherence during smoking 
cue reactivity, we compared the overall patterns between the 
smoking and neutral conditions by averaging all electrode pairs. As 
shown in Figure 2, a significant low-theta TFR pattern (occurring 
400–600 ms after stimulus onset in the 3–5 Hz band) was found 
in the smoker group. Furthermore, the low-theta TFR pattern was 
greater in the smoking condition than in the neutral condition. 
However, we found no significant TFR pattern differences between 
the smoking and neutral conditions in the nonsmoker group. Then 

TABLE 1 | Baseline demographic characteristics of the two groups.

Characteristic Smoker group Nonsmoker group p

Age (years) 26.4 (3.2) 26.8 (1.8) 0.65
Education (years) 15.7 (1.7) 15.3 (1.1) 0.41
Cigarettes/day 15.4 (5.7) 0 0
Years of cigarette use 6.3 (2.5) 0 0
TAS 66.8 (9.6) 63.5 (8.5) 0.25
PANAS
 Negative 24.5 (6.9) 24.6 (8.2) 0.96
 Positive 32.6 (5.7) 31.7 (6.0) 0.66

Values are means (1 standard deviation). TAS, Toronto Alexithymia Scale; PANAS, 
Positive and Negative Affect Schedule.
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we performed a two-way mixed-design ANOVA analysis using 
group (smoking vs. nonsmoking people) as a between-subjects 
factor and cue type (smoking vs. neutral) as a within-subjects factor. 
We found there was a significant group-by-cue type interaction on 
the average EEG coherence [F(1,45) = 7.23, p < 0.01].

Figure 3 shows the topography of the condition differences 
in the significant low-theta TFR pattern. The smoking condition 
showed higher coherence for long-range (e.g., frontal and 
parieto-occipital) scalp regions than did the neutral condition 
among smokers, but not among nonsmokers.

As for the relationship between the low-theta network coherence 
and cigarette craving, Figure 4A shows a significant positive 

correlation between the average coherence of the low-theta network 
and the change in cigarette craving (r = 0.41, p < 0.05).

Experiment II
In experiment II, the change in cigarette craving ranged from −23 
to 14 (mean ± SD, 0.23 ± 9.98), which was similar to experiment 
I (mean ± SD, −2.72 ± 10.93; t = −0.18, p = 0.42). In this external 
validation, the estimated correlation model (y = 229.58*x-6.26) 
used to predict the change in cigarette craving was derived from 
the entire sample in experiment I. We found that the predicted 
change in cigarette craving using the low-theta network coherence 
was significantly correlated with participants’ observed change 
in cigarette craving (r = 0.70, p = 0.007, Figure 4B); furthermore, 
they did not significantly differ (t = −1.07, p = 0.30). These external 
validation results indicate that the low-theta coherence basis of 
smoking cue reactivity significantly predicts the change in cigarette 
craving for a given participant based on the average coherence of the 
low-theta network.

DISCUSSION

In this study, we investigated the EEG coherence basis of smoking 
cue reactivity using the classical smoking cue reactivity task. First, 
we found increased coherence in the low-theta EEG network in 
the frontal-partial regions during smoking cue reactivity. Second, 
this low-theta coherence network was significantly associated 
with changes in cigarette craving. Finally, an external validation 
in an independent group of participants revealed that the average 
coherence of the low-theta network significantly predicted the 
change in cigarette craving.

In current study, nicotine-dependent individuals showed 
increased low-theta coherence during smoking cue reactivity when 
compared with nonsmokers. Our current findings build on these 
past studies by identifying some of the brain networks involved in 
smoking cue reactivity. Previous ERP and EEG oscillation studies 
revealed that smoking cue tend to elicit reactivity around the period 
between 300 and 800 ms after the cue appears (12), indicating 

FIGURE 2 | Time-frequency region for overall electroencephalography (EEG) coherence in the smoker group and interaction results between two groups. (A) The 
significant region indicated that the overall EEG coherence in the smoking condition was greater than that in the neutral condition during the smoking cue reactivity 
task. The p values were corrected with the false discovery rate. Log transformation was applied on the y-axis frequency. (B) The interaction results on the average 
EEG coherence of selected time-frequency region between two groups. **p < 0.01, ***p < 0.001, ns: not significant.

