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No univocal and reliable brain-based biomarkers have been detected to date in Autism 
Spectrum Disorders (ASD). Neuroimaging studies have consistently revealed alterations in 
brain structure and function of individuals with ASD; however, it remains difficult to ascertain the 
extent and localization of affected brain networks. In this context, the application of Machine 
Learning (ML) classification methods to neuroimaging data has the potential to contribute to 
a better distinction between subjects with ASD and typical development controls (TD). This 
study is focused on the analysis of resting-state fMRI data of individuals with ASD and matched 
TD, available within the ABIDE collection. To reduce the multiple sources of heterogeneity 
that impact on understanding the neural underpinnings of autistic condition, we selected a 
subgroup of 190 subjects (102 with ASD and 88 TD) according to the following criteria: male 
children (age range: 6.5–13 years); rs-fMRI data acquired with open eyes; data from the 
University sites that provided the largest number of scans (KKI, NYU, UCLA, UM). Connectivity 
values were evaluated as the linear correlation between pairs of time series of brain areas; then, 
a Linear kernel Support Vector Machine (L-SVM) classification, with an inter-site cross-validation 
scheme, was carried out. A permutation test was conducted to identify over-connectivity and 
under-connectivity alterations in the ASD group. The mean L-SVM classification performance, 
in terms of the area under the ROC curve (AUC), was 0.75 ± 0.05. The highest performance 
was obtained using data from KKI, NYU and UCLA sites in training and data from UM as testing 
set (AUC = 0.83). Specifically, stronger functional connectivity (FC) in ASD with respect to TD 
involve (p < 0.001) the angular gyrus with the precuneus in the right (R) hemisphere, and the 
R frontal operculum cortex with the pars opercularis of the left (L) inferior frontal gyrus. Weaker 
connections in ASD group with respect to TD are the intra-hemispheric R temporal fusiform 
cortex with the R hippocampus, and the L supramarginal gyrus with L planum polare. The results 
indicate that both under- and over-FC occurred in a selected cohort of ASD children relative  
to TD controls, and that these functional alterations are spread in different brain networks.
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INTRODUCTION

According to the Diagnostic and Statistical Manual of Mental 
Disorders, fifth edition (DSM-5) (1) autism spectrum disorders 
(ASD) are a heterogeneous set of neurodevelopmental disorders 
characterized by deficits in social communication and social 
interaction and the presence of restricted, repetitive behaviors. 
Updated data on the prevalence of ASD in the United States 
(Centers for Disease Control and Prevention—CDC) (2) identified 
1 in 59 children (1 in 37 boys and 1 in 151 girls) as having ASD. 
The exact etiopathogenesis of idiopathic ASD is not yet fully 
established: however, recent evidences point to an interaction 
between genetic liability and environmental factors in producing 
early alteration of brain development (3). In this framework, some 
recent studies have used pattern classification techniques to analyze 
structural and functional neuroimaging data, in order to highlight 
brain signatures able to distinguish ASD subjects from controls (4).

Among neuroimaging techniques, resting-state functional 
magnetic resonance imaging (rs-fMRI) allows to collect brain 
functional connectivity (FC) data from individuals not engaged 
in any specific task (5), and thus it is particularly suited to extract 
information on the functional brain organization of young 
or non-cooperative or low-functioning ASD subjects (6). In 
particular, recent rs-fMRI investigations have provided crucial 
evidence on the disruption of functional networks in individuals 
with ASD (7–9). However, rs-fMRI findings of subjects with 
ASD suggested conflicting patterns of FC, with the presence of 
over FC, under FC and a combination of both (10). Most studies 
focused on adolescents and adults, where under FC in subjects 
with ASD has been predominantly observed, and usually found 
to be related to social impairment (11, 12). The under-FC pattern 
involves several brain areas, including the salience network, the 
default mode network (DMN), and language-related regions (11, 
13, 14). Conversely, studies carried out on young children have 
demonstrated that there is an over-FC pattern, detected at whole-
brain level and in subsystems (15), in particular in the default 
mode, salience, frontotemporal, motor and visual networks (16).

The inconsistent results obtained on adults, adolescents 
and children suggest that the alteration of FC could be partly 
ascribed to age. Since ASD has an early developmental origin, 
it is necessary to focus on childhood to be sure that no age-
related compensatory mechanisms have already happened (15). 
Due to the possible age dependence of FC alterations in ASD, 
it is important to select a specific age range for the cohort of 
subjects involved in research studies (17). Furthermore, it has 
been observed that sex impact on both structural (18–20) and 
functional (21) brain organization in subjects with ASD. Another 
factor to consider is eye status during scan, which may introduce 
FC alterations, in particular at local level (22).

Several investigations analyzed the FC with machine learning 
methods (17–23). These tools are able to learn relevant differences 
between a group of subjects affected by a specific condition and a 
control group of subjects with typical development from a dataset 
(training set) and make predictions on unknown observations 
(testing set). As a general rule, the greater the number of 
subjects used in the training phase, the higher the reliability and 
generalization ability of the classifier. Large data samples are 

difficult to acquire in a single site, thus they are often obtained by 
collecting data from multiple sites. In this case, a classifier is trained 
on a more representative cohort of subjects, therefore, in principle, 
it can make more general predictions. However, additional 
sources of variability may affect multicenter analysis, e.g. slightly 
different acquisition protocols or participant instructions during 
image acquisition (23), and it has been observed that classification 
accuracy for multi-site analysis is lower than single-site results 
(24). Moreover, the site-dependent information encoded in multi-
site data may lead a classifier to learn to distinguish categories of 
subjects according to confounding parameters instead of relying 
on differences between subjects related to the diagnostic classes.

