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Schizophrenic subject is thought as a self-disorder patient related with abnormal brain 
functional network. It has been hypothesized that self-disorder is associated with the 
deficient functional integration of multisensory body signals in schizophrenic subjects. To 
further verify this assumption, 53 chronic schizophrenic subjects and 67 healthy subjects 
were included in this study and underwent resting-state functional magnetic resonance 
imaging. The data-driven methods, whole-brain temporal variability of fractional amplitude 
of low-frequency fluctuations and regional homogeneity (ReHo), were used to investigate 
dynamic local functional connectivity and dynamic local functional activity changes in 
schizophrenic subjects. Patients with schizophrenia exhibited increased temporal variability 
ReHo and fractional amplitude of low-frequency fluctuations across time windows within 
sensory and perception network (such as occipital gyrus, precentral and postcentral 
gyri, superior temporal gyrus, and thalamus). Critically, the increased dynamic ReHo 
of thalamus is significantly correlated with positive and total symptom of schizophrenic 
subjects. Our findings revealed that deficit in sensory and perception functional networks 
might contribute to neural physiopathology of self-disorder in schizophrenic subjects.

Keywords: schizophrenia, functional connectivity, temporal variability, self-disorder, sensory and perceptual 
network

INTRODUCTION

About 1% of the whole adult population suffer from schizophrenia, which is one of the costliest 
mental disorders. Schizophrenic subject is typically considered as a self-disorder (1). Self-disorder 
could be associated with several positive symptoms. The major point of schizophrenic subjects’ 
positive symptom is unable to efficiently distinguish self and others. This symptom would lead to 
a worse deficit that the schizophrenic patients could not confirm their actions and thoughts are 
related to external information or stimulation. Importantly, in schizophrenia, the symptoms related 
to self-disorder have been considered a crucial factor to identify whether the psychiatric patient is 
schizophrenic or not (2).

There are many neuroimaging studies that have been employed in investigating the neuropathological 
mechanism of schizophrenia (3–5). Although many functional connectivity studies of schizophrenia 
focused on the abnormal long-range functional connectivity among spatially distributed brain regions 
(6, 7), few studies paid attention on local functional information of blood oxygen level dependence and 
functional interaction between spatially adjacent regions (8, 9). Thus, to quantify local or short-range 
functional connectivity in human brain, several measures were commonly employed in neuroimaging 
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studies, including regional homogeneity (ReHo) (10), local power 
of blood oxygen level dependence [low-frequency fluctuations 
(fALFF)] (11), and functional connectivity strength (12) derived 
from resting-state functional magnetic resonance imaging (fMRI). 
Several studies have reported that there are significant relationships 
between static ReHo/fALFF and several factors, such as age, 
gender, and intelligence in healthy subjects (13, 14). These findings 
have revealed that the static local neural activity and short-range 
functional connectivity have been linked with the physiological 
and psychological factors in human brain.

In schizophrenia, multi-site resting-state fMRI study has shown 
that schizophrenic subjects exhibited decreased static fALFF in 
cuneus, middle temporal gyrus, and posterior cingulate cortex 
compared with healthy subjects (15). Guo et al. has also found 
that the schizophrenic patients showed both decreased static 
fALFF in the posterior cingulate cortex and decreased gray matter 
volume in medial prefrontal cortex, indicating that the changes of 
brain function and anatomy within default model network might 
contribute separately to the pathophysiology of schizophrenia 
(16). Besides, recent studies have indicated that schizophrenic 
patients have shown reduced static functional connectivity density 
in primary sensory network of schizophrenia and decreased static 
ReHo in visual and sensorimotor networks compared with healthy 
controls (17). Furthermore, the symptomatology (e.g., auditory 
hallucinations) in schizophrenia has been proved to be related 
to abnormal multisensory static functional connectivity (18). In 
conclusion, the deficit static functional connectivity of sensory and 
perceptual systems may potentially contribute to physiopathology 
of schizophrenia. While these studies have implicitly revealed that 
functional connectivity is a stable characteristic across the entire 
resting scan period, recent studies have indicated that functional 
connectivity is not stationary and changes over time (19, 20).

