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Opioid use in the United States has steadily risen since the 1990s, along with staggering 
increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid 
abuse, it is paramount to understand the genetic risk factors and neuropsychological 
effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine 
systems have been associated with increased risk for developing substance use 
disorders. Molecular imaging studies have revealed how these polymorphisms impact 
the brain and contribute to cognitive and behavioral differences across individuals. Here, 
we review the current molecular imaging literature to assess how genetic variations in 
the opioid and dopamine systems affect function in the brain’s reward, cognition, and 
stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of 
the functional consequences of genetic variants and corresponding alterations in neural 
mechanisms will inform prevention and treatment of OUD.

Keywords: opioid use disorder, neuroimaging, genetics, positron emission tomography, PET, polymorphism, 
opioid receptors, dopamine receptors

INTRODUCTION

Opioid use in the United States has steadily risen since the late 1990s, along with staggering 
increases in overdose fatalities (1). The use of illicit opioids such as heroin and fentanyl has 
increased dramatically, contributing to opioid-related morbidity and mortality (2). With 
approximately 115 Americans dying each day from an opioid overdose, this epidemic is now 
considered a public health emergency (3). The surge in prescription and illicit opioid abuse 
necessitates further investigation into the genetic risk factors and neuropsychological effects of 
opioid use disorder (OUD).

The roles of the opioid and dopamine (DA) systems in substance use disorders (SUDs) are well 
recognized (4). Drug reward and incentive salience develop during the acute effects of drug-taking 
and correspond to changes in opioid and DA signaling in the basal ganglia (5). Incentive salience is 
defined by the association of previously neutral stimuli with drug use, which promotes compulsive 
drug-seeking (4). Stress responses associated with withdrawal involve decreased DA signaling 
along reward pathways, increased dynorphin-mediated kappa opioid (KOP) receptor signaling, and 
increased corticotropin-releasing factor (CRF) signaling in the amygdala (4). These same principles 
apply to OUD. For example, Wang et al. (6) used positron-emission tomography (PET) imaging with 
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[11C]raclopride to demonstrate lower dopamine receptor 2 (D2R) 
and 3 (D3R) availability in the striatum of opioid-dependent 
patients compared to controls. Another [11C]raclopride PET 
study found low striatal D2/3 receptor availability and low 
presynaptic DA in OUD patients compared to controls (7), which 
has also been found for other SUDs including cocaine, alcohol, 
methamphetamine, and cannabis [reviewed in Refs. (8, 9)]. Low 
D2R levels have also been associated with sleep deprivation (10–
12) and lower socioeconomic status (13, 14). These factors may 
contribute to lower D2R availability found in SUDs, particularly 
since SUDs and sleep deprivation are highly comorbid (15). Other 
preclinical studies have found dynorphin-mediated KOP receptor 
signaling inhibits dopaminergic signaling and modulates aversive 
emotional states that maintain drug dependence (16–18). Based 
on these studies, both the opioid and DA signaling systems are 
implicated in OUD.

However, there are opposing views on these systems’ 
involvement in addiction. For example, there are studies that 
report no disruption of D2R in OUD, including no difference 
in baseline D2R availability in methadone-maintained OUD 
patients compared to controls (19). Moreover, PET studies of 
opioid-dependent patients on medications for OUD (MOUD) 
found no increase in striatal DA release in response to opioid 
administration (19, 20). Studies of other SUDs also present slight 
inconsistencies in their effects on the dopamine system. Imaging 
studies in individuals with alcohol use disorder (AUD) have 
reported marked reductions in dopamine release and in striatal 
D2R, and most preclinical studies have documented significant 
reductions in dopamine neuronal firing and tonic dopamine 
release (9, 21–27). However, studies in rodents have also reported 
dynamic changes in dopamine release with increases and 
decreases in accumbens at various days post alcohol withdrawal 
(28). The discrepancies in the preclinical studies are likely to 
reflect in part time at which the measurements were made (early 
versus late withdrawal) as well as the alcohol models used (active 
versus passive administration). Thus, further research is required 
to understand the complex relationship between opioid and DA 
systems in SUDs.

While it has long been postulated that genetics influence 
an individual’s susceptibility to addiction, there has been little 
success in pinpointing genes with well-defined, causal roles 
in SUDs (29). Nevertheless, OUD is highly heritable, with 
an estimated 50% genetic contribution (30–32). The use of 
candidate gene studies and genome-wide association studies 
has revealed several polymorphisms that reliably associate with 
SUDs; however, addiction is a polygenic disease with complex 
genetic interactions and therefore individual polymorphisms 
will likely only account for a fraction of the total genetic risk 
for OUD (33–35). Polymorphisms in the opioid signaling 
system have been associated with addiction, as well as 
addiction treatment response (29). For example, several studies 
have identified a single nucleotide polymorphism (SNP) in 
the OPRM1 gene that associates with improved response to 
naltrexone treatment in individuals with AUD (36–39). Other 
OPRM1 SNPs may also play a role in nicotine dependence and 
treatment response (40–42). Additionally, genetic variations 
in the DA system have been linked to various SUDs as DA 

modulates reward and aversion pathways central to addiction 
(29, 43). For example, polymorphisms in the genes coding for 
dopamine 1 receptor (D1R) and D2R are associated with OUD, 
cocaine use disorder (CUD), and AUD (6, 22, 44). In addition, 
polymorphisms in the gene DAT1, which codes for dopamine 
transporters (DAT), have been associated with CUD and AUD 
(45–47). In line with this, reduced striatal DAT availability has 
been associated with OUD (48–53) and DAT availability has 
been associated with various other SUDs (51, 54–62).

In this review, we compiled findings related to the genetics of 
the opioid and DA systems and corresponding changes in brain 
and behavior as evidenced by PET neuroimaging. Functional 
and structural magnetic resonance imaging (MRI) is another 
useful tool in examining altered neural circuits in individuals 
with SUDs, as well as in polymorphism carriers. However, we 
will limit the scope to molecular imaging as the literature on MRI 
in OUD was recently reviewed (63–66). Integrating genetics with 
regional changes in receptor binding may help uncover circuits 
relevant for the pathophysiology of OUD, and thereby inform 
precision-based prevention and treatment.

THE OPIOID RECEPTOR SYSTEM

OPRM1
OPRM1 Background
The OPRM1 gene codes for the MOP receptor, an inhibitory 
G-protein coupled receptor (GPCR) that binds endogenous 
opioid peptides such as β-endorphin and enkephalins as well 
as exogenous opioids such as morphine and heroin (67). MOP 
receptors are required to establish morphine place preference 
and physical dependence (68). MOP receptors are expressed 
throughout the brain’s reward pathways including the 
mesocorticolimbic network as illustrated in Figure 1; their 
proposed mechanism for positive reinforcement in OUD is 
through disinhibition of DA neurons that trigger drug reward 
upon DA release (69, 70). Originally it was thought that MOP 
receptor agonists hyperpolarize GABAergic interneurons of 
the ventral tegmental area (VTA), reducing GABA-mediated 
inhibitory input to DA neurons and thereby increasing DA 
signaling by disinhibition (69). However, most evidence now 
suggests that the rostromedial tegmental nucleus mediates 
opioid-induced disinhibition of DA neurons (71–73). There is 
preclinical evidence of DA-independent opioid-induced reward, 
but the mechanism is not well understood (74, 75).

The effects of prolonged opioid exposure on MOP receptors, 
whether in the context of chronic pain management or 
substance abuse, are not fully understood. Bolger et al. (76) 
demonstrated an upregulation in MOP receptor in rat brain after 
chronic heroin administration. However, several other studies 
have demonstrated that both morphine and buprenorphine 
administration downregulate MOP receptors in rat brain (76, 77) 
including striatum (78). Clinically, prolonged exposure to opioids 
results in tolerance and increased opioid dose requirements; 
several proposed mechanisms may explain this phenomenon, 
including phosphorylation and arrestin-driven uncoupling 
of the GPCR and receptor internalization and degradation 
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(79–82). However, several studies cloned MOP receptors in 
human embryonic kidney cells and found that morphine does not 
promote MOP receptor endocytosis (80, 83–85), which results 
in protracted desensitization that could contribute to tolerance 
(86). Yet, several opioids including methadone, etorphine, and 
[D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) induced the 
expected receptor sequestration in cell line models (79, 80, 87, 
88). A study in rats also showed MOP receptor internalization 
in the striatum and habenula after acute etorphine, but not 
morphine administration (80). These findings were replicated in 
the rat’s locus coeruleus where neurons showed MOP receptor 
internalization in response to DAMGO and methadone, but 
not morphine (89). Downregulation of MOP receptors is 
agent-specific as some opioids are more effective at activating 
the G-protein response than others (87). The concept of biased 
agonism explains differential activation patterns and intracellular 
signaling cascades based on ligand structure and GPCR 
conformations (90, 91). In the case of MOP receptors, ligands 
may preferentially activate G-protein coupling or β-arrestin 
recruitment (92). Schmid et al. (92) reported that fentanyl 
promotes bias toward β-arrestin recruitment, while morphine is 
relatively unbiased in mouse models and cell lines. Given that 
β-arrestin drives MOP receptor internalization and is associated 
with respiratory suppression and tolerance, these findings have 
clinical significance and may explain the differences in ligand-
mediated MOP receptor internalization (92–95). Specifically, the 
increased lethality of fentanyl and structurally related synthetic 
opioids may not be due solely to greater potency, but also due 

to the preferential activation of an intracellular pathway that 
promotes respiratory depression (92, 96).

OPRM1 Polymorphisms
Genetic variations of OPRM1, the gene encoding for MOP, have 
been studied in the context of vulnerabilities to SUDs, treatment 
response, and relapse. Whole genome sequencing has identified 
3,324 OPRM1 polymorphisms, the most commonly studied of 
which, rs1799971 (A118G), has a global minor allele frequency 
of 19% (97). Located on exon 1 of OPRM1, this SNP results in an 
asparagine replaced by an aspartate at position 40, which is in the 
amino-terminus of the receptor (98, 99). In preclinical studies, 
the G allele was associated with lower MOP receptor expression 
in transfected cell lines (100–103). In [11C]carfentanil PET scans, 
the G allele was also associated with lower global MOP receptor 
expression (104) and lower expression in anterior cingulate cortex 
(ACC), nucleus accumbens (NAc), and thalamus compared to 
the common genotype (105). One proposed mechanism suggests 
that the amino acid substitution removes an extracellular 
glycosylation site, potentially interfering with the protein’s 
folding or incorporation into the cell membrane (101). Other 
studies found that the G allele results in reduced levels of MOP 
receptor mRNA expression, although the underlying mechanism 
remains unknown (103). For example, a post-mortem study of 
heterozygotes for A118G found the wild-type A allele had twice 
the mRNA expression than the G variant in cortical and pons 
tissue samples (103). An in vitro study of G allele-transfected 
cells also showed reduced mRNA and lower receptor protein 

FIGURE 1 | Regional distribution of receptor types in the human brain. Opioid and dopamine receptor gene expression in the human brain [Opioid Receptor Mu 1 
(OPRM1), Opioid Receptor Kappa 1 (OPRK1), Opioid Receptor Delta 1 (OPRD1), Opioid Related Nociceptin Receptor 1 (OPRL1), Dopamine Receptor D1 (DRD1), 
Dopamine Receptor D2 (DRD2), Dopamine Active Transporter 1 (DAT1)]. Images constructed using Allen Human Brain Atlas. Data displayed are from one donor: 
H0351.2002, 39 years, M, Black or African American. The color bar displays expression values using z-score normalization. Color scale was altered to highlight 
regional differences in gene expression per receptor type; therefore, the absolute scale differs across each of the receptor subtypes. For quantitative results from all 
six postmortem donor brains, visit http://human.brain-map.org/static/brainexplorer.
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levels when compared to the wild-type allele (103). Oertel et al. 
(106) propose that rs1799971 creates a novel methylation site 
that suppresses transcription of OPRM1.