We explored in this study the FC of subjects with ASD, exploiting 
the potential of machine-learning approaches to highlight subtle 
differences between the FC profile of subjects with ASD and controls.

MATERIALS AND METHODS

Sample Composition
We selected a sample of subjects with ASD and controls for 
our analysis within the publicly-available data sample collected 
within the Autism Brain Imaging Data Exchange (ABIDE) 
initiative1 (25). The main selection of subjects was carried out 
on participants’ age: specifically, we focused our analysis on 
children in the age range of 6.5 to 13 years to reduce the impact of 
developmental changes during puberty. Several sites contributing 
to the ABIDE I collection recruited participants below 13 years of 
age, except Caltech, CMU and SBL (Figure 1A).

In addition to age, participants were chosen according to sex, 
eye status during the scan, and the available number of subjects 
with the selected characteristics at each site. Only male children 
were selected since the male sample size is larger than female 
across sites (Figure 1B), in line with the epidemiology of ASD 
(26). Scans with open eyes were chosen because they are more 
numerous and with a low risk of sleep during acquisition time, 
that can represent an additional source of variability that is 
difficult either to monitor or prevent (22) (Figure 1C).

After the previous selections, only the four most populated 
remaining sites were analyzed (n = 190; ASD = 102 and TD = 88) 
(Figure 1D): Kennedy Krieger Institute (KKI), NYU Langone 
Medical Center (NYU), University of California, Los Angeles 
(UCLA), University of Michigan (UM). Furthermore, the groups 
of subjects from KKI (ASD = 18, TD = 24), NYU (ASD = 33, TD = 
23), UCLA (ASD = 23, TD = 21), UM (ASD = 28, TD = 20) were 
age-matched.

More details about the impact of selection criteria on the 
classification performance are reported in Supplementary Materials.

The mean and standard deviation values of age, full scale 
intelligence quotient (FIQ), ADOS Gotham total and ADOS 
Gotham severity scores (27) are reported for each site for ASD 
and TD groups of subjects in Table 1. The distributions of clinical 
and demographic variables are reported in Figure 2. The selected 
site parameters, in terms of vendor, scan duration (28) and 
diagnostic category are reported in Table 2.

1http://fcon_1000.projects.nitrc.org/indi/abide/
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Resting-State fMRI Data
We analyzed the preprocessed data available on the ABIDE 
preprocessed homepage (29, 30), using the Configurable Pipeline 
for the Analysis of Connectomes (CPAC) (31), that includes slice-
timing, motion correction, intensity normalization, nuisance 
signal removal (e.g. tissue signals, low-frequency drifts), and 
registrations. Band-pass filtering and global signal regression 
strategies were chosen as processing strategies to reduce the 
impact of physiological noise and global signal, that includes non-
neuronal components and fluctuations in neuronal activity (32). 
Both anatomical and functional atlases were chosen to derive the 
FC measures; in particular, we chose Harvard-Oxford (HO) and 
Automatic Anatomical Labeling (AAL) as anatomical templates 
and Craddock-200 (CC) as functional templates to extract time 
series from brain regions (33). The timeseries and the information 
about labels of regions for each atlas are reported on the ABIDE 
preprocessed homepage in the pipeline section. Further analysis 
was conducted using the functional Power template obtained by 
brain-wide graph analysis (34). For this analysis, we extracted the 
time series from the preprocessed functional images since they 
are not directly available on the ABIDE preprocessed homepage.

Functional Connectivity Analysis
For each atlas, the Pearson correlation was calculated between 
the time series of pairs of regions to obtain a NxN correlation 
matrix for each subject, where N indicates the number of regions 
of the selected atlas.

The correlation values were normalized according to Fisher 
transformation (35), where the number of timepoints is taken 
into account:

 Z n r
r

= − +
−







1
2

3 1
1

ln  

where n is the number of timepoints of time series and r 
indicates the Pearson correlation values. From each symmetric 
FC matrix obtained we used N N( )−1

2
 non-redundant values as 

features for the machine learning classification.

Machine Learning Based Classification
Supervised binary classification of ASD and TD classes was 
carried out with Support Vector Machines (SVM) (36), which 

FIGURE 1 | Number of children per ASD and TD groups (yellow = ASD, blue = TD) before (A) and after adopting selection criteria regarding sex (B), eye status 
during scan (C) and sample size at each site (D).
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are able to handle noisy and correlated features and can provide 
better results with respect to other classifiers on dataset with 
small samples and large number of features (37).

SVM classifiers are able to separate distributions of data in two 
classes (i.e. ASD and TD) through a hypersurface, described a 
function according to selected kernel (38). This separation surface 
is learned from the training set and allows to make predictions on 
testing set, composed by unknown data. A linear-kernel support-
vector-machine (L-SVM) was chosen as it has been demonstrated 
to provide a more robust performance with respect non-linear 
kernel SVM when the number of features is large with respect to 
the number of training cases (39). In addition, L-SVM provide 
a direct way to interpret the findings: the separating hyperplane 
is a linear function defined by the weight vectors and an offset. 
The weights associated with each feature express the direction 
along which the normalized pairwise correlations differ between 
two classes: higher weights correspond to more discriminating 
features; the weight signs allow to identify whether a connection 
is stronger or weaker in ASD than TD subjects.

Machine-learning based classifiers were implemented to 
optimize the evaluation of possible altered functional connections 
in ASD. In particular, the L-SVM classification was carried out on 

the FC features derived for each parcellation scheme to choose 
the optimal one among the AAL, HO, CC and Power atlases. In 
order to reduce the effect of site-specific sources of variability 
(23), a leave-site out cross-validation scheme was performed: 
each training set was composed by all the sites except one, that 
was left out for validation. The classification performance was 
evaluated in terms of the area under the ROC curve (AUC) (40).