Assessing brain dynamic functional connectivity from 
resting-state fMRI has advanced our knowledge of the brain 
(21). Specifically, a recent neuroimaging study has stated that 
functional connectivity variability seems to be a reliable feature, 
partly dependent on functional relationships among distributed 
brain regions (22). Dynamic functional connectivity analysis 
could provide a novel method to sensitively capture the abnormal 
functional connectivity related with psychiatric disorders (23–
26). The results of dynamic functional connectivity analyses also 
revealed transient states of dysconnectivity in schizophrenia (27, 
28), which support and expand current knowledge regarding 
dysconnectivity in schizophrenia. Moreover, a recent study 
demonstrated that the feature of dynamic functional connectivity 
significantly outperforms the static connectivity in classification 
analysis (29). These findings reveal that static functional analysis 
may obscure important dynamic features of network behavior.

During recent years, few studies have focused on altered local 
temporal variability of functional activity or short-range functional 
connectivity in schizophrenia, which could reveal information that 
is not from static functional connectivity (30). Thus, we sought to 
determine whether altered temporal variability of regional neural 
activity was associated with symptom of schizophrenia in this study. 
The dynamic neural activity analysis used in this study includes 
dynamic ReHo and fALFF, which allow us to identify voxel-level 
dynamic functional alterations in schizophrenia compared with 

healthy subjects. On the basis of previous results about abnormal 
static functional connectivity in primary motor and perception 
networks, we hypothesize that abnormal dynamic neural activity 
in schizophrenia would locate in primary perceptual systems, such 
as primary sensory-motor cortex and related visual and thalamus 
regions. In addition, schizophrenic subjects are expected to show 
significant association between altered variability of these network 
and symptom of schizophrenic subjects.

MATERIALS AND METHODS

Subjects Selection and Schizophrenic 
Patients’ Clinical Symptoms
Fifty-three chronic schizophrenic subjects and 67 healthy controls 
are included in this study. Related resting-state fMRI data are 
collected from the Center for Biomedical Research Excellence. 
The patients with schizophrenia are diagnosed according to 
Diagnostic and Statistical Manual of Mental Disorders, 4th 
Edition, diagnostic. The psychiatric symptom severity is measured 
using positive and negative syndrome scale (PANSS) assessment. 
Healthy subjects are also recruited, those who do not have 
schizophrenia and not exhibiting Axis I symptoms. These research 
procedures were in accordance with institutional review boards 
of the USA. Written informed consent was obtained from each 
subject before the study. Details of demographic characteristics of 
both groups are shown in Table 1.

Data Acquisition and Image Preprocessing
Functional imaging scan was performed on a 3T MRI scanner 
(Siemens Trio). Resting-state functional image are collected with 
single-shot full k-space echo-planar imaging (EPI) (repetition 
time = 2,000 ms, echo time = 29 ms, number of slices = 32, slice 
thickness = 3 mm, matrix size: 64 × 64, flip angle = 7°, field of 
view = 256 × 256 mm2). Subjects underwent 6-min scan. A total 
of 180 volumes of EPI images were obtained.

The preprocessing steps of functional image were performed 
using commonly processing steps [Data Processing and Analysis 

TABLE 1 | Dataset (The Center for Biomedical Research Excellence, chronic).

 Patients with 
Schizophrenia

Healthy 
controls

p

Sample size 53 67 –
Gender (Male/Female) 42/11 46/21 0.192a

Age (years) 36.75 ± 13.67 34.82 ± 11.28 0.398b 
Education level (years) 13.20 ± 1.82 14.02 ± 1.86 0.024b

Handedness (both/right/left) 1/42/10 1/65/1 0.004a

FD 0.15 ± 0.07 0.14 ± 0.08 0.433b

Disease duration (years) 14.94 ± 4.60 – –
PANSS-positive score 14.94 ± 4.61 – –
PANSS-negative score 14.43 ± 5.26 – –
PANSS-global score 30.07 ± 8.28 – –

Indicated values are shown as mean ± standard deviation. PANSS, positive and 
negative symptom scale; FD, Framewise displacement.
aIndicates the p values from the comparison analysis (Chi-square test).
bIndicates the p values from the comparison analysis (two-sample t-test).
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of Brain Imaging (DPABI) (31), http://rfmri.org/dpabi] and 
briefly described here. First, temporal and spatial corrections 
were performed, including slice time and head motion correction, 
furthermore normalized (voxel size: 3 mm) into EPI template. Any 
subjects who had a maximum translation in any of the cardinal 
directions larger than 3 mm or a maximum rotation larger than 3° 
were excluded from subsequence analysis. Moreover, framewise 
displacement (FD) was evaluated in two groups as suggested by 
Power et al. (32). Second, detrending analysis was performed on 
the normalized data to minimize the effect of linear trend. Third, 
several nuisance signals were regressed out from functional image 
through linear regression analysis. The nuisance signals include 
six motion parameters and their first temporal derivative, white 
matter and cerebrospinal fluid signals. In this study, the global 
signal was not removed from the functional image (33, 34).