Interestingly, an initial in vitro study reported increased 
binding affinity of β-endorphin to the variant receptor (107); 
though subsequent in vitro studies were unable to replicate this 
finding (100, 108).

Genetic Association Studies: OPRM1 and OUD
Several studies have investigated the effects of genetic variations 
in OPRM1 on susceptibility to SUDs, including OUD. A 
systematic review and meta-analysis of 13 studies of the A118G 
polymorphism in OUD found significant associations of the 
G allele with CUD and OUD in Asian populations, but not in 
African American, Caucasian, or Hispanic populations (109). 
However, a behavioral study linked the G allele with increased 
addiction severity in Caucasian males with OUD (110). This 
could be attributable to the varying prevalence of the rs1799971 
minor allele across ethnicities; for example, the G allele frequency 
is greater in Asian populations than in Caucasians (30–40% 
and 11–15%, respectively), and it is less than 5% in African 
American populations (107, 111, 112). Another study examined 
four low-frequency SNPs of OPRM1 in a cohort of European 
Americans and African Americans; only one polymorphism, 
rs62638690, was associated with both cocaine and heroin 
addiction in European Americans; however, it did not withstand 
correction for multiple testing (113). This may suggest that 
while OPRM1 polymorphisms alter vulnerability to OUD, the 
effects are race- and/or ethnicity-dependent. Finally, an intron 
2 polymorphism, rs9479757, was not associated with OUD in 
a Chinese population, but OUD patients with the minor allele 
were found to consume higher levels of opioids (114). Further, 
Xu et al. (115) found the rs9479757 minor allele associated with 
addiction severity among Chinese OUD patients (115). These 
findings are outlined in Table 1.

Additionally, the A118G polymorphism may have relevance 
for OUD treatment. In a mouse model of A118G, the analgesic, 
anxiolytic, and hyperlocomotor effects of buprenorphine were 
attenuated in carriers of the minor G allele (162). In a study of 
opioid-dependent chronic pain patients, carriers of the minor 
G allele required higher morphine equivalent daily doses than 
AA homozygotes (163). This may be attributed to reduced MOP 
receptor functioning in carriers of the G allele that results in an 
increased opioid requirement for pain management (163, 164). 
However, a meta-analysis of the association between rs1799971 
and methadone treatment response among OUD patients was 
inconclusive (165).

Several studies have examined associations between OPRM1 
polymorphisms and stress response, as MOP receptors help 
regulate stress levels via tonic inhibition of the hypothalamic–
pituitary–adrenal (HPA) axis (166). Naloxone is an opioid 
receptor antagonist with highest affinity for MOP receptors, 
thus eliciting an HPA axis stress response upon binding (167). 
Several studies demonstrate that healthy heterozygotes of A118G 
have increased stress response to naloxone compared to non-G 
allele carriers (168–170). Given the role of stress dysregulation in 

vulnerability to SUDs, this provides a potential mechanism for 
this SNP as a risk factor for OUD (167).

The A118G SNP has also been associated with personality 
traits relevant to SUDs (171). Several studies assessed participants 
with the five-factor NEO, a personality inventory that scores 
in domains of “Openness to Experience, Conscientiousness, 
Extraversion, Agreeableness, and Neuroticism” (172). High 
Neuroticism, low Conscientiousness, and low Agreeableness 
scores are associated with SUDs (173–176). Specifically, higher 
scores on Neuroticism and lower scores on Conscientiousness, 
Agreeableness, and Extraversion have been associated with 
OUD (177, 178). Compared to A118 homozygotes, carriers of 
the G allele scored lower on the Conscientiousness factor (170), 
which is associated with task organization and execution, and 
reflects control over impulsivity (179). Moreover, Pecina et al. 
(105) found that G carriers had higher Neuroticism scores than 
non-carriers, which negatively correlated with baseline MOP 
receptor availability in the anterior insula and subgenual ACC 
as assessed with [11C]carfentanil PET. However, Hernandez-
Avila et al. (180) found no association between A118G and NEO 
personality dimensions in healthy and substance-dependent 
volunteers; thus, the role of this polymorphism in moderating 
personality is uncertain. Love et al. (181) used [11C]carfentanil 
PET in a study of healthy volunteers and assessed participants 
with the Revised NEO Personality Inventory, which includes 
domains “Impulsiveness” and “Deliberation,” that have been 
associated with negative risk-taking, including drug use (182, 
183). Participants with high Impulsivity and low Deliberation 
scores showed higher baseline MOP receptor availability in 
several brain regions including the ACC and amygdala (181). 
Further, in response to a pain stress challenge, subjects with 
high Impulsivity/low Deliberation scores demonstrated a larger 
reduction in MOP receptor availability from baseline compared 
to low Impulsivity/high Deliberation scores in regions including 
the orbitofrontal cortex and amygdala (181). This suggests a 
possible mechanism for the role of personality traits in shaping 
vulnerabilities to SUDs.

Molecular Imaging: MOP Receptor and OUD
Several studies have used PET imaging to investigate MOP 
receptor availability in OUD patients receiving MOUD. The 
radioligand [11C]carfentanil is widely used in PET studies as it 
is a highly potent MOP-selective receptor agonist (184). [18F]
cyclofoxy is less frequently used as it is both a MOP receptor and 
KOP receptor agonist, with some preliminary evidence of MOP 
receptor preference (185–188).

A number of studies have examined the effects of 
buprenorphine, a high-affinity MOP receptor partial agonist 
and KOP and delta opioid (DOP) receptor antagonist (189–191) 
in the treatment of OUD. Using [11C]carfentanil PET imaging, 
Greenwald et al. (192) investigated the duration of binding 
of buprenorphine at MOP receptor and the corresponding 
effects on withdrawal in 10 OUD patients. They found that 
50–60% MOP receptor occupancy by buprenorphine was 
required for withdrawal suppression (192). At 28 h after 
buprenorphine, 46% of whole-brain MOP receptors were 
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TABLE 1 | Polymorphisms associated with OUD in the opioid system and molecular imaging correlates.

Gene Polymorphism Location Finding Author Year n Ethnicity Imaging Correlates

OPRM1 rs1799971 Exon 1 Risk factor for OUD Kumar et al. (116) 2012 330 Indian -Lower baseline 
MOP receptor 
binding potential in 
NAc and amygdala 
of tobacco smokers
(117–119)
-Greater DA release 
in the right caudate 
and ventral pallidum 
in response to 
smoking (120)

Kapur et al. (121) 2007 282 Indian
Deb et al. (122) 2010 169 Indian
Tan et al. (123) 2003 137 Indian
Nagaya et al. (124) 2012 160 Malaysian males
Szeto et al. (111) 2001 296 Chinese
Bart et al. (125) 2004 309 Caucasian
Drakenberg et al. (126) 2006 65 Caucasian

No significant association with OUD Bond et al. (107) 1998 31 African American
Luo et al. (127) 2003 100 African American
Gelernter et al. (112) 1999 288 African American
Crowley et al. (128) 2003 195 African American
Zhang et al. (40) 2006 600 Caucasian
Bond et al. (107) 1998 52 Caucasian
Gelernter et al. (112) 1999 492 Caucasian

 Franke et al. (129) 2001 652 Caucasian
Luo et al. (127) 2003 231 Caucasian
Crowley et al. (128) 2003 229 Caucasian
Levran et al. (130) 2008 596 Caucasian
Nikolov et al. (131) 2011 3,283 Caucasian
Bond et al. (107) 1998 67 Hispanic
Gelernter et al. (112) 1999 94 Hispanic
Li et al. (132) 2000 434 Chinese
Zhang et al. (133) 2007 332 Chinese
Shi et al. (114) 2002 145 Chinese
Tan et al. (123) 2003 208 Chinese
Tan et al. (123) 2003 156 Malay

No significant association with 
methadone dose

Crettol et al. (134) 2008 238 Caucasian

Prolonged abstinence without 
agonist therapy

Levran et al. (135) 2017 596 Caucasian

rs62638690 Exon 2 Protective against OUD *Clarke et al. (113) 2013 1,377 European 
American

rs510769 Intron 1 Risk factor for OUD *Levran et al. (130) 2008 596 Caucasian
rs3778151 Intron 1 Risk factor for OUD *Levran et al. (130) 2008 596 Caucasian
rs9479757 Intron 2 Higher opioid consumption Shi et al. (114) 2002 145 Chinese

Addiction severity Xu et al. (115) 2014 332 Male Chinese
OPRD1 rs569356 Promoter Risk factor for OUD *Zhang et al. (136) 2008 1,063 European 

American
No significant association with OUD Nelson et al. (137) 2014 2,954 Australian

rs4654327 3’ UTR Risk factor for OUD Gao et al. (138) 2017 774 Chinese
No significant association with OUD Nelson et al. (137) 2014 2,954 Australian

rs1042114 Exon 1 Risk factor for OUD Nagaya et al. (139) 2018 1,002 Malay males
Zhang et al. (136) 2008 1,063 European 

American
Crist et al. (140) 2013 566 Caucasian males

No significant association with OUD Nelson et al. (137) 2014 2,954 Australian
rs2234918 Exon 3 Risk factor for OUD Huang et al. (141) 2018 1,331 Chinese

Mayer et al. (142) 1997 218 Caucasian
No significant association with OUD Xu et al. (143) 2002 754 Chinese

Levran et al. (130) 2008 596 Caucasian
Zhang et al. (136) 2008 1,063 European 

American
Franke et al. (144) 1999 406 Caucasian
Crist et al. (140) 2013 2,502 Mixed

No significant association with 
methadone dose

Crettol et al. (134) 2008 455 Caucasian

rs508448 Intron 1 Earlier onset OUD Gao et al. (138) 2017 774 Chinese
No significant association with OUD Nelson et al. (137) 2014 2,954 Australian

rs581111 Intron 1 Risk factor for OUD Crist et al. (140) 2013 1,006 African American
Higher relapse rates on 
buprenorphine

Clarke et al. (145) 2014 582 Caucasian 
females

No significant association with OUD Nelson et al. (137) 2014 2,954 Australian

(Continued)
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TABLE 1 | Continued

Gene Polymorphism Location Finding Author Year n Ethnicity Imaging Correlates

rs678849 Intron 1 Risk factor for OUD Sharafshah et al. (146) 2017 404 Iranian
Abstinence-induced withdrawal 
severity

*Jones et al. (147) 2016 19 Mixed

Higher relapse rates on 
buprenorphine

Crist et al. (148) 2013 77 African American

Crist et al. (149) 2018 55 African American
Lower relapse rates on methadone Crist et al. (148) 2013 77 African American
No significant association with 
relapse rates on methadone 

Crist et al. (149) 2018 55 African American

No significant association with OUD Nelson et al. (137) 2014 2,954 Australian
Zhang et al. (136) 2008 1,063 European 

American
rs2236857 Intron 1 Risk factor for OUD Sharafshah et al. (146) 2017 404 Iranian

Nelson et al. (137) 2014 2,954 Australian
*Levran et al. (130) 2008 596 Caucasian

No significant association with OUD Zhang et al. (136) 2008 1,063 European 
American

Protective against stress response 
in OUD

Huang et al. (141) 2018 1,331 Chinese

rs2236857+ 
rs581111 
haplotype†

Intron 1 Risk factor for OUD Nelson et al. (137) 2014 2,954 Australian

rs2236855 Intron 1 Risk factor for OUD Sharafshah et al. (146) 2017 404 Iranian
Nelson et al. (137) 2014 2954 Australian

No significant association with OUD Zhang et al. (136) 2008 1,063 European 
American

Crist et al. (140) 2013 566 Caucasian males
rs760589 Intron 1 Risk factor for OUD Sharafshah et al. (146) 2017 404 Iranian

*Nelson et al. (137) 2014 2,954 Australian
rs2236861 Intron 1 Risk factor for OUD Beer et al. (150) 2013 284 Western 

European
*Levran et al. (130) 2008 596 Caucasian
*Nelson et al. (137) 2014 2,954 Australian

rs529520 Intron 1 Higher methadone requirement Luo et al. (151) 2017 257 Chinese
Higher relapse rates on 
buprenorphine