Significant Connections
In order to identify the most significant connections able to 
discriminate between ASD and TD children, a permutation test was 
carried out on the entire dataset of children. This non-parametric 
technique allows to assign statistical significance to the classification.

A L-SVM classifier was trained on the data after 10,000 
permutations of the class labels. The absolute values of the 
obtained weights were compared with the ones of the classifier 
trained on the correct labels (38, 39). Through this procedure 
probability maps were generated and thresholded at three 
different p-values (p < 0.01, p < 0.005, p < 0.001) in order to 
identify the most discriminating functional connections and 
to visualize them at different significance levels.

FIGURE 2 | Distributions of age, FIQ, ADOS Gotham total and ADOS Gotham severity scores across sites. Top row: age and FIQ distributions are reported for ASD, 
TD and all subjects together; bottom row: ADOS total (left) and ADOS Gotham severity (right) scores are shown for children with ASD. Points representing each 
single subject were overlaid to the box plot. A small random noise has been added on x axis label for each subject in order to make all points visible.
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Depending on the weight signs, the alteration in FC are 
recognized as over FC, in correspondence to positive model weights, 
and under FC, in correspondence to negative model weights.

Functional alterations in terms over FC and under FC were 
analysed in the Mesulam subsystems (25, 41), including the 
connections both between and within heteromodal, unimodal, 
paralimbic, limbic, primary, and subcortical regions.

Statistical Methods and Analysis Tools
Statistical tests were conducted on age and FIQ values to evaluate 
the matching between the cohorts of ASD and TD children in 
each site. Specifically, t-test was conducted on age values and 
Mann-Whitney U-test on not normal FIQ values. The normality 
of the distributions of age and FIQ values was evaluated by 
Shapiro-Wilk test.

Furthermore, statistical differences across sites were 
evaluated through one-way ANOVA, which was applied on the 

normally-distributed age values, and Kruskal-Wallis test, which 
was applied on nonnormally-distributed FIQ and ADOS scores, 
the latter standardized according to Gotham algorithms (27). In 
particular, we analyzed the ADOS Gotham total score, which is 
related to social affect and restricted repetitive behaviour, and the 
ADOS Gotham severity score, which captures the calibrated autism 
symptom severity. The statistical tests results were corrected using 
Bonferroni method for multiple comparison correction.

In order to evaluate the significant functional connections 
different between each site and the other sites combined 
together, a Mann-Whitney U-test was carried out. In particular 
the analysis was conducted only on the control children to 
avoid to include confounding effects related to the disorder. The 
p-values obtained were corrected using Benjamini-Hochberg 
false discovery rate (FDR), taking account for the number of 
false discovery (q ≤ 0.05) (42).

Possible correlations between functional connections showing 
the most significant group differences and autism symptom 
severity and overall level of functioning have been investigated 
according to Spearman rank correlation coefficient. Specifically, 
the relationships between FIQ and FC values were evaluated in 
ASD and TD groups separately.

Functional connectivity analysis, classifications, permutation 
test and cerebral maps representation, and the study of 
correlations between altered FC values and clinical scores 
were carried out with Matlab 2017a (The MathWorks, Inc.). 
In particular, in-house built scripts and functions were 
developed, and, for the SVM classifier training, the fitcsvm 
matlab function has been used, with the default choice of the c 

TABLE 2 | KKI, NYU, UCLA and UM characteristics in terms of vendor, scan 
duration and the diagnostic categories.

Sites Scanner Time scan 
(min)

Participants

TD ASD

KKI Philips 6.33 24 18
NYU Siemens Allegra 5.9 23 33
UCLA Siemens Trio Tim 5.8 21 23
UM GE 9.8 20 28

ASD, autism spectrum disorder; TD, typical developmental control.

TABLE 1 | Dataset composition and sample characteristics in KKI, NYU, UCLA and UM sites.

Sites Subject group, mean ± std [range] Statistical test

ASD TD Statistic p-value

Age (Years) t-Test (t)

KKI 10.1 ± 1.4 [8.2–12.5] 10.3 ± 1.3 [8.4–12.8] −0.51 0.62
NYU 10 ± 1.4 [7.1–13] 10.2 ± 1.7 [6.5–12.7] −0.52 0.61
UCLA 11 ± 1.1 [8.5–13] 11.5 ± 1 [9.2–12.9] −1.37 0.18
UM 11.2 ± 1.3 [8.5–12.9] 10.9 ± 1.2 [8.2–12.8] 0.92 0.36

FIQ Mann-Whitney Test (z)

KKI 95 ± 17 [69–131] 112 ± 10 [98–125] −3.17 <0.001*
NYU 108 ± 16 [76–142] 117 ± 11 [98–142] −2.58 0.01*
UCLA 100 ± 16 [73–132] 111 ± 11 [90–128] −2.4 0.02*
UM 101 ± 20+ [73–132] 105 ± 9 [85–127] −1.49 0.14

ADOS Gotham total
KKI 15 ± 4 [6–21]
NYU 12± 5 [5–26]
UCLA 12 ± 4+ [5–19]
UM 12 ± 6+ [2–28]

ADOS Gotham severity
KKI 8 ± 2 [3–10]
NYU 7 ± 2 [3–10]
UCLA 7 ± 2+ [3–10]
UM 7 ± 2+ [1–10]

ASD, autism spectrum disorder; TD, typical developmental control; std, standard deviation; FIQ, full scale intelligence quotient.
t, two group independent t test statistic between ASD and TD groups mean values.
z, two group independent Mann-Whitney test statistic between ASD and TD groups median values.
*Significant differences between mean (or median) ASD and TD groups.
+Missing values from some UCLA and UM sites ASD children were removed in calculating the mean and the standard deviation of parameters.
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parameter – the parameter that regulates the trade-off between 
having zero training errors and allowing for misclassifications – 
for the linear-kernel SVM, to avoid running optimization of 
hyperparameters, which would have required and additional 
nested cross validation.