Temporal Variability Analysis
Two widely used approaches, including ReHo and fALFF, were 
used to measure voxel-level functional maps (35). We calculated 
dynamic ReHo and fALFF through sliding window analysis 
(Figure 1A). Based on the “rule of thumb,” which is 1/fmin of 
data should be equal or less than the length of window (36), 

the whole-run time series of each voxel was segmented into 50 
TR windows and sliding the onset of these windows by one TR. 
Then, within each window, we calculated ReHo and fALFF at 
each voxel in whole-brain mask.

In the ReHo analysis, the frequency band passing (0.01–0.08 
Hz) was done on fMRI data. Then, Kendall’s W value was calculated 
for each voxel, between the time series of the target voxels and the 
series of their nearest voxels (26 voxels) in the whole-brain mask 
(10). In the fALFF analysis, fALFF is defined as the percentage of 
the power within the low-frequency range (0.01–0.08 Hz) in total 
power of whole frequency range (0–0.25 Hz) (11).

Across n window, we calculated the coefficient of variation 
(CV) maps of ReHo and fALFF for each subject. We define the 
CV of a voxel k as:

 
CV
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t mean
t

n

mean
=

−( )
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where xt is ReHo or fALFF score of voxel k over time window 
t, t = 1,2,…,n; xmean is mean score of xt across time window t. 
Finally, individual voxel-wise ReHo and fALFF CV maps were 

FIGURE 1 | Illustration of analysis steps and temporal variability of dynamic fALFF and ReHo pattern. (A) The preprocessed full-length blood oxygen level-
dependent fMRI maps were segmented into several sliding windows (50 TR). Within each window, the fALFF and ReHo were computed for each voxel. The sliding 
window was systematically shifted by one TR, and the corresponding fALFF and ReHo were computed. Then, the temporal variability of the dynamic fALFF and 
ReHo were defined as the CV maps across the sliding windows. The pattern of temporal variability of the fALFF (B) and ReHo (C) of the schizophrenic subjects/
healthy controls were shown.
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standardized by dividing the whole-brain mean values and, 
furthermore, spatially smoothed (6-mm full width at half 
maximum of the Gaussian kernel). Then, two-sample t-tests were 
performed for ReHo and fALFF CV maps, respectively (DPABI, 
http://rfmri.org/dpabi), between schizophrenic and healthy 
subjects with age, gender, education level, handedness, and FD as 
covariates, with a statistical significance level corrected by false 
discovery rate (p < 0.05).

Correlations With Pathological Factors
We assessed the association between the score of clinical score and 
significant changes of temporal variability in regional functional 
measurements in patients with schizophrenia. We extract the 
mean CV score from the peak voxel and its nearest voxels (26 
voxels) for each significant cluster. Then, the partial correlation 
analysis was performed between ReHo and fALFF CV scores 
and patients’ PANSS scores with age, gender, education level, 
handedness, medication dosage, and FD as covariates (p < 0.05).

Validation Analysis
Recent fMRI study has indicated that sliding window-based 
dynamic functional connectivity could be largely explained by 
head motion (37). Patient is chronic schizophrenic subjects in 
this study. The antipsychotic treatment might have an effect on 
dynamic local neural activity of schizophrenic subjects. Thus, 
we preformed the validation analysis to investigate the influence 
of these factors on dynamic temporal variability of regional 
functional measurements in schizophrenic subjects.

First, spike-regression-based scrubbing was performed to 
take into account transient head motion (38, 39). We defined the 
“bad points” with high FD (above 0.5 mm) and their adjacent 
time points (1 back and 2 forward) for each subject. These “bad 
points” were modeled as separate regressor in the nuisance 
regression models in the preprocessing analysis. Then, for new 
preprocessed fMRI data, we reevaluated the temporal variability 
of ReHo and fALFF through sliding window analysis. Two-
sample t-tests were also performed between two groups with 
age, gender, education level, handedness, and FD as covariates. 
Second, to take account of antipsychotic treatment, we calculated 
the relationship between altered temporal variability of fALFF/
ReHo and medication dosage in schizophrenia group by using 
correlation analysis (p < 0.05).

