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Autism spectrum disorder (ASD) is a set of complex neurodevelopmental disorders 
with etiology that remains elusive. Although there is a mounting body of investigation in 
different brain regions related to ASD, our knowledge about the common and distinct 
perturb condition between them is at the threshold of accumulation. In this study, based 
on protein–protein interactions, post-mortem transcriptome analysis was performed with 
corpus callosum (CC) and prefrontal cortex (PFC) samples from ASD individuals and 
controls. Co-expression network analysis revealed that a total of seven (four for CC set, 
three for PFC set) core dysfunctional modules strongly enriched for known ASD-risk genes. 
Three quarters of them in CC set (M4, M6, M29) significantly enriched for genes annotated 
by genetically associated variants in our previous whole genome sequencing data. We 
further determined transcriptional and post-transcriptional regulation subnetwork for each 
ASD-correlated module, including 47 pivot transcription factors, 130 pivot miRNAs, and 
7 pivot lncRNAs. Moreover, there were significantly more interactions between CC-M4, 
-M6, and PFC-M2, mainly involved in synaptic functions and neuronal development. Our 
integrated multifactor analysis of ASD brain transcriptome profile illustrated underlying 
common and distinct molecular mechanisms and the module crosstalk between CC and 
PFC, helping to shed light on the molecular neuropathological underlying ASD.
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INTRODUCTION 

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by high 
degree of clinical and genetic heterogeneity. The Diagnostic and Statistical Manual of Mental Disorders-
Fifth Edition (DSM-5) defines ASD by deficits in social communication and interactions, as well as by 
repetitive behaviors and restrictive interests, with onset in early development. Currently, 1 of every 59 
children in the United States is diagnosed with ASD (1), whereas the prevalence of ASD in China is 
8.3 per 10,000, which is likely underestimated due to the strict diagnosis criteria (2). Consistent with 
the primary features of ASD, many studies demonstrated the association between brain abnormalities 
and the disease, yet no clear and common molecular or pathology mechanisms have proved to be 
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responsible for this disease so far. Animal experiments showed 
that abnormal brain regions were mainly involved in the temporal 
lobe, cerebellar cortex, frontal lobe, hypothalamus, and the 
striatum by 26 different ASD mouse models (3). Postmortem and 
structural magnetic resonance imaging studies have highlighted 
the frontal lobes, amygdala and cerebellum as pathological area in 
ASD (4). Although several genetic and environmental risk factors 
have been identified, we do not have a firm understanding of the 
pathophysiological basis of this complex disease by now.

Among the human brain regions implicated in the 
pathophysiology of ASD, the prefrontal cortex (PFC), as the center 
of the highest-order cognitive functions, has always been focused 
on due to its role in the cognitive, decision-making and social 
behavior (5). Previous studies have confirmed that some microglial 
activation in ASD was associated with a neuron-specific reaction 
in the dorsolateral prefrontal cortex (6). The corpus callosum 
(CC), predominantly populated by oligodendrocyte cells, has been 
the largest white matter tract in the human brain, interconnecting 
homologous association areas of both hemispheres (7). Dysplasia 
of the CC often involves in social impairments similar to those 
seen in high-function people with ASD, encompassing diminished 
social self-awareness, difficulty in imaging the social perspective 
of others, poor conversation skills and restricted verbal expression 
of emotional experience (8). Though its contribution to cognition 
and behavior remains unclear, the indirect relationship between 
the volume of CC in anatomy and ASD severity suggested its 
susceptibility of etiology (9).

Furthermore, brain function is governed by precise regulation of 
gene expression across its anatomically distinct structures. However, 
the regulation programs of gene expression in human are controlled 
by thousands of transcription factors (TFs), cofactors and chromatin 
regulators, involving transcriptional and post-transcriptional levels. 
Dysregulation of these programs may cause a broad range of diseases 
(2, 10). Transcription Factor 4 (TCF4) binding sites were found in a 
large number of neuronal genes that were implicated as genetic risk 
factors for common neurodevelopmental disorders (11). Previous 
studies found miR-146a up-regulation was the most common 
miRNA dysregulation event in neurodevelopmental disorders such 
as ASD, epilepsy, and intellectual disability (12). Long non-coding 
RNA (lncRNA) Shank2-AS was abnormally expressed in patients 
with ASD and might affect the structure and growth of neurons by 
regulating its sense strand gene Shank2 expression (13).