Effect of Site and Other Confounding 
Parameters
The impact of the site and of the other confounding parameters 
(e.g. sex, eye status) on the performance in the ASD vs. TD 
machine-learning based classification was evaluated and reported 
in the Supplementary Materials. A statistical comparison among 
the FC maps of TD children obtained at the four different sites 
was also carried out to highlight the impact of the acquisition site 
on FC information (see Supplementary Materials).

RESULTS

Sample Analysis
T-test analysis on age and Mann-Whitney analysis on FIQ 
values in each site showed that ASD and TD groups are 
only age-matched whereas no dataset is matched on FIQ, 
except for the UM sample (Table 1). The results of one-way 
ANOVA and Kruskal-Wallis analyses carried out for each 
participant’s parameter showed that there are significant 
differences between two or more sites according to age and 
FIQ. Multiple comparisons, using Bonferroni correction, 
were conducted for each parameter to identify which sites 
were different according those parameters. Both KKI and 
NYU samples showed statistically significant differences from 
UCLA and  UM samples according to age, whereas only the 
NYU sample was different from the UM sample according to 
FIQ (Table 3).

Functional Connectivity Measures
The FC was evaluated for all children of the four sites using the 
AAL, HO, CC, and Power atlases (Figure 3A). For each child 
we identified the possible null rows/columns in the FC matrix 

due to null time series. When the HO, the CC and the Power 
atlases were applied, null time courses were obtained in some 
cerebral regions (Figure  3B). Specifically, in the temporal, 
frontal and parietal lobes, close to brain edges. Subjects with at 
least one null row/column in the FC matrix were identified in 
the datasets related to HO, CC, and Power atlases and the critical 
regions were highlighted for each parcellation scheme. These 
regions are shown in Figure 3B, where they are represented as 
spheres positioned in the centroid of each atlas region with a 
radius proportional to the number of subjects (n) presenting that 
critical region. In order to avoid removing regions that may be 
potentially interesting for ASD diagnosis, we decided to remove 
the subjects from HO (n = 3) and CC (n = 3) dataset. Regarding 
Power atlas, since the number of subjects containing critical 
regions was too high (n = 130), we decided to remove the regions 
and not the subjects, leaving 230 regions for the classification 
analysis. Therefore, multisite analysis was conducted on 190 
subjects with AAL and Power atlases and on 187 subjects with 
HO and CC.

The connectivity analysis was carried out on cortical and 
subcortical regions, excluding the cerebellum. Since Harvard-
Oxford atlas does not already have cerebellum areas, we removed 
them in the other atlases we used. Cerebellar areas were identified 
through the corresponding labels for the AAL and through the 
label generated from the overlap between AAL and CC for CC 
templates; in Power atlas, the cerebellum was identified from the 
corresponding MNI coordinates. After the previous selections 
the number of regions were reduced to 90 for AAL, 110 for HO, 
184 for CC and 230 for Power atlases, respectively.

Correlations Between Altered FC Values 
and Clinical and Cognitive Measures
We tested the possible correlations of the four functional 
connections showing the most significant group differences with 
autism symptom severity and the overall level of functioning, and 
we found the following significant results in terms of Spearman ρ: 
negative correlations of the FC between the R hippocampus and 
temporal fusiform cortex with The ADOS total (ρ = −0.21, p = 
0.04) and ADOS severity scores (ρ = −0.24, p = 0.02); a positive 
correlation of the FC between L inferior frontal gyrus and R 
frontal operculum cortex with the FIQ (ρ = 0.196, p = 0.049).

Classification
The L-SVM classification was carried out on the FC measures of 
the whole dataset using four different atlases. The classification 
performances are compared in terms of the mean AUC obtained 
in the leave-one-site-out cross-validation scheme.

The best performance was obtained using the HO atlas, as 
shown in Table 4. The classification results obtained according 
to the leave-one-site-out cross-validation scheme of data derived 
with the HO atlas are reported in more detail in Table 5, where, in 
addition to the AUC, also the sensitivity, specificity and accuracy 
values are shown. In particular, the highest performance was 
obtained using FC patterns from KKI, NYU, and UCLA samples 
in the training phase (n = 139) and leaving out the patterns of the 
UM sample for the validation (n = 48), as shown in Table 5.

TABLE 3 | One-way ANOVA/Kruskal-Wallis analysis for each participant’s 
parameter: age, FIQ, ADOS Gotham total, ADOS Gotham severity. The 
Bonferroni correction for multiple comparisons has been used. The tests on age 
and FIQ values have been conducted on the cohorts of subjects including both 
ASD and TD children of each site.

Variable N Statistical test Group

Statistic p value

Age (years) 48 F = 10.23  <0.001* KKI-UCLA, 
KKI-UM, 

NYU-UCLA, 
NYU-UM

FIQ 47 χ2 = 9.51 0.02 NYU-UM
ADOS Gotham 
total

99 χ2 = 7.15 0.07

ADOS Gotham 
severity

99 χ2 = 8.05 0.05
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Significant Connections
The functional connections that contribute the most to the 
discrimination between subjects with ASD and controls were 
obtained through a permutation test applied to the dataset of children 
from all sites together (KKI, NYU, UCLA, and UM), including 187 
subjects. The list of relevant functional connections between brain 
regions are reported in Tables 6 and 7, and they are shown in 
Figure 4 where over-FC and under-FC patterns are highlighted for 
different thresholds on p values. The altered functional connections 
are represented in axial (Figure 4A), coronal (Figure 4B) and sagittal 
(Figure 4C) views. In the top row of each panel the functional 
connections which are significantly stronger in ASD relative to TD 
are depicted, whereas in the bottom row the functional connections 
which are significantly weaker in ASD relative to TD are shown. 
Each region is represented as sphere positioned in the region 
centroid, with a radius proportional to the number of connections 
involving that region and coloured according to the membership 
in the six functional Mesulam divisions: heteromodal, unimodal, 
limbic, paralimbic, subcortical, and primary. This representation 
facilitates the considerations regarding altered connections in and 
between functional brain areas.