RESULTS

Temporal Variability of fALFF/ReHo 
Between Schizophrenic and Healthy 
Groups
Temporal variability of dynamic fALFF and ReHo were shown 
at each voxel for each subject (Figures 1B, C) with the BrainNet 
viewer (http://www.nitrc.org/projects/bnv/) (40). The variability 
of these dynamic local neural activity displayed a nonuniform 
spatial distribution across the brain. The lowest variability was 
located in the limbic system. The largest variability was mainly 
located in the heteromodal association region, including the 

temporal–parietal junction, prefrontal and posteromedial cortex. 
The primary sensory and visual cortices showed a moderate level 
of variability. Furthermore, using two-sample t test, schizophrenic 
subjects showed increased temporal variability in both dynamic 
fALFF and ReHo compared with healthy controls (Table 2, 
Figure 2) with the DPABI viewer (41). Within temporal variability 
of fALFF, increased dynamic fALFF were observed in thalamus, 
super temporal gyrus, precentral/postcentral gyrus, and lingual 
gyrus in schizophrenic subjects. Similar increased dynamic ReHo 
were also being found in patients with schizophrenia, including 
super temporal gyrus, thalamus, postcentral gyrus, middle 
cingulum cortex, and cuneus. Furthermore, these findings were 
observed by using spike-regression-based scrubbing procedure 
(SFigure 1).

Correlations With Pathological Factors
We observed positive correlation between PANSS scores and the 
increased temporal variability of ReHo in schizophrenic subjects: 
PANSS-positive score and thalamus within basal ganglia 
network (BGN) (r = 0.317, p = 0.021, Figure 3A) and PANSS-
total score and thalamus within BGN (r = 0.369, p = 0.006, 
Figure 3B). The relationship was observed between PANSS-total 
score and thalamus within BGN by using spike-regression-based 
scrubbing procedure (SFigure 2). Moreover, no other significant 
correlations were found between the altered temporal variability 
of fALFF/ReHo and medication dosage in schizophrenia group.

DISCUSSION

This study has presented some new insights in alterations of 
dynamic temporal variability of ReHo and fALFF in schizophrenia 
through sliding window analysis. Consistent with our hypothesis, 
increased dynamic temporal variability of ReHo and fALFF were 
observed in sensory and perceptual networks in schizophrenic 
subjects. Critically, the psychiatric symptom analysis has 
indicated that increased temporal variability of ReHo showed 
significantly positive relationship with the positive symptoms 
of schizophrenic subjects. These findings provide evidence that 
there is deficient temporal variability of local neural activity in 
low-level perceptual processing in schizophrenic subjects.

While these are well known about the abnormal higher-order 
brain function in schizophrenia, such as memory and cognitive 
(42, 43), neuroimaging studies have also documented some 
basic sensory processing deficits in schizophrenic subjects. The 
perceptual deficits have been increasingly observed in the sensory 
networks, including primary motor and visual regions (44, 45). 
A recent study has also revealed that schizophrenic subjects has 
shown increased resting-state functional connectivity variability 
in sensory and perceptual networks (46). Most of these locations 
were in line with the meta-analysis’ results of schizophrenia (47). 
Increased variability of local neural activity of sensorimotor regions 
might reflect the deficits in the integration of multisensory stimuli 
in schizophrenia (48). Moreover, enhanced dynamic local neural 
activity might indicate that the abnormal bottom–up processing 
is associated with the pathological mechanism of schizophrenia 
(46). In this study, we observed increased temporal variability of 
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ReHo and fALFF in sensory and perceptual system across time 
windows in schizophrenic subjects. These increased local temporal 
variabilities might provide some new evidences to support 
deficient dynamic neural activity in primary sensorimotor, as well 
as the abnormal dynamic bottom–up processing in schizophrenia.

Furthermore, schizophrenic patients could be commonly 
considered as a self-disorder with abnormal functional network 
(49). Recent studies have revealed that the processing and 
integration of multisensory bodily signals underlay a coherent 
self-experience in healthy controls (50, 51). In the “rubber-hand 
illusion” experiment, Botvinick and Cohen pointed out that the 
subjects would have true self-experience when they saw the 
fake hand was stroked, synchronous individual’s unseen hand 
(50). Disturbances in self-experiences were also reported by 
Ehrsson; they found that visual perception was not match with 
proprioceptive information (51). These studies have provided 
the evidence that the sense of self-experiences depend on 
multisensory information that arose from the body, such as 
proprioceptive, spatial, and temporal sensorimotor signals. 
In schizophrenia, the deficits of visual and motor networks 
appear to be related to self-disorder (46, 52, 53). Besides, the 
neurobiological model of self-disorder has also indicated that 
deficient sense of self in schizophrenia is largely related to the 
abnormal multisensory signals integration from body and 
external stimuli (54, 55). Thalamus is a very crucial key role in 
gating and in integrating multisensory and cognitive information 