Clarke et al. (145) 2014 582 Caucasian 
females

Risk factor for OUD *Nelson et al. (137) 2014 2,954 Australian
No significant association with OUD Zhang et al. (136) 2008 1,063 European 

American
rs10753331 Intron 1 Abstinence-induced withdrawal 

severity
Jones et al. (147) 2016 19 Mixed

Risk factor for OUD Crist et al. (140) 2013 566 Caucasian
rs3766951 Intron 1 Risk factor for OUD Nelson et al. (137) 2014 2,954 Australian

*Levran et al. (130) 2008 596 Caucasian
rs2298897 Intron 1 Risk factor for OUD Nelson et al. (137) 2014 2,954 Australian

OPRK1 rs1051660 Exon 2 Risk factor for OUD Yuferov et al. (152) 2004 291 Mixed
Gerra et al. (153) 2007 176 Caucasian Italian

rs702764 Exon 4 No significant association with OUD Nagaya et al. (139) 2018 1,002 Malay males
Zhang et al. (136) 2008 1,063 European 

American
rs997917 Intron 2 Risk factor for OUD Albonaim et al. (154) 2017 404 Iranian

No significant association with OUD Zhang et al. (136) 2008 1,063 European 
American

rs6985606 Intron 2 Risk factor for OUD Albonaim et al. (154) 2017 404 Iranian
No significant association with OUD Zhang et al. (136) 2008 1,063 European 

American
rs6473797 Intron 2 Protective against OUD *Levran et al. (130) 2008 596 Caucasian

Naloxone-precipitated withdrawal 
severity 

Jones et al. (147) 2016 29 Mixed

No significant association with OUD Albonaim et al. (154) 2017 404 Iranian

(Continued)
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occupied, indicating inadequate withdrawal suppression (192).  
This may reflect the half-life of oral buprenorphine, which ranges 
from 28 to 37 h (193). Plasma concentrations of buprenorphine 
were time-dependent and correlated with levels of MOP receptor 
occupancy in brain (192, 194). Considering the minor allele 
of rs1799971 may lower MOP receptor expression, it stands to 
reason that this SNP may influence the dose of buprenorphine 
required to achieve adequate withdrawal suppression.

In two studies, heroin-dependent patients maintained on 
varying doses of buprenorphine underwent several [11C]carfentanil 
PET scans (194, 195). Buprenorphine was shown to reduce MOP 
receptor availability in a dose-dependent manner, and decreased 
MOP receptor availability correlated with decreased heroin craving 

and withdrawal symptoms (194, 195). After detoxification from 
buprenorphine, OUD participants demonstrated higher regional 
binding potential of MOP receptor particularly in the inferior 
frontal and anterior cingulate cortex compared to healthy controls 
(195). Yet, an animal study found buprenorphine maintenance 
down-regulates MOP receptor in rat brains (77). The higher MOP 
receptor binding potential among OUD participants found by 
Zubieta et al. (195) could reflect opioid or buprenorphine induced 
downregulation of enkephalins and β-endorphins in brain with 
a  consequent reduced competition for [11C]carfentanil binding 
to MOP.

Another study used [18F]cyclofoxy PET scans in 14 
methadone-maintained patients and 14 healthy controls (185). 

TABLE 1 | Continued

Gene Polymorphism Location Finding Author Year n Ethnicity Imaging Correlates

PDYN rs35286281
H allele 

Promoter Risk factor for OUD Yuanyuan et al. (155) 2018 1,107 Chinese

Wei et al. (156) 2011 604 Chinese
No significant association with OUD Hashemi et al. (157) 2018 435 Iranian

rs1997794 Promoter Risk factor for OUD Clarke et al. (158) 2012 2,618 European 
American 
females

Clarke et al. (159) 2009 858 Chinese females
No significant association with OUD Nagaya et al. (139) 2018 1,002 Malaysian males

rs2281285 Intron 2 No significant association with OUD Hashemi et al. (157) 2018 435 Iranian
rs910080 3’ UTR Risk factor for OUD Nagaya et al. (139) 2018 1,002 Malaysian males

Clarke et al. (158) 2012 2,618 European 
American 
females

Wei et al. (156) 2011 604 Chinese
Hashemi et al. (157) 2018 435 Iranian

No significant association with OUD Clarke et al. (158) 2012 2,618 European 
American males

rs1022563 3’ UTR Risk factor for OUD Clarke et al. (158) 2012 2,618 European 
American 
females

Clarke et al. (159) 2009 858 Chinese females
Wei et al. (156) 2011 604 Chinese

No significant association with OUD Nagaya et al. (139) 2018 1,002 Malaysian males
rs2235749 3’ UTR Risk factor for OUD Wei et al. (156) 2011 604 Chinese

No significant association with OUD Hashemi et al. (157) 2018 435 Iranian
OPRL1 rs6512305 Intron 1 Risk factor for OUD *Xuei et al. (160) 2008 1,923 European 

American

rs6090043 Intron 1 Risk factor for OUD *Xuei et al. (160) 2008 1,923 European 
American

No significant association with OUD Briant et al. (161) 2010 447 African American
rs6090041 Intron 1 Risk factor for OUD Briant et al. (161) 2010 447 Caucasian

No significant association with OUD Briant et al. (161) 2010 447 African American
Xuei et al. (160) 2008 1,923 European 

American
rs6090043+ 
rs6090041 
haplotype‡1

Intron 1 Risk factor for OUD Briant et al. (161) 2010 447 Mixed

rs6090043+ 
rs6090041 
haplotype‡2

Intron 1 Risk factor for OUD Briant et al. (161) 2010 447 Caucasian

No significant association with OUD Briant et al. (161) 2010 447 African American

SNP associations refer to the minor allele.
*Nominal significance.
† rs2236857 + rs581111 GA haplotype (coupled minor alleles).
‡1 rs6090043 + rs6090041 AT haplotype.
‡2 rs6090043 + rs6090041 GC haplotype.
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The methadone-maintained patients demonstrated 19–32% 
lower cyclofoxy binding than the controls in thalamus, caudate, 
anterior cingulate cortex, middle temporal cortex, and the middle 
frontal cortex (185). The lower [18F]cyclofoxy binding in the brain 
of OUD participants correlated with plasma methadone levels, 
likely reflecting the steady-state methadone occupancy of MOP 
receptors (185). These findings contrast with those obtained in 
OUD patients treated with buprenorphine who showed much 
greater levels of MOP occupancy consistent with the partial 
agonist effects of buprenorphine as compared to the full agonist 
effects of methadone (192). This discrepancy could also reflect 
less receptor internalization associated with a partial agonist and, 
therefore, greater levels of receptor occupancy by the radioligand.

PET studies have also investigated the effects of A118G on 
MOP receptor availability in individuals with SUDs. For example, 
the G allele has been associated with lower baseline MOP receptor 
binding potential in NAc and amygdala of smokers (146–148). 
Thus, A118G may shape predispositions to substance abuse by 
affecting MOP receptor availability, which could contribute to 
aberrant dopaminergic signaling. A [11C]raclopride PET study of 
tobacco smokers found that the G allele associated with greater 
DA release in the right caudate and ventral pallidum in response 
to smoking compared to the A allele (120). This is further 
evidence of the association between A118G and drug reward, 
which may increase vulnerability to SUDs (120). Longitudinal 
studies are needed to clarify the link between opioid receptor 
availability and SUDs.

OPRK1
OPRK1 Background
OPRK1 codes for the KOP receptor, an inhibitory GPCR that 
is implicated in the brain’s stress or anti-reward system (196). 
KOP receptors are the most abundant opioid receptors in the 
human brain and are highly expressed in key brain regions of the 
stress axis such as the prefrontal cortex and amygdala (197) as 
well as in reward-related regions including the VTA, NAc core, 
dorsal striatum, and substantia nigra as seen in Figure 1 (187, 
198–201). KOP receptors are coupled with calcium channels 
and are localized in presynaptic terminals of dopaminergic 
cells; activation of KOP receptors inhibits adenylyl cyclase and 
calcium currents, thereby inhibiting DA release (199, 202–204). 
Prodynorphin (PDYN) codes for the precursor to the dynorphin 
peptide, which is the endogenous ligand to the KOP receptor. 
Using a phospho-selective antibody against KOP receptors, Land 
et al. (16) demonstrated that both stress paradigms and CRF 
injections elicit dynorphin-dependent KOP receptor activation 
in the basolateral amygdala, NAc, and hippocampus of mice. This 
indicates the key role KOP receptor signaling plays in stress and 
dysphoria. In general, KOP receptor agonists have anxiogenic 
properties in humans (205, 206) while KOR antagonists 
demonstrate anxiolytic properties in animal models (207, 208). 
However, there is evidence of dose-dependent effects; in a 
mouse study, KOP receptor agonist, U50,488H, was anxiolytic 
at high doses but anxiogenic in low doses (209). KOP receptor 
signaling may also influence stress responses associated with 

relapse; for example, heroin-dependent rats treated with KOP 
receptor antagonists show reduced anxiety- and stress-induced 
reinstatement of drug-seeking behavior (210, 211).

KOP receptor signaling is also involved in an array of 
physiological functions such as mood modulation, pain 
perception, learning and memory, and behavioral response to 
drugs of abuse (212, 213). Within the NAc, dynorphin signaling 
inhibits DA release, which leads to aversive effects on mood 
(214). In individuals with SUDs, KOP receptor-mediated 
dynorphin signaling drives negative affective states during 
drug withdrawal (215). One [11C]raclopride PET study showed 
blunted DA release with a methylphenidate challenge in recently 
detoxified OUD patients compared to healthy controls (7). This 
hypodopaminergic response may be explained by dynorphin-
mediated withdrawal. This is consistent with a rodent study 
that found chronic exposure and subsequent withdrawal from 
morphine led to prolonged (15 day) decreases in spontaneous 
dopaminergic neuron activity (216). This hypodopaminergic 
state may underlie dysphoria that drives compulsive drug-
seeking (216).

Interestingly, post-mortem brain samples of heroin abusers 
showed lower levels of PDYN mRNA expression in the 
amygdalar nucleus of the periamygdaloid cortex compared to 
controls (217). Further, a post-mortem study reported elevated 
dynorphin levels in heroin abusers with reduced striatal PDYN 
mRNA expression, suggesting upregulation of PDYN mRNA 
translation despite reduced PDYN mRNA levels (126). These 
results corroborate findings of reduced PDYN mRNA expression 
and elevated expression of the brain stress marker, CRF, in the 
periamygdaloid cortex of heroin-dependent rats that were 
euthanized following 24 h of abstinence (217). Increased CRF 
may reflect the dynorphin-mediated withdrawal response in 
the heroin-dependent rats despite seemingly reduced PDYN 
expression (217).

Preclinical studies have found that KOP receptor agonists, 
including salvinorin A, cause KOP receptor internalization in 
vitro (218, 219). A [11C]GR103545 PET study in rodents found 
that a dose of 0.60 mg/kg of salvinorin A resulted in a prolonged 
decrease in [11C]GR103545 binding that persisted even after 
salvinorin A had cleared from the brain, consistent with KOP 
receptor internalization (220). This study provides insight 
into the neurochemical adaptations to KOP receptor agonist 
exposure, which may contribute to opioid tolerance (18).

OPRK1 Polymorphisms
A few OPRK1 polymorphisms have been described in the 
context of SUDs, although the majority of them are silent 
and have no effect on gene expression (221). One example is 
rs1051660 (G36T), a synonymous SNP in exon 2 (153). These 
polymorphisms may affect KOP receptor signaling indirectly by 
altering mRNA stability or translation (222).