DISCUSSION

The goal of this study was to highlight through machine-learning 
based techniques possible alterations in the FC of children 
with ASD in the age range of 6.5–13 years, available within the 
ABIDE cohort. Several selection criteria were adopted to focus 
our investigation on a more homogeneous sample of subjects, 
and thus to reduce the possible sources of variability. Specifically, 
age, sex, and eye status of the participants are known factors that 
may introduce heterogeneity in FC. Consequently, this study 
was focused on male children, in a limited age range, whose 
rs-fMRI scans were acquired with open eyes. Furthermore, 
only the four most populated sites were considered. The FC 
analysis was carried out using different atlases, and machine-
learning classifiers were implemented to select the parcellation 
scheme with the best discrimination performance. Notably, the 
choice of atlas has an impact on classification performance for 
two reasons: as the functional signals of the voxels are averaged 
within a brain parcel, both the region location and its size 
affect the signal information content and the noise level. The 
use of the anatomical HO atlas led to a better classification 
performance with respect to the use of AAL, CC and Power 
atlases (see Table 4). The use of the anatomical HO atlas led 
to a better classification performance with respect to the use 
of AAL, CC and Power atlases (see Table 4). This result can be 
explained in terms of a trade-off between the conflicting needs 
of averaging the functional signals over a non-too-large brain 
parcels, while keeping acceptable the number of features to 
classify. A parcellation scheme with a limited number of parcels 
would generate a manageable number of features to classify, thus 
avoiding the classifier overfitting problem. By contrast, averaging 
the functional signal over brain regions that are too large can 
cause the weakening or disappearance of the signal itself. This 

FIGURE 3 | Parcellation schemes used in this analysis (A): Automated Anatomical Labeling (AAL), Harvard-Oxford (HO), Craddock (CC) and Power atlases used in 
functional connectivity analysis. Regions with null time series obtained in implementing the HO, CC, and Power atlases on data (B). Critical regions are represented 
as spheres positioned in the centroid of each atlas region, with a radius proportional to the number of subjects presenting that critical region.

TABLE 4 | ASD vs. TD classification performance: the impact of using different 
parcellation schemes in the leave-one-site-out cross-validation scheme is shown 
in terms of mean and standard deviation of AUC. For each atlas, the number of 
descriptive features (m) is reported.

Atlas, mean ± std

Classification AAL HO CC POWER
(m = 4005) (m = 5995) (m = 16836) (m = 26335)

AUC (%) 72 ± 3 75 ± 5 70 ± 10 64 ± 6

AUC, area under the ROC curve; std, standard deviation; AAL, Automated Anatomical 
Labeling; HO, Harvard-Oxford; CC, Craddock.
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trend can be appreciated in the classification performances 
shown in Table 4. In particular, the FC values derived according 
to the HO atlas have higher discriminating power with respect 
to those of the AAL atlas, which is characterized by 30% fewer 
regions, and thus the signals are averaged over larger brain 
areas and have lower specificity in describing brain functioning. 
When the CC and Power atlases are implemented, the expected 
increase in the performance with the increase in the number 
of parcels does not hold anymore. Despite CC and Power are 
defined according to functional parcellation schemes and thus 
potentially more informative than the structural-atlas based 
ones, the excessive increase in the number of features makes 
the classifier overfit data and lose its generalization capability, 
causing the decrease in classification performance instead of 
the expected increase. For these reasons, the best compromise, 
at least for the data sample considered in this study, was the 
implementation of the HO atlas. The binary classification 
results between subjects with ASD and controls in a leave-one-
site-out cross-validation scheme achieved an average accuracy 
of 0.71 ± 0.06 and an average AUC of 0.75  ± 0.05. The best 

performance was obtained when the training was carried out on 
FC patterns of children from KKI, NYU, and UCLA, and the 
classifier performance was evaluated on data from the UM site, 
reaching an AUC of 0.83. Within the cross-validation scheme, 
large variability in the results obtained on the different left-out 
samples were detected (e.g. AUC in the 0.71–0.83 range), as a 
result of the differences in demographic, clinical and possible 
data acquisition variability across sites. This variability suggests 
caution in interpreting the results, and requires their dedicated 
replication on larger homogeneous cohorts of subjects. The 
difference across the sites is also evident in the statistical analysis 
conducted on the average FC matrices between one site and 
the others combined together (Figure S1). Lot of functional 
connections in UM control children differ significantly from 
KKI, NYU and UCLA combined together, probably for different 
site parameters, linked to scanning protocol used. Specifically, 
as shown in Table 2, the scan duration of time series in UM 
is longer than the KKI, NYU and UCLA same parameter. 
Nielsen et al. (24) demonstrated that the scan duration is linked 
to the classification accuracy, since the longer the time series, 

TABLE 6 | List of significantly stronger (ASD > TD) functional connections in ASD children from KKI, NYU, UCLA, UM, obtained for p < 0.01, p < 0.005, and p < 0.001. 
Beside the Harvard-Oxford labels of the regions defining the connections, lowercase letters are reported in reference to the visual representation of each connection 
shown in Figure 4.