in human brain. Thus, previous studies have indicated that the 
altered static function of the thalamus is an important feature 
related to the schizophrenic subjects’ self-disorder symptom 
(56, 57). In this study, we found increased temporal variability 
of ReHo and fALFF in primary visual and somatosensory area 
in schizophrenic patients. These increased dynamic neural 
activity across time may be related to the high interaction within 
regional sensorimotor functional network in schizophrenia. 
Increased temporal variability of thalamus was also observed 
in schizophrenic subjects, which may suggest that abnormal 
dynamic functional integration across time in schizophrenia 
exists between multisensory regions and higher order cognitive 
functional system. A significant relationship was observed 
between increased dynamic ReHo of thalamus and PANSS-
positive score. These findings indicated that schizophrenic 
subjects have altered dynamic local functional connectivity and 
local dynamic neural activity in thalamus regions. Moreover, 
increased local dynamic functional connectivity of the thalamus 
maybe related with a positive symptom of schizophrenic subjects. 
Therefore, the abnormal dynamic local neural activity within the 
visual, sensorimotor, and thalamus areas might provide more 
evidence about abnormal self-processing in schizophrenia.

While our results provide a new insight of dynamic 
functional activity for understanding the self-disorder in 
schizophrenia, several main methodological points of this 
study should be further addressed. First, dynamic temporal 

TABLE 2 | Significant increased dynamic fALFF and ReHo in schizophrenic subjects.

Regions MNI coordinates Peak t-score Cluster voxels

x y z

Dynamic fALFF 
Left postcentral gyrus −57 −12 21 5.992 763
Left precentral gyrus
Left superior temporal gyrus
Right postcentral gyrus 48 −21 60 5.097 452
Right precentral gyrus
Left postcentral gyrus −18 −42 75 5.844 228
Left precuneus
Left superior parietal gyrus 
Right lingual gyrus 9 −81 −9 3.921 60
Left Thalamus −9 −12 0 3.970 33
Dynamic ReHo
Left postcentral gyrus −30 −39 66 5.549 1,363
Left superior parietal gyrus
Right cuneus
Left cuneus
Left precentral gyrus
Left superior temporal gyrus
Left temporal gyrus
Right postcentral gyrus 39 −30 48 6.401 1,326
Right precentral gyrus
Right superior temporal gyrus
Right rolandic operculum
Right insula
Right heschl gyrus
Left Middle temporal gyrus
 Middle cingulum cortex −6 0 42 4.727 121
Supplementary motor area
Left thalamus −6 −12 6 4.899 108
Right thalamus
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variability of ReHo and fALFF were calculated through sliding 
window correlation analysis. The size of window length is one 
parameter that does not have formal consensus, although we 
selected it based on the frequency of preprocessed data. Second, 
the patient we chose is chronic schizophrenic subjects. The 
antipsychotic treatment might have an effect on dynamic local 

neural activity of patients. We should validate our findings in 
the first-episode schizophrenic subjects in further study. Third, 
self-experience assessment is not included in the current study. 
We should measure it and investigate the relationship between 
self-experience score and static/dynamic local neural activity in 
schizophrenic subjects.

FIGURE 2 | Group difference of temporal variability of the dynamic fALFF and ReHo. Temporal variability of the dynamic fALFF and ReHo between schizophrenic 
and healthy subjects were identified using two-sample t tests. The significance level was set PFDR < 0.05. (A) The increased dynamic fALFF in schizophrenic subjects 
were compared with those of healthy controls. (B) The enhanced dynamic ReHo in patients with schizophrenia.

FIGURE 3 | The relationship between altered temporal variability of dynamic ReHo and PANSS scores. (A) The positive association is observed between increased 
CV score of thalamus region and PANSS-positive score in schizophrenic subjects. (B) The PANSS-total score was also positively related with CV score of thalamus 
region in patients. 
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CONCLUSION

In conclusion, this study has combined resting-state fMRI and 
dynamic functional analysis. Our findings have revealed an 
increased temporal variability of ReHo and fALFF in primary 
visual and sensorimotor networks, as well as in the thalamus in 
schizophrenia patients. It has been showed that the increased 
dynamic neural activity of the thalamus was significantly related 
with a positive symptom of schizophrenic subjects. Thus, our 
findings might have potential interpretation for the neural 
physiopathology of self-disorder in schizophrenia.
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