PDYN polymorphisms are associated with aberrant dynorphin 
expression and signaling (223) that may contribute to dysphoria 
and relapse during opioid withdrawal (155). Intronic variants 
may alter gene expression via splicing mechanisms or may be 
in linkage disequilibrium with neighboring variants that have 
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more direct downstream effects (146, 224). Mutations within 
the 3’ tail of mRNA transcripts could alter important sequences 
like the polyadenylate tail and may disrupt transcription 
termination (225), translation, and stability of mRNA (226–228). 
For example, rs910080, a polymorphism in the 3’ untranslated 
region of PDYN, is in high linkage disequilibrium with two 
other 3’ untranslated region SNPs, rs910079 and rs2235749; in 
a post-mortem analysis, this haplotype block was associated 
with levels of PDYN expression in the striatum (229). Other 
polymorphisms may alter gene expression directly. The 68-base 
pair variable number tandem repeat (VNTR) polymorphism, 
rs35286281, ranges from two to five repeats in the promoter 
region of PDYN, with each repeat containing one binding site 
for a transcription factor (230, 231). Thus, high dynorphin 
expression alleles (H alleles) contain three or more repeats and 
are associated with higher PDYN transcription and translation 
compared to low dynorphin expression alleles (L alleles) with 
one or two repeats (230).

Genetic Association Studies: OPRK1,  
PDYN, and OUD
There has been little consensus regarding the role of OPRK1 
polymorphisms in OUD. The minor alleles of two intronic 
polymorphisms, rs997917 and rs6985606, were reported as 
risk factors for OUD in an Iranian population (154) but were 
not associated with OUD in a European American population 
(136). These conflicting findings are likely explained by ethnicity-
dependent effects. Interestingly, the rs6473797 minor allele was 
found to be protective against OUD in a Caucasian population 
(130), but not in an Iranian population (154). However, rs6473797 
did associate with withdrawal severity among OUD patients who 
underwent naloxone-precipitated withdrawal in an American 
population of mixed ethnicities (147). Additionally, Wang et al. (232) 
found that two OPRK1 haplotype blocks associated with withdrawal 
symptoms such as joint aches, gooseflesh skin, and yawning in 
Taiwanese methadone-maintained OUD patients. Lastly, rs1051660 
was initially linked to OUD (152), and this finding was replicated by 
Gerra et al. (153) in a Caucasian Italian population.

Given the critical role of dynorphin signaling in the negative 
emotion states of SUDs, several studies have examined PDYN 
polymorphisms in the context of OUD. One polymorphism, 
rs910080, has been associated with OUD across a wide range 
of ethnicities (139, 156–158). Additionally, there is evidence 
of sex effects on the association between another two PDYN 
polymorphisms and OUD. That is, both rs1997794 and 
rs1022563 were found to associate with OUD among European 
American females, but not males (158). In a prior study of 
Chinese females, Clarke et al. (159) found the rs1997794 minor 
allele associated with OUD. Further, these two polymorphisms 
were not associated with OUD in a study of Malaysian males 
(139). Together, these findings suggest sex- and ethnicity-specific 
effects of the PDYN genotype on susceptibility to OUD.

Two studies found that the H allele of the PDYN VNTR 
polymorphism was a risk factor for OUD in Chinese populations 
(155, 156). It was also associated with greater instances of 
withdrawal and subsequent relapse among heroin-dependent 
Chinese patients on methadone therapy (155). However, 

Hashemi et al. (157) did not find an association between the 
PDYN genotype and OUD in an Iranian population. While 
evidence exists that the H allele upregulates PDYN expression 
(230), further research is required to understand its functional 
consequences as it relates to OUD.

Despite preclinical and clinical evidence of KOP receptor 
signaling modulating anxiety and stress response (16, 205, 206, 
210, 211, 233, 234), few studies have investigated the effects of 
OPRK1 polymorphisms on personality or behavior. One study 
using the five-factor NEO found the minor allele at rs963549, in 
exon 3 of OPRK1, was associated with higher Neuroticism scores 
among participants with SUDs but not among healthy controls 
(235). While this SNP was found to not be a risk factor for SUDs 
in an Indian population (116), its effects may be ethnicity-
dependent or potentially mediated by opioid use. Future studies 
on the functional effects of OPRK1 polymorphisms and their 
associated changes in neurochemistry and behavior would clarify 
the link between KOP receptor signaling and OUD.

One study examining the effects of the PDYN VNTR 
polymorphism on behavior found that the L allele is associated 
with disinhibited behavior as assessed with the Zuckerman 
Sensation Seeking Scale (236). Given that higher scores on this 
scale correlate with a preference toward risky behavior, this 
finding suggests L allele carriers are at increased risk for SUDs, 
contradicting findings from genetic association studies described 
above (155, 156) but perhaps corroborating post-mortem findings 
of reduced PDYN expression in individuals with OUD (217).

Molecular Imaging: KOP Receptor and OUD
At this point, no studies have used PET to examine OPRK1 
polymorphisms among patients with OUD. Only recently have 
radiotracers been developed to target KOP receptors, including 
the agonist tracers [11C]GR103545 and [11C]EKAP and the 
antagonist tracer [11C]LY2795050. These radiotracers have been 
evaluated in primates (237–240) and humans (241–244).

In a [11C]LY2795050 PET study, patients with AUD showed 
lower KOP receptor availability in the amygdala and pallidum 
compared to healthy controls (245). It is possible that the reduction 
in KOP receptor availability helps restore dopaminergic signaling 
and thus alleviates the aversive effects of drinking. However, 
reduced [11C]LY2795050 specific binding to KOP receptors in AUD 
could also reflect increased competition for radiotracer binding 
from upregulation of dynorphin. Another [11C]LY2795050 PET 
study found that healthy male subjects had greater KOP receptor 
availability in several brain regions including ACC, frontal 
cortex, insula, and ventral pallidum compared to females (246). 
According to the “simple occupation theory,” the robustness of a 
drug response is directly proportional to the number of receptors 
occupied by the drug (247). This is consistent with the finding by 
Vijay et al. (246) that greater KOP receptor availability may mediate 
stronger responses to KOP receptor antagonists such as naltrexone 
treatment. Among patients with co-occurring cocaine and alcohol 
dependence, one study showed that naltrexone treatment reduced 
cocaine and alcohol use in men, but increased substance use in 
women (248). While sex differences in KOP receptor availability 
were not examined by Pettinati et al. (248), the authors suggest 
that receptor bioavailability and naltrexone treatment response 
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may be sex-dependent. A potential non-neurochemical basis for 
the poorer treatment response in women compared to men is 
that women report higher rates of naltrexone-induced nausea, 
which results in lower medication compliance (249). However, 
it is important to note that other clinical studies found no sex 
differences of naltrexone treatment response in AUD (250, 251). 
Overall, these findings suggest that KOP receptor availability 
is associated with alcohol use and could potentially mediate the 
efficacy of KOP-targeted pharmacotherapies for AUD (245). Given 
the high comorbidity between AUD and OUD (252–254), these 
findings might have implications for opioid-antagonist treatment 
response in OUD.

OPRD1
OPRD1 Background
OPRD1 codes for DOP receptors, which are also involved in 
the negative affect and withdrawal stage of addiction, albeit 
with inverse effects than KOP receptors. Specifically, greater 
DOP receptor signaling leads to improvements in negative 
emotional states (255). DOP receptor agonists have demonstrated 
antidepressant and anxiolytic effects in rodent models (256, 257). 
DOP receptors are highly expressed in cortical and limbic areas 
such as the hippocampus and amygdala, as well as basal ganglia and 
hypothalamus (258–260). DOP receptors are located on presynaptic 
terminals of GABAergic interneurons and have region-specific 
effects on cAMP production (261). While striatal DOP receptor 
activation is inhibitory and results in increased extracellular 
dopamine (262), DOP receptors located in the olfactory bulb, 
medial prefrontal cortex, and primary cultures of hippocampal 
neurons stimulate cAMP production thereby inhibiting dopamine 
release (263–265).

Studies suggest DOP receptors modulate the rewarding effects of 
drugs of abuse. Le Merrer et al. (197) report DOP receptor knockout 
has no effect on morphine self-administration but does impair 
place conditioning in mice. In another rodent study, DOP receptor 
knockout resulted in reduced morphine reward and tolerance 
(266). Further, DOP receptor antagonists block sensitization to 
conditioned rewarding effects of opioids (267), whereas agonists 
enhance conditioned place preference to morphine (268). In a 
mouse model of OUD, DOP receptor knockout was associated 
with increased anhedonia and dysphoria during heroin abstinence 
compared to the wild-type genotype (269). Thus, OPRD1 
polymorphisms that alter DOP receptor signaling may influence 
opioid withdrawal-associated stress response and relapse.

OPRD1 Polymorphisms
Several polymorphisms of OPRD1 have been studied in the 
context of SUDs. One, rs1042114 (G80T), results in an amino acid 
substitution from cysteine to phenylalanine in the N-terminus 
of the DOP receptor, and is proposed to disrupt DOP receptor 
maturation, leading to increased internalization of the receptor 
compared to wild type (270). The coding-region variant rs2234918 
(T921C) is a synonymous polymorphism, that is, it does not cause 
a change in the coding amino acid, and has conflicting evidence 
for a role in OUD. Finally, rs569356, located in the promoter 
region, has been implicated in altered OPRD1 expression; Zhang 

et al. (271) found the G allele increased OPRD1 transcription in 
transfected cell lines. Few other OPRD1 polymorphisms have 
been described in terms of their functional effects; however, 
several have been assessed in genetic association studies.

Genetic Association Studies: OPRD1 and OUD
Two polymorphisms in the coding region of OPRD1 have been 
associated with OUD. The rs1042114 polymorphism has been 
found to be a risk factor for OUD in Malaysian males (139) 
and in Caucasian populations (136, 140). However, Nelson 
et al. (137) did not replicate these findings in Australian OUD 
patients. Rs2234918, a synonymous OPRD1 polymorphism, has 
also been studied in OUD with conflicting findings. The minor C 
allele of this polymorphism was initially reported as a risk factor 
for OUD in a German (142) and Chinese population (272). 
However, several studies have failed to replicate this association 
(130, 136, 140, 143) including a study that examined a German 
population but used a family-based association approach to 
control for population stratification (144). Thus, it is uncertain 
what role, if any, these OPRD1 polymorphisms play in increasing 
vulnerability to OUD.

Several polymorphisms in intron 1 of OPRD1 have been 
studied in OUD, although their functional effects remain largely 
unknown. Two studies found an association between rs2236861 
and OUD among Caucasian patients (137, 150). Levran et al. 
(130) also found that the rs2236861 minor allele increases the 
risk of heroin dependence; however, the association did not 
survive multiple testing, perhaps due to a small sample size. 
Another intron 1 polymorphism, rs2236857, was associated with 
OUD in Iranian- and European-descent populations (130, 137, 
146). However, Zhang et al. (136) were unable to replicate this 
association in a study of European Americans. Interestingly, 
among Chinese OUD patients, carriers of the rs2236857 minor 
allele were found to have higher subjective stress responses than 
non-carriers as assessed with the Life Event Questionnaire (272). 
This suggests that OPRD1 polymorphisms may disrupt stress 
responses that increase addiction vulnerabilities. The minor 
allele of rs581111, located in intron 1, has also been reported 
as a risk factor for OUD among Australians (137) and African 
Americans but not European Americans (140). Additionally, the 
minor allele of rs581111 has been associated with poor response 
to buprenorphine treatment among Caucasian females, but not 
males, suggesting ethnicity- and sex-dependent influences on 
genetic associations (145). Lastly, the minor allele of an OPRD1 
intron 1 polymorphism, rs3766951, was reported as a risk factor 
for OUD in Caucasian populations (130, 137).

In addition, several studies have investigated the effects 
of OPRD1 polymorphisms on treatment outcomes in OUD.  
For example, the major allele of rs678849 has been associated 
with higher relapse rates among African American OUD 
patients undergoing buprenorphine treatment, as indicated by 
positive opioid urine tests (148, 149). Interestingly, the major 
allele was initially associated with lower relapse rates among 
African American OUD patients on methadone treatment 
(148), but this association was not replicated (149). Jones 
et al. (147) reported an association between rs678849 and 
abstinence-induced opioid withdrawal severity; however, it did 
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not withstand a multivariate analysis. While the mechanism 
of action is unknown, these findings suggest that rs678849 
may affect OUD treatment outcomes by potentially mediating 
withdrawal symptoms.