Significant connections

Harvard-Oxford regions Mesulam subsystems p-value

ASD > TD
R Angular Gyrus (b) – R Precuneus Cortex (p) Heteromodal Heteromodal <0.001
L Inferior Frontal Gyrus (pars opercularis) (h1) – R Frontal Operculum Cortex (f) Heteromodal Unimodal <0.001
R Inferior Frontal Gyrus (pars triangularis) (h2) – R Middle Temporal Gyrus (anterior division) (k1) Heteromodal Heteromodal <0.005
R Precentral Gyrus (o) – L Inferior Temporal Gyrus (anterior division) (i1) Primary Unimodal <0.005
R Parahippocampal Gyrus (posterior division) (l2) – R Parietal Operculum Cortex (m) Paralimbic Unimodal <0.005
R Amygdala (a) – L Inferior Temporal Gyrus (temporo-occipital part) (i3) Limbic Unimodal <0.01
R Inferior Frontal Gyrus (pars opercularis) (h1) – R Lateral Occipital Cortex (inferior division) (j1) Heteromodal Unimodal <0.01
L Inferior Temporal Gyrus (temporo-occipital part) (i3) – R Lateral Occipital Cortex (inferior division) (j1) Unimodal Unimodal <0.01
R Lateral Occipital Cortex (superior division) (j2) – L Frontal Medial Cortex (e) Unimodal Paralimbic <0.01
R Inferior Temporal Gyrus (temporo-occipital part) (i3) – R Parahippocampal Gyrus (anterior division) (l1) Unimodal Paralimbic <0.01
L Inferior Frontal Gyrus (pars triangularis) (h2) – R Temporal Fusiform Cortex (posterior division) (u) Heteromodal Unimodal <0.01
R Precentral Gyrus (o) – R Temporal Fusiform Cortex (posterior division) (u) Primary Unimodal <0.01
R Lateral Occipital Cortex (inferior division) (j1) – L Frontal Operculum Cortex (f) Unimodal Unimodal <0.01
R Superior Temporal Gyrus (posterior division) (r) – L Supracalcarine Cortex (s) Unimodal Unimodal <0.01
L Subcallosal Cortex (q) – L Supracalcarine Cortex (s) Paralimbic Unimodal <0.01 

R, right hemisphere; L, left hemisphere.

TABLE 5 | ASD vs. TD classification performance obtained for the Harvard-Oxford atlas. The classification performances are reported in terms of sensitivity, specificity, 
accuracy and AUC for each site left out as validation set in the cross-validation scheme. The mean and standard deviation of all figures of merit over the four sites are 
also reported (the mean AUC and its standard deviation are also shown in Table 4).

L-SVM

Leave one site out

Classification KKI NYU UCLA UM mean ± std

Sensitivity (%) 67 48 83 79 69 ± 16
Specificity (%) 75 83 61 75 74 ± 9
Accuracy (%) 71 63 73 77 71 ± 6
AUC (%) 71 75 72 83 75 ± 5

AUC, area under the ROC curve; std, standard deviation.
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the better the performance achieved. The best performance 
we obtained on the UM site data in the cross-validation 
scheme is also consistent with the following interpretation: the 
composition of the samples collected at each single site is not 

equivalent in terms of the information it provides on the ASD 
condition. Moreover, none of the four samples we considered is 
large enough to represent the entire population of children with 
ASD, which is intrinsically extremely heterogeneous in terms 

TABLE 7 | List of significantly weaker (ASD < TD) functional connections in ASD children from KKI, NYU, UCLA, UM, obtained for p < 0.01, p < 0.005, and p < 0.001. 
Beside the Harvard-Oxford labels of the regions defining the connections, lowercase letters are reported in reference to the visual representation of each connection 
shown in Figure 4.

Significant connections

Harvard-Oxford regions Mesulam subsystems p-value

ASD < TD
R Hippocampus (g) – R Temporal Fusiform Cortex (posterior division) (u) Limbic Unimodal <0.001
L Supramarginal Gyrus (anterior division) (t) – L Planum Polare (n) Unimodal Unimodal <0.001
L Middle Temporal Gyrus (anterior division) (k1) – R Middle Temporal Gyrus (posterior division) (k2) Heteromodal Heteromodal <0.005
R Precentral Gyrus (o) – L Angular Gyrus (b) Primary Heteromodal <0.005
R Inferior Temporal Gyrus (posterior division) (i2) – L Angular Gyrus (b) Unimodal Heteromodal <0.005
R Precuneus Cortex (p) – R Temporal Fusiform Cortex (posterior division) (u) Heteromodal Unimodal <0.005
R Cuneal Cortex (d) – L Frontal Operculum Cortex (f) Unimodal Unimodal <0.005
L Cingulate Gyrus (anterior division) (c1) – L Cingulate Gyrus (posterior division) (c2) Paralimbic Paralimbic <0.01
R Precuneus Cortex (p) – L Parahippocampal Gyrus (anterior division) (l1) Heteromodal Paralimbic <0.01
R Cingulate Gyrus (posterior division) (c2) – R Temporal Fusiform Cortex (posterior division) (u) Paralimbic Unimodal <0.01
L Cingulate Gyrus (posterior division) (c2) – R Temporal Fusiform Cortex (posterior division) (u) Paralimbic Unimodal <0.01

R, right hemisphere; L, left hemisphere.