FIGURE 3 | Topography of significantly increased coherences in the 3–5 Hz 
band occurring at 400–600 ms for the smoker group. The distance of each 
electrode pair for calculating the coherence (reflected by red lines) was >10 cm.
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that it is a relatively fast process. Our findings were well in line 
with the past studies, suggesting an early attentional deployment 
(arising between 400 and 600 ms reflected on low-theta band) on 
smoking cue. In addition, the frontal–parietal region connection 
(>10 cm) of the observed coherence network appears to be in line 
with the findings of a previous fMRI study showing that smoking 
cue reactivity was associated with the connectivity of the anterior 
cingulate cortices and precuneus (4). Moreover, the theta coherence 
from our second experiment has been shown to predict subjective 
craving level. Taken together, the current study may provide a novel 
and reliable biomarker for identifying smoking cue reactivity at both 
high temporal resolution and a certain degree of spatial resolution.

Smoking cue reactivity is accompanied by changes in cigarette 
craving (17). We found that the average coherence within the 
low-theta network was significantly correlated with changes in 
cigarette craving, thus supporting the idea the low-theta network 
is involved in nicotine addiction. Similarly, previous studies 
have shown that EEG theta coherence is associated with years 
of heroin use among people with heroin addiction (18). EEG 
theta coherence has also previously been found to be a biological 
marker of alcohol addiction (19). Collectively, these findings 
suggest the EEG theta coherence might play an important role in 
drug addiction.

Addiction studies have shown that cue reactivity involves 
numerous complex cognitive components (20), including attention, 
memory, emotion, etc. Long-range theta coherence has previously 
been found to be associated with working memory and sustained 
attention (21–23). Additionally, the scalp distribution of long-range 
theta coherence occurred primarily in regions where the memory 
and attention networks are localized (24). Based on these findings, 
we speculate that the low-theta coherence network we observed 
might represent memory and attention processes related to nicotine 
cue. However, to fully understand these mechanisms, concurrent 
EEG and fMRI experiments could be conducted to reveal precise 
network connectivity in future studies.

Recently, the replication of the results of neuroimaging studies 
has generated hot debate among researchers (25). Some studies 

are failing to be replicated, which might impede the healthy 
development of neuroimaging research as a whole (26). A potential 
reason for the lack of replication is that the generalizability of an 
internally validated prediction might be poor for a new sample (27). 
Therefore, we designed an independent experiment to externally 
validate the relationship between the low-theta coherence network 
and cigarette craving. The significant positive correlation observed 
between the observed change in cigarette craving and the predicted 
change based on the low-theta coherence network provide further 
evidence that this network might be a stable biomarker of nicotine 
addiction. This biomarker could therefore be an appropriate brain 
manipulation target for advanced neurofeedback or transcranial 
alternating current stimulation modulation technology for 
nicotine-dependent patients. However, these interventions require 
further investigation.

The present study is not without limitations. First, the sample 
size is not large, especially in the independent experiment. In 
addition, the participants’ age is only from 18 to 30. Further studies 
should increase the number of nicotine-dependent patients and 
explore the EEG coherence mechanism of nicotine addiction in the 
different age group. Second, the spatial resolution of EEG coherence 
network was on a centimeter scale. Further studies could consider 
having the concurrent EEG-fMRI or magnetoencephalography 
(MEG) experiments to reveal complete brain basis of smoking cue 
reactivity.

To the best of our knowledge, this study is the first one to assess 
cortical connectivity during smoking reactivity through applying 
EEG coherence methods. The low-theta coherence we identified was 
a stable and novel biomarker for smoking cue reactivity that could 
be targeted for treating nicotine addiction.

ETHICS STATEMENT

The research protocol was approved by the Human Ethics 
Committee of the University of Science and Technology of China. 
All participants gave written informed consent prior to the study.

FIGURE 4 | Prediction of change in cigarette craving change by low-theta coherence network in the two experiments. (A) The correlation between cigarette craving 
change and the average coherence of the low-theta coherence network in experiment I. (B) The correlation between observed and predicted change in cigarette 
craving in experiment II. The change in cigarette craving indicated an increase from pre-task to post-task (post–pre).
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