Several other OPRD1 polymorphisms have been studied in 
association with OUD with conflicting results as seen in Table 1.

OPRD1 polymorphisms have also been associated with 
behaviors related to the negative affect and withdrawal stage 
of OUD. In one study of Pakistani OUD patients, the minor 
G allele of rs569356 was strongly associated with increased 
serum cortisol levels, a marker of stress response (273). Given 
the preclinical evidence that this minor allele may increase 
OPRD1 transcription (271), the minor G allele may affect DOP 
receptor expression and stress responses that could contribute 
to OUD. While Zhang et al. (136) found a nominally significant 
association between rs569356 and OUD in a European American 
population, no significant association was found in Australian 
and Pakistani populations (137, 273).

Molecular Imaging: DOP Receptor and OUD
No PET studies have examined neurochemical differences 
between carriers of OPRD1 polymorphisms in OUD. The 
only  DOP-selective radiotracer that has been developed 
for  PET  imaging in humans is N1’-([11C]methyl)naltrindole 
([11C]MeNTI) (274).

PET studies investigating DOP receptor availability in 
healthy controls and AUD patients may provide insight into 
the  functional effects of OPRD1 polymorphisms in OUD. One 
[11C]MeNTl PET study found that patients with AUD had slightly 
greater DOP receptor availability compared to healthy controls 
in the cingulate, amygdala, insula, ventral striatum, putamen, 
caudate nucleus, globus pallidus, and thalamus; however, group 
differences did not reach statistical significance (275). Within the 
AUD group, DOP receptor availability in the caudate showed a 
positive association with recent alcohol drinking (275). However, 
Weerts et al. (275) did not report associations between DOP 
receptor availability and other behavioral measures of alcohol 
dependence or withdrawal. Another PET study in abstinent 
AUD patients demonstrated that while naltrexone completely 
blocked MOP receptor radioligand binding, it only partially 
blocked [11C]MeNTl binding and there was high interindividual 
variability in DOP receptor blockade (276). These findings could 
underlie interindividual differences in responses to naltrexone 
treatment in AUD that could translate to naltrexone treatment 
responses in OUD.

Additionally, one [11C]MeNTl PET study found a negative 
correlation between mesolimbic DOP receptor availability and 
total cortisol output over a 4-h period following naloxone in 
healthy controls, but not in recently abstinent AUD patients 
(277). Given that endogenous DOP receptor signaling improves 
negative emotional states (278), the dissociation of DOP receptor 
availability from naloxone-induced cortisol response in AUD 
may suggest that chronic alcohol abuse disrupts DOP-mediated 
stress signaling during alcohol withdrawal. Whether this is the 
case for OUD remains to be determined. Notably however, Lutz 
et al. (269) reported that DOP receptor signaling ameliorates 

opioid withdrawal in rodents, so together, these findings may 
suggest a shared mechanism for negative emotional states in 
opioid and alcohol withdrawal.

OPRL1
OPRL1 Background
The nociceptin opioid peptide (NOP) receptor is an inhibitory 
GPCR encoded by the Opioid Receptor-Like 1 gene (OPRL1) 
that has MOP, KOP, and DOP receptor structure homology and 
similar signaling cascades (279). However, the NOP receptor is 
pharmacologically distinct from classical opioid receptors. The NOP 
receptor is activated by nociceptin, and its effects are not blocked by 
the universal opioid antagonist naloxone (280, 281). NOP receptors 
are distributed throughout the amygdala, hippocampus, thalamus, 
and cortical processing areas (282) and have roles in both analgesia 
and hyperalgesia [reviewed in (283) and (284)]. NOP receptor 
signaling is also involved in processes including stress, anxiety, 
depression, cognition, and addiction (285–289).

Given the distribution of NOP receptors along the limbic 
region (290), it follows that NOP signaling is tied to stress 
signaling. For example, central injections of nociceptin in rats 
result in increased plasma stress hormone levels, reflecting 
activation of the HPA axis (291). However, there is also evidence 
that NOP receptors in extrahypothalamic brain regions exert 
anti-stress effects. For example, nociceptin injections in the 
central nucleus of the amygdala reduce anxiety behaviors 
in rodents exposed to restraint stress (292). Further, body 
restraint stress upregulates NOP receptor mRNA in the central 
nucleus of the amygdala and basolateral amygdala (292). In an 
electrophysiological study, nociceptin blocked CRF-induced 
GABAergic transmission in slices from the central nucleus of 
the amygdala; these effects were more pronounced in neurons 
from ethanol-dependent rodents (293). Additionally, nociceptin 
injections in the bed nucleus of the stria terminalis block CRF-
induced anxiety behaviors in rodents (294, 295). Thus, the role 
of NOP receptors in stress is likely complex and may be relevant 
in OUD, particularly due to the high co-occurrence of anxiety 
and SUDs [reviewed in (296)].

NOP receptor signaling also seems to have an anti-reward 
effect. In microdialysis studies, nociceptin administration 
was found to decrease extracellular DA levels in the NAc of 
anesthetized mice (297) and to decrease morphine-induced 
DA release in the NAc of rats (298). Further, in several rodent 
studies, NOP receptor agonists reduced conditioned place 
preference to alcohol, amphetamines, cocaine, and morphine, 
suggesting NOP receptor signaling may reduce the rewarding 
effects of these substances (299–304). However, Walker et al. 
(305) found nociceptin administration failed to reduce heroin 
self-administration in rodents. There is also preliminary 
evidence that the NOP receptor antagonist, LY2940094, could be 
efficacious in treating AUD in rodents and humans, perhaps by 
blocking stress-induced relapse (306, 307). While an initial post-
mortem analysis demonstrated individuals with AUD had lower 
OPRL1 expression in the central amygdala compared to controls 
(308), no difference in OPRL1 expression was detected in another 
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post-mortem study in individuals with SUDs including AUD 
(309). Thus, the NOP receptor is likely implicated in substance 
abuse and poses a potential therapeutic target, but further 
research is required to clarify its roles in reward and stress-
related behaviors.

OPRL1 Polymorphisms
The functional effects of several OPRL1 polymorphisms have been 
studied. For example, two adjacent SNPs in intron 1, rs6512305 
and rs6090043, are in high linkage disequilibrium and there is 
evidence that variants in rs6090043 may alter transcription 
factor binding sites, which could affect OPRL1 gene expression 
(161). Further, the minor G allele at rs6090041, another intron 1 
variant, and the minor C allele at rs6090043 provide additional 
transcription factor binding sites that could result in increased 
OPRL1 transcription and NOP receptor availability (161). Given 
that NOP receptor signaling has been implicated in decreasing 
drug reward, there may be a role of OPRL1 polymorphisms in 
susceptibility to SUDs.

Genetic Association Studies: OPRL1 and OUD
Xuei et al. (160) assessed correlations between SUDs and 
polymorphisms in OPRL1 as well as in the prepronociceptin 
gene (PNOC), which encodes the NOP receptor precursor, in a 
European American population; rs6512305 and rs6090043 were 
nominally associated with opioid dependence; however, no SNPs 
proved significant (160). Briant et al. (161) found that minor 
alleles at rs6090043 and rs6090041 were risk factors for OUD 
among Caucasians but not African Americans. One haplotype 
(AT) of these variants was found to be a risk factor in both 
Caucasians and African Americans, while another haplotype 
(GC) was a risk factor in Caucasians only (161). While there is 
preliminary evidence that OPRL1 may influence vulnerability 
to OUD, further analysis is required to determine the potential 
ethnicity-dependent effects.

Molecular Imaging: NOP Receptor and OUD
NOP receptor antagonist PET radioligands have been developed; 
[11C]NOP-1A has been tested in humans (290, 310, 311) and 
[18F]MK-0911 has been tested in rhesus monkeys (312). To date, 
no molecular imaging of NOP has been done in participants with 
OUD; however, studies of other SUDs may provide insight. Using 
[11C]NOP-1A, Narendran et al. (313) found no difference in 
NOP receptor availability between healthy controls and recently 
abstinent AUD subjects, nor did NOP receptor availability 
correlate with clinical measures of addiction severity. This 
conflicts with preclinical evidence that NOP receptor signaling 
is involved with AUD (289, 299, 300, 308). However, the subjects 
with AUD in this study were abstinent for 16 to 54 days before 
the PET scan, and there is preclinical evidence that prolonged 
abstinence may recover NOP receptor levels in rats (313, 314). 
In another PET study, recently abstinent CUD participants 
demonstrated a significant increase in [11C]NOP-1A distribution 
volume notably in the midbrain, ventral striatum, and cerebellum 
compared to healthy controls (315). This increased NOP receptor 
availability may reflect a compensatory response to increased CRF 
transmission or decreased endogenous nociceptin associated 

with CUD (315). Further studies are required to evaluate NOP 
in OUD, for while studies in CUD have shown upregulation 
in brain, studies in AUD showed no differences (313), which 
suggests that there might be differences between SUDs. Also, 
research is needed to clarify changes during the different stages 
of the addiction cycle and to assess if there is recovery of NOP 
receptor availability with treatment.

THE DOPAMINE SYSTEM

DRD2
DRD2 Background
The gene DRD2 codes for D2R, an inhibitory GPCR distributed 
throughout the brain. Expression of D2R is concentrated in 
the basal ganglia nuclei, including the caudate, putamen, NAc, 
substantia nigra, and VTA, as shown in Figure 1 (316). As such, 
D2R signaling plays an important role in cognition, reward, 
motivation, and drug addiction, including OUD (317, 318). MOP 
receptors are expressed on DA neurons in the reward pathway; 
thus, with opioid use, MOP receptor binding leads to a release 
of DA, which then binds striatal D2Rs, leading to a decrease in 
intracellular cAMP production (69, 319). This D2R signaling 
inhibits the indirect ventral striatal pathway, which is connected 
to punishment (320).

Ankyrin Repeat and Kinase Domain Containing 1 (ANKK1) 
is a gene directly downstream of DRD2 on chromosome 11 that 
expresses a serine/threonine kinase (321). The protein product 
of ANKK1 upregulates the expression of the transcription factor 
NF-κB (322). Increased NF-κB expression results in increased 
DRD2 transcription (323).

Several studies have shown that OUD is associated with a 
disruption of the mesolimbic dopaminergic pathway, which 
underlies the behavioral response to opioids (4). Koob and Volkow 
(4) suggest that D2Rs contribute to drug seeking behaviors, 
but not drug reward directly (324, 325). A conditioned place 
preference study of DRD2-null mice demonstrated that D2Rs are 
in part responsible for the reinforcing nature of morphine (326).

Lower D2R levels observed in SUDs may reflect a homeostatic 
downregulation of D2R after excessive drug use (29), and some 
evidence exists that D2R levels increase after pronounced 
abstinence (327). Alternatively, lower D2R availability may be an 
inherent risk factor for drug abuse, even before the initiation of 
drug taking (328, 329).

DRD2 Polymorphisms
A wide range of DRD2/ANKK1 polymorphisms have been studied 
in the context of SUDs. One of the most well studied of these 
SNPs is TaqIA, located on exon 8 of ANKK1, adjacent to DRD2 
(321). Many studies have supported the role of TaqIA in addictive 
behaviors including various SUDs, obesity, and pathological 
gambling (330–333). Thus, the TaqIA1 variant, which alters 
ANKK1 substrate binding specificity, could lead to decreased 
D2R expression downstream (321). Indeed, [11C]raclopride and 
[11C]NMB PET studies have shown that minor alleles of ANKK1 
TaqIA and TaqIB, a linked DRD2 SNP, are associated with 
low D2R availability in healthy controls (334–336). However, 
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TaqIA is in linkage disequilibrium with several functional 
DRD2 polymorphisms (337); thus, it is unclear if reduced D2R 
expression is associated with TaqIA directly.