FIGURE 4 | Significant functional connections in the discrimination between subjects with ASD and typical controls obtained using the HO atlas. Altered connections 
are shown in axial (A), coronal (B) and sagittal views (C). In each view, the over-connectivity (top row) and under-connectivity (bottom row) patterns in ASD children in 
and between the functional Mesulam divisions are shown for different thresholds on significance levels (p < 0.01, p < 0.005, and p < 0.001). The membership of each 
region to one of the Mesulam division is highlighted by color code applied to a sphere positioned in the region centroid, whose radius is proportional to the number of 
altered connections involving that region. Lowercase letters are reported to indicate each region, in reference to the reference to the results reported in Tables 6 and 7.
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of etiopathogenesis (43), neuroanatomical alterations (44), and 
phenotypic expression (45). In addition, if the population with 
ASD was sufficiently represented by these data samples, we 
would have obtained a lower standard deviation in the leave-
one-site-out cross-validation results.

Our rs-fMRI analysis identified both over- and under-FC 
patterns in the ASD group relative to controls. This result could 
be interpreted from a developmental perspective (46, 47), 
considering that both children – in which generally over-FC 
prevails (15, 48) – and preadolescents/early adolescents – in 
which under-FC is more frequently reported (9, 11) – are 
present in our sample. However, other recent studies suggest 
the coexistence of over- and under-FC in the brain of subjects 
with ASD, independently of their age (49, 50). The absence of 
the adult population did not allow us to verify this hypothesis in 
our sample.

Specifically, we detected increased FC within DMN (between 
the angular gyrus and the precuneus) in ASD individuals 
compared with controls, in line with some previous investigation 
(16, 48). Interestingly, a study that investigated age-related 
changes in FC by dycothomizing their sample into younger 
(6- to 9-year olds) and older subjects (10- to 17-year olds) 
identified reduced FC between DMN nodes in the older group 
only, and that this FC in the DMN increased with age in the TD 
controls, but not in the ASD children, providing support for the 
“developmental disconnection model” of ASD (51).

A stronger connection between anterior and posterior areas 
of the brain (e.g. middle temporal and inferior frontal; lateral 
occipital, and frontal operculum) was detected in our sample. 
Strikingly, the opposite pattern – under-connection between 
anterior and posterior areas of the brain for ASD subjects – was 
identified in a recent investigation that has applied deep learning 
algorithms to the ABIDE dataset (52). Unlike the current study, 
Heinsfeld and colleagues (52) did not restrict the analysis to a 
limited age range: therefore, the opposite direction of correlation 
between antero-posterior regions could be partly ascribable to 
the different ages of the samples (adults vs. children).

Among the brain regions in which an increase in FC was 
detected, it is important to consider the inter-hemispheric 
connections between the inferior frontal gyri – IFG – (i.e. L pars 
opercularis with R frontal operculum), since these areas are 
critical for speech expression, that is frequently impaired in ASD 
individuals, but also for higher-level social cognitive abilities, 
such as theory of mind and empathy, typically compromised 
in ASD. Interestingly, even if all the participants of the current 
study fall into a near-average FSIQ, we detected a significant 
positive correlation between the level of cognitive functioning 
as measured by full-scale intelligence quotient and increased 
left-right IFG FC. Other studies have also found correlations 
between cognitive abilities and FC in ASD. For example, Reiter 
et al. (53) found significant under-FC within the DMN and 
the visual ventral stream in lower-functioning ASD children 
compared with matched higher-functioning ASD, while Linke 
et al. (54) showed that reduced interhemispheric connectivity 
between auditory cortical areas was correlated with lower verbal 
IQ. Conversely, some investigations did not report any impact of 
IQ levels on FC results [9, 55 (i.e. Weng 2010 and Salmi 2013)].

An opposite pattern compared to what we have identified, 
and thus characterized by weak FC in IFG and other language-
related brain regions, has been observed in toddlers with ASD, 
and was correlated with impairment in expressive language 
ability (56). Under-FC involving interhemispheric Broca’s area 
was also reported in adolescents with ASD and clear comorbid 
language impairment (14), suggesting a role of altered FC in 
communication deficits of subjects with ASD. Of note, in a recent 
whole-brain meta-analysis of rs-fMRI investigations in ASD, the 
IFG is one of the few brain regions in which resting-state activity 
was increased (57).

Although with a lower statistical significance (p < 0.01), 
increased FC is also displayed within the temporal cortex of 
subjects with ASD -between the R inferior temporal gyrus and 
the R parahippocampal gyrus-. Crucially, an increased local FC 
in these regions was found in high-functioning adolescents with 
ASD and was correlated with higher core ASD symptom severity 
(58). Moreover, a similar pattern of local functional over-FC in 
posterior brain regions including the parahippocampal gyrus 
was reported in a mixed group of children and adolescents with 
ASD (59). This regional pattern of over-FC in posterior brain 
areas involved in visual processing is consistent with preference 
for local over global visual processing repeatedly observed in 
individuals with ASD (60, 61).