Lesser studied DRD2 variants may also contribute to OUD via 
a diminution of D2R expression (338). SNPs in the 5’ untranslated 
region of DRD2, including rs1799732, an insertion/deletion 
(Ins/Del) variant at position -141, have been shown to cause 
decreased promoter strength in an in vitro -141C Del luciferase 
construct (339). While one [11C]FLB-457 PET study found no 
association between rs1799732 and extrastriatal D2R in healthy 
volunteers (340), one [11C]raclopride PET study demonstrated 
higher striatal D2R availability in those with the combined minor 
variants of rs1799732, Ins/Del and Del/Del, compared to Ins/Ins 
(334). Until more studies are performed, the role of rs1799732 in 
D2R expression cannot be concluded.

Other DRD2 polymorphisms produce splicing errors of 
the DRD2 gene, resulting in altered D2R expression (341). For 
example, the minor allele of rs1076560, located in intron 6, is 
associated with a decreased ratio of short form D2 receptors 
(D2S) to long form receptors (D2L) (342). Preclinical studies 
have demonstrated that D2L knock-out mice have a loss of 
morphine preference in a conditioned place preference paradigm 
(343). Thus, this altered D2S/D2L ratio could help elucidate the 
mechanism of this SNP-OUD relationship. [123I]IBZM SPECT 
imaging revealed that in healthy volunteers, minor T allele 
carriers of this SNP showed lower levels of striatal D2R availability 
compared to G/G (344). However, another [123I]IBZM SPECT 
study in healthy volunteers did not replicate this finding (345). 
These findings may implicate DRD2/ANKK1 polymorphisms in 
the lower D2R levels observed in individuals with OUD (6).

Genetic Association Studies: DRD2 and OUD
Several polymorphisms in DRD2/ANKK1 have been suggested to 
predispose OUD, as outlined in Table 2. Indeed, a recent meta-
analysis across 11 studies, with a total sample of 4,529 OUD 
patients and 4,168 healthy controls, found that the TaqIA1 allele 
is a risk factor for (OUD) (354). Further, several other minor 
alleles of TaqIA and TaqIB are more frequent among OUD 
patients compared to healthy controls (353, 355, 356, 360, 351).

There is less robust evidence for other DRD2 polymorphisms 
in OUD. For example, despite preclinical evidence that rs1076560 
may alter D2R expression, genetic association studies between 
rs1076560 and OUD have been inconsistent (44, 341, 348, 352, 
354). In contrast, while the role of rs1799732 on D2R expression 
is uncertain, subjects with the minor variant have shown to be at 
higher risk for OUD in the Jordanian Arabic population (352).

The extent to which DRD2 polymorphisms affect the response 
to MOUD in patients with OUD is inconsistent across studies. 
Lawford et al. (372) first reported that the TaqIA1 allele was 
associated with poorer treatment outcomes among Caucasian 
patients on methadone maintenance therapy. Since then, no 
group has replicated these findings in Caucasian populations 
(44, 134, 358, 361). Similarly, no association was found between 
TaqIB and methadone maintenance therapy response nor TaqIA 
and buprenorphine maintenance therapy response (44, 272). 
However, Crettol et al. (134) did report an association with rs6277 
and patients’ response to methadone maintenance therapy; 

patients with the major CC genotype were more likely to abuse 
illicit opioids on methadone therapy than those with CT or TT 
genotype. Interestingly, in two [11C]raclopride PET studies, the 
major C  allele of rs6277 was associated with lower striatal D2R 
availability in healthy volunteers (373, 374), while another [11C]
FLB457 PET study found the C allele predicted high extrastriatal 
D2R availability across the cortex and hypothalamus (340). 
However, several studies found no association between rs6277 
and OUD (44, 134). Further, Doehring et al. (44) found no 
relationship between rs6277 and methadone maintenance therapy 
response. Instead, this group found that minor allele carriers of 
a different polymorphism, rs6275, required greater methadone 
doses than non-carriers and took longer to reach their maximum 
methadone dose (44). Thus, genetic studies suggest a role of DRD2 
polymorphisms in treatment response in OUD; however, they 
remain inconsistent and difficult to replicate.

Several studies have investigated the role of DRD2 variants on 
behaviors associated with OUD. The tridimensional personality 
questionnaire scores personality on harm avoidance, novelty 
seeking, and reward dependence (375). These scores are used 
to calculate a borderline index using the equation: borderline 
index = harm avoidance + novelty seeking − reward dependence 
(376).  Borderline index reflects borderline personality trait, 
characterized by a fear of abandonment, self-injurious behaviors, 
and emotional dysregulation (376, 377) (DSM-5). A recent 
study found that OUD patients had higher harm avoidance and 
novelty seeking scores and lower reward dependence scores, and 
thus a higher borderline index, than healthy volunteers (356). 
Further, Huang et al. (272) found that borderline index scores 
are inversely correlated with methadone dose, indicating the 
relevance of borderline index score in OUD treatment. These 
personality scores have not shown associations with TaqIA 
or TaqIB polymorphisms (272, 356). However, the -141C Del 
polymorphism (rs1799732) is associated with higher harm 
avoidance scores among OUD patients (356). In contrast, Gerra 
et al. (377) found that OUD patients had lower harm avoidance 
scores compared to CUD patients and healthy volunteers. 
However, this study reported that both CUD and OUD patients 
had higher novelty seeking scores and lower reward dependence 
scores than healthy volunteers (378). Therefore, this difference in 
harm avoidance could be rooted in genetic differences between 
the groups, as -141C Del is associated with higher harm avoidance 
scores in OUD, though Gerra et al. (378) did not report the 
genetic composition of their cohort (356).

Molecular Imaging: D2R and OUD
[11C]raclopride and [123I]IBZM are widely used radiolabeled 
D2R antagonists differing via regioselectivity used to study D2R 
distribution, with additional affinity to D3Rs (D2-like inhibitory 
receptors) (379–381). [11C]NMB is another radiotracer used to 
study D2R availability with higher affinity for D2Rs over D3Rs 
than [11C]raclopride and [123I]IBZM (382, 383). Lastly, [11C]FLB-
457 is a high-affinity radioligand that targets extrastriatal D2Rs 
and D3Rs (384).

In contrast to other SUDs, less is certain about D2R availability in 
OUD. In one [11C]raclopride PET study, OUD participants showed 
lower D2R availability compared to healthy controls (6). In this 
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study, all OUD patients actively used heroin and most, but not all, 
were also on methadone therapy (6). In another [11C]raclopride PET 
study, recently detoxed OUD patients showed lower D2R availability 
than healthy controls (7). These patients also demonstrated lower 
levels of DA release in response to a methylphenidate challenge in 
comparison to healthy controls (7). In a [123I]IBZM SPECT study, 
the OUD patients were abstinent without maintenance therapy 
anywhere from 1 to 24 weeks (318). Zijlstra et al. (318) observed 

a negative correlation in length of opioid use history with striatal 
D2R availability. In contrast, two [11C]raclopride studies observed 
no differences in D2R availability between OUD patients receiving 
methadone therapy and healthy controls (19, 20). These findings 
suggest the potential therapeutic benefit of MOUD in restoring 
neurochemical imbalances resulting from substance abuse. These 
results demand further investigation into the relationship between 
OUD and D2R availability, particularly in the context of MOUD.

TABLE 2 | Polymorphisms associated with OUD in the dopamine system and imaging correlates.

Gene Polymorphism Location Findings Author Year n Ethnicity Imaging 
Correlates

DRD1 rs10078866 Promoter No significant association with OUD Zhu et al. (346) 2013 939 Han Chinese
Liu et al. (53) 2013 739 Han Chinese

rs10078714 Promoter No significant association with OUD Liu et al. (53) 2013 739 Han Chinese
rs1799914 Exon 1 No significant association with OUD Zhu et al. (346) 2013 939 Han Chinese
rs265975 3’ Near Risk factor for OUD *Jacobs et al. (347) 2014 286 Caucasian
rs265973 3’ Near Risk factor for OUD *Jacobs et al. (347) 2014 286 Caucasian
rs686 3’ UTR Risk factor for OUD Jacobs et al. (347) 2013 187 African American

No significant association with OUD Zhu et al. (346) 2013 939 Han Chinese
Liu et al. (53) 2013 739 Han Chinese
Levran et al. (348) 2015 801 African American
Levran et al. (349) 2009 369 African American

rs267418 3’ UTR No significant association with OUD Peng et al. (350) 2013 739 Han Chinese
rs6882300 3’ UTR No significant association with OUD Peng et al. (350) 2013 739 Han Chinese
rs2168631 3’ UTR No significant association with OUD Peng et al. (350) 2013 739 Han Chinese
rs5326 5’ UTR Risk factor for OUD *Levran et al. (349) 2009 369 African American

Liu et al. (53) 2013 739 Han Chinese
No significant association with OUD Zhu et al. (346) 2013 939 Han Chinese

Peng et al. (350) 2013 739 Han Chinese
rs4532 5’ UTR No significant association with OUD Zhu et al. (346) 2013 939 Han Chinese

Peng et al. (350) 2013 739 Han Chinese
Liu et al. (53) 2013 739 Han Chinese

No significant association with 
methadone dose

Crettol et al. (134) 2008 455 Caucasian

rs4867798 5’ UTR No significant association with OUD Zhu et al. (346) 2013 939 Han Chinese
Liu et al. (53) 2013 739 Han Chinese

rs10063995 5’ UTR No significant association with OUD Zhu et al. (346) 2013 939 Han Chinese
rs265981 5’ UTR Protective against OUD Liu et al. (53) 2013 739 Han Chinese

DRD2 rs6275 Exon 7 Risk factor for OUD Wang et al. (351) 2016 633 Han Chinese
Higher methadone dose Doehring et al. (44) 2009 184 Caucasian
No significant association with OUD Al-eitan et al. (352) 2012 425 Jordanian Arabic

Doehring et al. (44) 2009 184 Caucasian
rs6277 Exon 7 Higher response rates to methadone 

treatment
Crettol et al. (134) 2008 455 Caucasian

No significant association with OUD Doehring et al. (44) 2009 184 Caucasian
Crettol et al. (134) 2008 455 Caucasian

rs1801028 Exon 7 No significant association with OUD Doehring et al. (44) 2009 184 Caucasian
rs1125394 Intron 1 Risk factor for OUD Wang et al. (351) 2016 633 Han Chinese

Al-eitan et al. (352) 2012 425 Jordanian Arabic
rs17115583 Intron 1 Protective against OUD Wang et al. (351) 2016 633 Han Chinese
rs1079597 
(taqIB)

Intron 1 Risk factor for OUD Tsou et al. (353) 2017 950 Han Chinese -Low D2R 
availability in 
healthy controls 
(334, 336*)

*Zhang et al. (354) 2018 593 Han Chinese
Xu et al. (355) 2004 799 Chinese
Wang et al. (351) 2016 633 Han Chinese
Vereczkei et al. (337) 2013 858 Central European

No significant association with 
methadone dose

Huang et al. (272) 2016 138 Taiwanese

rs4648319 Intron 1 Risk factor for OUD Tsou et al. (353) 2017 950 Han Chinese
rs4648317 Intron 1 No significant association with OUD Doehring et al. (44) 2009 184 Caucasian
rs7350522 Intron 1 No significant association with OUD Wang et al. (351) 2016 633 Han Chinese
rs2075654 Intron 2 Risk factor for OUD Al-eitan et al. (352) 2012 425 Jordanian Arabic
rs2734836 Intron 2 Risk factor for OUD Al-eitan et al. (352) 2012 425 Jordanian Arabic

(Continued)
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TABLE 2 | Continued

Gene Polymorphism Location Findings Author Year n Ethnicity Imaging 
Correlates

rs1800498 
(taqID)

Intron 2 Risk factor for OUD Tsou et al. (353) 2017 950 Han Chinese

*Xu et al. (355) 2004 799 Chinese
No significant association with OUD Vereczkei et al. (337) 2013 858 Central European

Doehring et al. (44) 2009 184 Caucasian
Xu et al. (355) 2004 663 German

rs2283265 Intron 4 Risk factor for OUD Al-eitan et al. (352) 2012 425 Jordanian Arabic
*Levran et al. (348) 2015 801 African American

No significant association with OUD Zhang et al. (354) 2018 593 Han Chinese
rs1076560 Intron 6 Risk factor for OUD Al-eitan et al. (352) 2012 425 Jordanian Arabic -Lower levels 

of striatal D2R 
availability in 
healthy controls
(344)
-No association 
with striatal D2R 
availability in 
healthy controls
(345)

Doehring et al. (44) 2009 184 Caucasian
Clarke et al. (341) 2014 2649 African American 

and European 
American

*Levran et al. (348) 2015 801 African American
No significant association with OUD Zhang et al. (354) 2018 593 Han Chinese

rs2734842 3’ Near Risk factor for OUD *Zhang et al. (354) 2018 593 Han Chinese
rs2242591 3’ Flanking 

Region
Risk factor for OUD *Zhang et al. (354) 2018 593 Han Chinese

rs6278 3’ UTR Risk factor for OUD *Zhang et al. (354) 2018 593 Han Chinese
rs6279 3’ UTR Risk factor for OUD *Zhang et al. (354) 2018 593 Han Chinese
rs1799732 5’- UTR Risk factor for OUD (C deletion) Al-eitan et al. (352) 2012 425 Jordanian Arabic -Combined 

minor variants 
associated with 
higher striatal 
D2R availability in 
healthy controls
(334)
-No association 
with extrastriatal 
D2R in healthy 
controls (340)

No significant association with OUD Teh et al. (356) 2012 93 Han Chinese
Zhang et al. (354) 2018 593 Han Chinese
Doehring et al. (44) 2009 184 Caucasian

rs12364283 5’ UTR No significant association with OUD Doehring et al. (44) 2009 184 Caucasian
rs1799978 5’ UTR No significant association with OUD Doehring et al. (44) 2009 184 Caucasian

Teh et al. (41) 2012 93 Han Chinese
Risk factor for OUD *Hung et al. (357) 2011 321 Han Chinese
Higher methadone doses Hung et al. (357) 2011 321 Han Chinese
No significant association with relapse 
rates on methadone treatment

Bawor et al. (358) 2015 240 Mixed

Doehring et al. (44) 2009 184 Caucasian
ANKK1 rs4938013 Exon 2 Risk factor for OUD Nelson et al. (359) 2013 3485 Caucasian

*Zhang et al. (354) 2018 593 Han Chinese
rs7118900 Exon 5 Risk factor for OUD *Zhang et al. (354) 2018 593 Han Chinese

*Levran et al. (348) 2015 801 African American
rs1800497 
(taqIA)

Exon 8 Risk factor for OUD Teh et al. (356) 2012 93 Han Chinese -Low D2R 
availability in 
healthy controls 
(334, 335, 336*)

Hou and Li (360) 2009 1030 Chinese/East Asian
*Vereczkei et al. (337) 2013 858 Central European
Tsou et al. (353) 2017 950 Han Chinese
*Zhang et al. (354) 2018 593 Han Chinese
*Doehring et al. (44) 2009 184 Caucasian

No significant association with OUD Al-eitan et al. (352) 2012 425 Jordanian Arabic
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DRD1
DRD1 Background
The D1R is the most abundant DA receptor in the brain (380). 
Coded by DRD1, this excitatory GPCR is widespread, but most 
densely expressed in the dorsal striatum, hippocampus, amygdala, 
and neocortex, as illustrated in Figure 1 (385–388). D1Rs 
influence learning and memory via association with N-methyl-
D-aspartate (NMDA)-mediated long-term potentiation as 
well as impact D2R-mediated events and regulate addiction-
associated behaviors such as impulsivity (389–396). D1Rs are 
important mediators of several reward-related processes and 
there is evidence that D1Rs are required and sufficient for drug 
reward and conditioning (397, 398).

D1R function is relevant in OUD because DA release 
triggered by opioid-induced MOP receptor activation indirectly 
stimulates D1Rs and associated reward circuitry (69). While 
one post-mortem study showed lower D1R mRNA levels in the 
putamen and NAc shell in OUD subjects relative to controls 
(347), another postmortem analysis showed higher D1R mRNA 
and protein expression in VTA, NAc, and amygdala in the brains 
of opioid abusers compared to controls (399). This difference 
may be attributed to the difference in populations studied. Where 
Sadat-Shirazi et al. (399) studied patients who exclusively abused 
opioids, Jacobs et al. (347) included polysubstance users.

In addition, pharmacological manipulations of D1Rs in 
preclinical models of OUD demonstrate alterations in behaviors 
associated with dependence and withdrawal. For example, 
infusion of D1R agonist SKF 38393 into the NAc enhances, while 
antagonist SCH 23390 blunts, conditioned place preference 
in morphine-addicted rats (400). Additionally, infusions of 

SCH 23390 into the NAc core reduced cue-induced heroin-
seeking in dependent rats (401). Furthermore, D1R agonist SKF 
82958 relieved naloxone-precipitated withdrawal symptoms in 
morphine-dependent rats (402). These findings highlight the 
importance of D1Rs in OUD and correspond with other SUD 
models. For example, SCH 23390 infusion blocks reinstatement of 
cocaine-seeking in rats, while D1R agonist SKF 81297 reinstates 
cocaine-seeking (403, 404). In addition to pharmacological D1R 
blockade, D1R knock-out mice fail to self-administer cocaine 
(397). In models of AUD, NAc shell infusions of SCH 23390 
blunt, while infusions of D1R agonist A-77636 enhance, ethanol 
self-administration in alcohol-preferring rats (405).

D1 and MOP receptors directly colocalize into hetero-
oligomers in the rat cortex and striatum (including accumbens 
nucleus), regions of importance in reward and locomotor 
activity. Together, they promote locomotor sensitization in rats 
chronically treated with morphine, suggesting this association 
may be involved in the long-term neuronal changes associated 
with addiction (406, 407).

DRD1 Polymorphisms
While less attention has been given to variations in DRD1 than 
DRD2/ANKK1, there are several functional polymorphisms 
that have been studied in the context of SUDs. One study 
demonstrated that rs5326A, located in the 5’ untranslated region, 
correlated with decreased DRD1 promoter strength in an in vitro 
luciferase model (408). Other DRD1 polymorphisms may increase 
vulnerability to OUD by interacting with the glutamatergic 
system in the brain. Homer scaffold protein 1 (HOMER1) encodes 
HOMER1, a postsynaptic protein that facilitates glutamatergic 

TABLE 2 | Continued

Gene Polymorphism Location Findings Author Year n Ethnicity Imaging 
Correlates

Barratt et al. (361) 2006 166 Mixed
No significant association with 
methadone dose

Crettol et al. (134) 2008 455 Caucasian

No significant association with 
methadone or buprenorphine therapy 
success

Barratt et al. (361) 2006 166 Mixed

Improved withdrawal among 
methadone-maintained patients

Barratt et al. (361) 2006 166 Mixed

rs877138 5’- Flanking 
Region

Risk factor for OUD Nelson et al. (359) 2013 3485 Caucasian

DAT1 9-repeat VNTR 3’ UTR Risk factor for OUD Galeeva et al. (362) 2002 287 Caucasian males -Higher striatal 
DAT availability
(363–365)
-No association 
with striatal DAT 
availability
(366, 367)

No significant association with OUD Hou and Li (360) 2009 1030 Han Chinese
Yeh et al. (368) 2010 1046 Han Chinese

10-repeat VNTR 3’ UTR Risk factor for OUD Ornoy et al. (369) 2016 158 Israeli Jewish 
Females

-Higher striatal 
DAT availability
(370, 371)
-No association 
with striatal DAT 
availability
(366, 367)

SNP associations refer to the minor allele.
*Nominal significance.
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transmission (409). Excitatory glutamatergic signaling has 
been shown to underlie the persistent compulsion to use drugs, 
suggesting SNPs disrupting this gene interaction may be relevant 
in OUD (410). In a post-mortem analysis of Caucasian samples, 
the DRD1 polymorphism rs265973 associated with HOMER1 
expression in the striatum (347). Interestingly, the minor T allele 
associated with higher levels of striatal HOMER1 mRNA among 
the OUD cohort, but associated with lower levels of striatal 
HOMER1 mRNA in the control cohort (347). Thus, it is possible 
HOMER1-associated genetic variants disrupt glutamatergic and 
dopaminergic signaling and contribute to OUD.

Genetic Association Studies: DRD1 and OUD
Preliminary findings suggest a role of DRD1 SNPs in OUD, as 
outlined in Table 2. For example, Liu et al. (411) found that two 
SNPs located in the 5’ untranslated region of DRD1, major allele 
rs265981G and minor allele rs5326A, associated with OUD in 
a Han Chinese population. Levran et al. (348, 349) also found 
a trend toward an association between rs5326A and OUD in an 
African American sample. However, other groups were unable 
to replicate these findings (346, 350). Jacobs et al. (347) found a 
nominally significant association between DRD1 SNP rs265973 
and OUD among Caucasians, but not African Americans. This 
provides further evidence of an association between HOMER1 
and OUD, perhaps with ethnicity-dependent effects.

Several studies demonstrate that DRD1 variants associate 
with the duration of transition from the first use to dependence 
of opioids (346, 350). The duration of transition from the first 
use to dependence is of clinical significance; patients with a more 
rapid transition to dependence have poorer treatment outcomes 
and more severe SUDs (412, 413). Zhu et al. (346) found that 
the minor alleles of rs686 and rs4532 associated with a longer 
transition period. Peng et al. (350) were unable to replicate the 
rs4532 association, but found that homozygotes for the major 
alleles of rs5326 and rs6882300 had an accelerated transition 
to OUD. Interestingly, while these SNPS associated with the 
transition from first use to dependence, neither study found that 
they were associated with increased risk for OUD (346, 350).

DRD1 variants have also been implicated in subjective 
ratings of pleasure in response to opioids, both upon first use 
and after dependence (346). Typically, the pleasurable feeling 
associated with opioids increases with duration of use: most 
patients report a negative response upon their first use and a 
euphoric response after dependence (133, 346). This suggests 
that chronic opioid use induces changes to reward-related 
circuitry. One potential mechanism is through D1R-mediated 
phosphorylation of NMDA, contributing to long-term 
potentiation (414). DRD1 variants have been associated with 
this reward sensitization process in a Han Chinese population 
(346). This study revealed that DRD1 SNPs that modulate the 
subjective response to opioids upon first use are distinct from 
those that do so after dependence. Specifically, the minor alleles 
of rs5326, rs10063995, and rs10078866 are associated with 
a non-pleasurable first use of opioids, but are not associated 
with the subjective response after dependence. Conversely, 
the minor variants of rs686 and rs4532 are associated with 

less pleasurable responses to opioids after dependence, but are 
not associated with the initial response (346). Findings from a 
rat study indicate that there is a reward-switching mechanism 
in opioid response within the basolateral amygdala in which 
D1R signaling is associated with reward upon first use and 
D2R signaling with reward after dependence (415). Thus, it is 
possible that rs686 and rs4532 associate with less pleasurable 
opioid responses after dependence by modulating D2R activity.

Molecular Imaging: D1R and OUD
No molecular imaging studies have yet assessed D1R availability 
in OUD or in DRD1 polymorphism carriers. Few studies have 
examined the relationship between other SUDs and D1R 
levels. [11C]NNC 112 and [11C]SCH 23390 are radiolabeled 
D1R antagonists that differentially distribute throughout the 
brain; however, both display high affinity in the striatum and 
extrastriatal regions (416–418). In one [11C]NNC 112 study, D1R 
availability in CUD patients was not significantly different than 
in healthy controls (419). In contrast, studies utilizing [11C]SCH 
23390 PET reveal individuals with tobacco use disorder have 
lower D1R availability than healthy controls (420, 421). These 
limited findings highlight the need for increased investigation 
into D1R availability in addiction.