Importantly, among the under-FC findings, we observed 
lowered FC between R hippocampus and R fusiform cortex. In line 
with this finding, the fusiform and the hippocampus – together 
with the amygdala – belong to the facial memory regions, i.e. 
structures that are implicated in the memory for faces, an ability 
particularly impaired in subjects with ASD (62). Alterations in 
the fusiform–hippocampal cortex emerged also from studies 
investigating the anatomy (63), the structural connectivity 
(64), and the FC (65) of individuals with ASD relative to TC. 
Moreover, insofar as brain–behaviour relationship is concerned, 
the reduced connectivity between the hippocampus and the 
fusiform cortex in the ASD group is related to ASD symptom 
severity (assessed by the Autism Diagnostic Observation 
Schedule, total and calibrated severity scores, with higher scores 
indicating greater impairment). Therefore, our results support 
an impaired connectivity in the brain systems underlying social 
cognitive skills that is more pronounced in children with more 
severe ASD core symptoms, suggesting a direct involvement 
of FC abnormalities in the ASD pathophysiology. Further, the 
weaker connection between supramarginal gyrus (part of the 
inferior parietal lobule) and planum polare (part of the superior 
temporal gyrus) contributed most to differentiating ASD from 
TD controls. Notably, these regions belong to the DMN, which 
has been suggested to be involved in social cognition, theory 
of mind (66, 67), self-evaluation, and introspection, and whose 
disruption has been consistently reported in subjects with ASD 
(7, 68, 69). Therefore, reduction in resting state FC in regions of 
the DMN might underlie some of the core features associated 
with ASD. Not unexpectedly, other pivotal hub of the DMN, 
such as the middle temporal gyrus, the parahippocampal gyrus, 
the posterior cingulate gyrus, the precuneus, and the angular 
gyrus are part of the weaker connections we found in children 
with ASD.
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Among the weaknesses of the present study is the limited 
number of subjects in the sample. We focused on children in the 
age range of 6.5–13 years, thus strongly reducing the number of 
subjects available in the ABIDE preprocessed sample. In addition, 
due to the possible additional heterogeneity factors related 
to gender and eyes status, we restricted the analysis to males 
whose scans were acquired with open eyes. Only the four more 
populated sites satisfying all these conditions were considered 
for the analysis. The choice of applying narrow selection criteria-
thus restricting the analysis to a sample of less than 200 subjects- 
derives from the need of reducing the heterogeneity factors 
only to those intrinsically related to the ASD condition. In this 
framework, we could not assess the impact of sex on altered 
functional connections, due to the exiguous number of female 
children in the ABIDE cohorts, and to the unbalanced amount 
of subjects with ASD and controls at each site (see Figure 1A). 
We provided in the Supplementary Materials a confirmation 
of the fact that the ASD vs. TD discrimination ability of the 
classifier increases when increasingly stringent selection 
criteria are applied. The augmented classification performance 
in the proposed cross-validation scheme corresponds to better 
generalization capability of the classifier, which is consistent with 
a reduced heterogeneity in the multisite cohort.

Despite the restriction criteria adopted on the whole sample, 
the remaining four cohorts show demographic characteristics 
that are significantly different across sites, as shown in the 
ANOVA and Kruskal-Wallis analyses carried out on ASD and 
TD children (Table 3). The different characteristics of the cohorts 
become visible in the ASD vs. TD discrimination results reported 
separately on each site in the leave-one-site-out cross-validation 
scheme (see Table 5).

In addition to the characteristics of the population analyzed at 
each site, other effects may have had an impact on the classification 
results. To demonstrate the strength of the impact of the site 
provenience on the classification, we reported in the Supplementary 
Materials the 4-class L-SVM classification performance of the FC 
patterns of the TD of the four sites, which reaches an accuracy of 
0.94. Since site-related heterogeneity factors play an important 
role in classification results, it might be appropriate to restrict 
multisite analyses only to sites that present similar characteristics, 
for example in terms of scan time duration and scanner vendors. 
Other approaches could be to consider the site as covariate and 
regress out the multisite variability from the analysis, or to use 
advanced techniques to filter out site heterogeneity (70). Other 
multisite trials, related to other brain diseases, recommend a 
standardization procedure across sites, including, for example, 
post-acquisition corrections of image artifacts (71).

A possible limitation of this study, which is related to the size 
of the sample we considered, is the risk of overfitting during 
the classifier training. The number of FC features derived 
using a parcellation atlas with N regions scales as ~N2 thus a 
compromise should be achieved between the desired granularity 
of the signal localization and the risk of overfitting, which affects 
the classifier training when the number of features exceeds 
the number of available cases. As the latter risk affects all the 
classification experiments in our analyses, regardless the atlas 
we used, we adopted the linear-kernel SVM classifiers, which 

have demonstrated robust generalization performances even 
in case of small training sets with respect to the number of 
features (39). Feature selection criteria could also be considered 
to reduce the risk of overfitting; however, better results are not 
always guaranteed, due to global effects that may influence 
the FC (23). Whole-brain feature selection approaches based 
on L-SVM recursive feature elimination (SVM-RFE) may 
be attempted (72).

Provided these limitations, it is straightforward that the 
significant altered connections we found are specific of this data 
sample and therefore not generalizable to female population, to 
low-functioning individuals, and to subjects with a different age-
range. Our analysis suggests the need to collect more populated 
data samples, which have to be properly stratified in order to 
reduce the known sources of heterogeneity that may affect 
the investigation.

CONCLUSION

In conclusion, the use of machine learning techniques has allowed 
the identification of few significant altered functional connections 
in children with ASD with respect to controls. Despite an average 
performance of AUC = 0.75 is achieved in ASD vs. control 
classification in the leave-one-site-out cross-validation scheme, 
the classification performances obtained on each single site 
are highly variable, with AUC values in the 0.71–0.83 range. In 
particular, for one of the samples (UM), subjects with ASD and 
controls can be very effectively differentiated (AUC = 0.83) by 
using the FC patterns learned on the other three sites.

In multisite retrospective studies, selecting sites with similar 
scanning protocol and restricting the FIQ and age ranges of 
participants is a prerequisite to limit the impact of confounding 
factors in the results of the analysis. Nevertheless, these 
restrictions do not guarantee that the populations represented at 
each site contribute similar information to the analysis, especially 
in the case of limited numerosity of the sample and highly 
heterogeneous conditions.

Despite these considerations, the present study highlighted 
a set of functional connections that are altered in children with 
ASD with respect to TD controls. Both over- and under-FC 
patterns have been detected, confirming the coexistence of mixed 
FC findings not only in ASD subjects in a wide age range (73), 
but also within a selected, homogeneous sample of ASD children.
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