DAT1
DAT1 Background
DAT are plasma membrane proteins essential for the clearance 
of DA from the synapse; they play a critical role in regulating 
DA neurotransmission, especially in the striatum (422–426). 
DAT harness the electrochemical gradient to transport two 
sodium ions with a DA molecule into the cell, thus regulating 
extracellular DA concentrations (423). DAT are coded by DAT1, 
a gene widely studied for its role in substance abuse (427).

DAT1 Polymorphisms
The most studied polymorphisms of DAT1 are VNTRs in the 
3’ untranslated region, which may affect DAT expression (428–
431). The most common variants are those with 9 or 10 repeats of 
the 40 base pair sequence (432) and multiple molecular imaging 
studies have investigated their functional effects. In several  
[123I]β-CIT SPECT studies, 9-repeat VTNR carriers demonstrated 
higher striatal DAT availability than the 10-repeat homozygotes 
(363–365). In contrast, two [123I]β-CIT SPECT studies found 
those homozygous for the 10-repeat allele had higher striatal 
DAT density compared to non-10-repeat carriers (370, 371). 
Finally, Martinez et al. (366) and Lynch et al. (367) found no 
effect of VNTR polymorphisms on striatal DAT expression in 
a [123I]β-CIT SPECT and [99mTc]TRODAT-1 study, respectively. 
Lastly, Guindalini et al. (433) found that the rare 6-repeat 
VNTR genotype reduced DAT1 expression in vitro, particularly 
when cocaine was added to the culture. However, the effects 
of the 6-repeat VNTR polymorphism on DAT1 availability 
has not been assessed in vivo with PET methodology. Thus, 
further research is required to determine these polymorphisms’ 
functional effects on DAT expression and availability.
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Genetic Association Studies: DAT1 and OUD
Genetic association studies of DAT1 and OUD have yielded 
inconsistent results. While Galeeva et al. (362) found an association 
between 9-repeat VNTR allele and OUD in an ethnic Russian and 
Tartar male population, later studies in Han Chinese populations 
did not observe any association (360, 368). Ornoy et al. (369) 
examined the heritability of DAT1 ADHD risk alleles in Sephardic 
and Ashkenazi Jewish heroin-dependent individuals and their 
children. They found that mothers with OUD were more likely to 
be carriers of the DAT1 10-repeat allele than mothers without OUD. 
This association was not seen in fathers and was not explained by 
prevalence of ADHD among mothers with the polymorphism. 
Further, the children of heroin-dependent parents were more likely 
to inherit the 10-repeat allele than children of healthy volunteers 
(369). However, it is unclear how these VNTR polymorphisms 
impact DAT availability and thus vulnerability to OUD, as molecular 
imaging studies have conflicting results (363–367, 370, 371).

Polymorphisms in DAT1 have been associated with other 
SUDs, which may provide insight into their functional effects 
on DA signaling in addiction. DAT1 VNTR has been associated 
with OUD (362) as well as AUD in Western European and 
Japanese populations (47, 434). A meta-analysis also found that 
the 9-repeat VNTR was associated with increased withdrawal 
severity in AUD (435). The 6-repeat VNTR genotype was found to 
be a risk factor for CUD, but this variant has not yet been studied 
in OUD (45). Thus, it seems that DAT1 VNTR polymorphisms 
may affect DAT expression and contribute to SUDs.

Evidence suggests that the number of VNTR in patients with 
OUD influences their response to treatment. In each study, a 
“poor” treatment outcome indicates continued heroin use or 
treatment drop-out, whereas a “successful” outcome indicates 
cessation of illicit opioid use. In patients receiving buprenorphine 
therapy, carriers of the 10-repeat VNTR allele had poor outcomes 
more often than successful outcomes (436). Conversely, 6-, 7-, 
and 11-repeat VNTR allele carriers had successful outcomes in 
response to buprenorphine therapy more often than not (436). 
Gerra et al. (436) suggest that these variations in DAT1 may 
modulate buprenorphine-associated DA transmission and thus 
affect treatment success. In a study of both oral and implanted 
naltrexone therapy, Krupitsky et al. (437) found that OUD patients 
with the 9-repeat VNTR allele had poor outcomes more often than 
successful ones on both forms of naltrexone. Thus, genotyping 
DAT1 VNTR could be useful in OUD therapy selection.

While van Gestel et al. (438) reported an association between 
DAT1 VNTR polymorphisms and novelty seeking, a personality 
trait associated with SUDs (439), other studies have failed to 
replicate this finding (440, 441).

Molecular Imaging: DAT and OUD
Several molecular imaging studies have assessed DAT 
availability  in SUDs utilizing DAT-sensitive tracers including 
[99mTc]TRODAT-1, [123I]β-CIT, [11C]WIN 35,428, [11C]cocaine, 
and [11C]CFT. There is evidence from molecular imaging studies 
that DAT availability is altered in SUDs. For example, CUD is 
associated with higher striatal DAT concentrations compared to 
healthy controls (54, 55), while methamphetamine-dependent 
individuals demonstrate lower striatal DAT availability compared 

to healthy controls (51, 57, 58). Alcohol and tobacco dependence 
have also been associated with lower striatal DAT levels (59, 
60–62); however, other studies have observed no association 
between DAT levels and alcohol and tobacco dependency (22, 
442). Although varied, these results overall suggest that DAT 
plays a role in SUDs.

PET and SPECT studies suggest that OUD is associated 
with decreased DAT availability. Chronic heroin users, detoxed 
abstainers, and methadone-maintained patients all present 
lower  striatal DAT levels than healthy controls (48–53). A  
[99mTc]TRODAT-1 SPECT study comparing DAT concentrations 
between recently detoxed heroin-dependent patients and recently 
detoxed methamphetamine-dependent patients showed that 
both had lower striatal DAT availability than healthy controls 
and had no differences between them (51). In contrast, Cosgrove 
et al. (443) utilizing [123I]β-CIT SPECT imaging, reported no 
differences in striatal DAT levels between heroin users and 
healthy controls, though they acknowledged the limitations of 
their small sample sizes (443).

DAT availability may also vary based on the use of MOUD. For 
example, one [11C]CFT PET study reported methadone-maintained 
OUD patients showed lower DAT availability in the bilateral 
putamen than abstinent OUD patients, with both presenting 
lower striatal DAT availability compared to healthy controls (49). 
Further, while methadone-maintained patients showed lower DAT 
availability in caudate and putamen compared to controls, abstinent 
OUD patients showed lower DAT availability in the caudate only, 
suggesting that abstinence from opioids may partially recover DAT 
availability (49). However, a [99mTc]TRODAT-1 SPECT study found 
similar striatal DAT availability between methadone-maintained 
and abstinent OUD patients (50). This discrepancy may be due to 
methodological differences; in one study, patients were at least 6 
months abstinent (49), while in the other, patients were abstinent for 
only 3 months or less (50). In a within-subjects [99mTc]TRODAT-1 
SPECT study, Liu et al. (53) observed a 14–17% increase in DAT 
levels in the caudate and putamen of 64 heroin-dependent patients 
after 6 months of treatment with traditional Chinese Jitai tablets, an 
herbal remedy associated with withdrawal mitigation. No significant 
increase in DAT levels was observed in the placebo-treated group. 
However, even among the medication group, DAT availability was 
not restored to that of healthy control levels (53). Thus, further 
studies are required to determine the effects of MOUD compared to 
sustained abstinence on DAT availability.

CONCLUSION

Preclinical and clinical studies have demonstrated the importance 
of the opioid and DA systems in SUDs, including OUD. 
Polymorphisms within these systems have functional consequences 
that may influence a number of modalities in addiction, including 
vulnerabilities, addiction severity, treatment response, and relapse 
rates. PET and SPECT methodology allow for the study of these 
receptor systems in both healthy and substance-dependent 
populations and provide insight into the neurobiology of OUD.

Within the opioid system, the MOP receptor has been most 
closely studied in the context of OUD. The minor allele of the 
OPRM1 rs1799971 SNP has been widely linked to a reduction in 
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MOP receptor availability (100–105). The implications of this in 
OUD, however, remain elusive; findings from genetic association 
studies are varied and seem largely ethnicity-dependent (109). 
The KOP and NOP receptors have also been studied in relation to 
OUD; both play important roles in the dysphoric effects of drug 
abuse seen during withdrawal, including modulating activation of 
the HPA axis (16, 291, 294, 295, 444). A number of polymorphisms 
in OPRK1 have been associated with OUD and opioid withdrawal 
severity (147, 155, 156, 232). Similarly, VNTR polymorphisms in 
PDYN have been correlated with opioid withdrawal, suggesting 
the importance of dynorphin-KOP receptor signaling system in 
the mediation of stress-induced withdrawal and compulsive drug-
seeking (155). Lastly, genetic variants in both PDYN and OPRL1 
have been associated with personality traits and behaviors associated 
with SUDs, another indication of their roles in OUD (235, 236, 445). 
The DOP receptor has an inverse function to the KOP receptor, in 
that DOP receptor activation improves negative emotional states 
(255). While several OPRD1 polymorphisms correlated with 
heroin dependence (130, 136, 138–141, 146, 150), it is likely that the 
effects are ethnicity-dependent, as several other studies found no 
significant associations between OPRD1 polymorphisms and OUD 
(137, 140, 144).

The DA system has several well-studied polymorphisms 
that have been linked with OUD and other SUDs. For example, 
polymorphisms in DRD2/ANKK1, in particular the TaqIA and 
TaqIB SNPs, may result in lower D2R availability (321, 334, 335) 
and have been associated with addictive behaviors including OUD 
(330, 332, 354, 446, 447). Less studied DRD2 polymorphisms may 
also affect D2R expression (341, 344) but results have been varied. 
Additionally, DRD2 polymorphisms may associate with response 
to medications for OUD; however, there are conflicting reports and 
further research is required (44, 134, 272, 335, 358, 361, 372). Fewer 
conclusions can be drawn about DRD1; for example, several DRD1 
polymorphisms were initially associated with a rapid transition from 
first opioid use to opioid dependence, but the results could not be 
replicated (346, 350). Lastly, lower DAT availability has also been 
associated with OUD (48–53). Both the 9- and 10-repeat VNTR 
alleles have been associated with lower DAT availability (363–365, 
370, 351); thus, more studies are required to pinpoint the effects of 
the different repeat VNTR polymorphisms in OUD.

While there is strong preliminary evidence of the role of genetic 
variants in the DA and opioid systems in OUD, more molecular 
imaging studies are required in individuals with OUD. In particular, 
studies utilizing PET tracers that target the less-studied opioid 

receptors, D1R, D3R, and DAT, would greatly contribute to our 
understanding of the complex interplay between these receptors in 
opioid addiction. For instance, as of yet, no imaging studies have 
examined DOP, KOP, NOP, D1, or D3 receptors in individuals 
with OUD. One of the most important molecular imaging 
research questions in OUD is how the different MOUD may alter 
the dopamine and opioid receptor systems and if these changes 
are associated with higher rates of successful abstinence. Current 
imaging studies largely group abstinent and medication-maintained 
OUD participants together and compare to healthy controls; 
however, analyses between OUD subgroups would shed light on 
any neurochemical benefits of MOUD. This would help inform 
treatment and ultimately improve outcomes for those suffering 
from OUD. Additionally, opioid receptor antagonist challenge 
studies would help assess the interaction between drugs like 
naloxone and semi-synthetic or synthetic opioids, improving safety 
and efficacy of overdose reversal and prevention. Finally, molecular 
imaging studies examining the effects of polymorphisms in the DA 
and opioid systems would help elucidate the genetic components 
of OUD. The literature relating to genetic association studies in 
OUD does suggest that certain polymorphisms are risk factors 
for OUD or may affect treatment outcomes. However, given that 
these associations are largely ethnicity-dependent, it is important 
to replicate these findings. Finally, there seem to be sex effects both 
on genetic association studies and PET/SPECT findings; therefore, 
future studies could investigate the sex differences in development 
and outcome of OUD. Further investigation into the underlying 
genetic factors of OUD and treatment response is critical to help 
curb the opioid crisis by means of addiction prevention, novel 
pharmacological targets, and precision treatment.
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