We reasoned that distinct pathogenic mechanisms in CC and 
PFC area in ASD might converge on common pathways that are 
not yet well understood. Since systems biology made it possible 
to study larger and more intricate systems than before, gene set 
and network-based analysis became powerful tools for evaluating 
putative genetic risk factors and dysfunctional modules for diseases. 
RNA-sequencing data of CC (GSE62098) (14) have provided DEGs 
between ASD children and typically developing controls and was 
used to confirm the involvement of a protein interaction module 
(with GO enrichment for synaptic transmission) in ASD. Li et 
al. (14) examined the expression specificity of the module in the 
CC with immunochemical method and showed that the human 
CC was predominantly populated by oligodendrocyte cells. Then 
multiple genomic data further revealed a significant involvement of 
this module in the development of oligodendrocyte cells in mouse 

brain. For PFC data (GSE102741), Wright et al. (15) revealed 
that seven histamine genes (SNORA74A, SNORA53, SNORD17, 
SNORA54, SNORA74B, SNORD114-23, and RP6-206I17.3) 
showed altered expressions in ASD children, suggesting that the 
histaminergic system might also be altered in ASD. However, few 
efforts have been made to conduct a comprehensive approach to 
decipher tissue specific pathogenic mechanism of ASD.

To this end, weighted gene co-expression network analysis 
(WGCNA) was performed in this paper based on integrated RNA-
seq data, protein–protein interactions (PPIs) and TF-, ncRNA-
target interactions. In our previous study, we have conducted a 
comprehensive scan of genomic variance differences among three 
pairs of monozygotic twins with whole genome sequencing (WGS) 
(16). Here we extend our genomic analysis to the transcriptome 
profile of ASD-affected individuals aimed at identifying common 
and distinct transcriptional alterations in dysfunctional modules 
of CC and PFC, which may prove to be a crucial step to better 
understand ASD.

MATERIALS AND METHODS

Data Resources and Differential 
Expression (DE) Analysis
Gene expression profile data of 24 corpus callosum samples 
[GSE62098 (14), 12 ASDs, 12 controls] and 52 prefrontal 
cortex samples [GSE102741 (15), 13 ASDs, 39 controls] were 
downloaded from the NCBI Gene Expression Omnibus (GEO) 
(17) database. For GSE62098, original samples were requested 
from Autism Speak’s Autism Tissue Program (www.atpportal.
org) and NICHD Brain and Tissue Bank (http://medschool.
umaryland.edu/btbank/). For GSE102741, samples were collected 
at National Institute of Mental Health brain collection (18), the 
University of Maryland Brain and Tissue Bank (www.medschool.
umaryland.edu/btbank/) and the Stanley Medical Research 
Institute sample characterization (www.stanleyresearch.org). 
Subjects with evidence of drug use, alcohol abuse or psychiatric 
illness were excluded from the control cohort. Details of 
clinical characterization, neuropathological examinations and 
toxicological analyses are available on their respective websites.

Two sets of data were processed separately. The quality control 
was performed by Fast-QC (version 0.11.5). Then, filtered reads 
were used to map to the hg38 genome reference genome (GRCH38) 
using HISAT2 (version 2.1.0) (19) with default parameters. 
Fragments Per Kilobase transcriptome per Million (FPKM) 
reads values and raw counts of gene expression were calculated 
within StringTie (20) (version 1.3.3). Based on raw counts tables, 
differentially expressed genes (DEGs) were ranked and filtered by 
DESeq2 (R package) (21) for further analysis (|Fold Change| > 1.2, 
p-value < 0.05).

Gene Co-Expression Network Analysis
WGCNA was applied to derive gene networks based on all pair-
wise gene expression correlations between genes (22). A human 
protein–protein physical interaction (PPI) subnetwork (combined 
score ≥ 900) was firstly extracted from STRING database (v10.5) 
(23), consisting of 9,635 proteins and 170,876 interactions. Then, 
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DEGs and their interactors in the PPI network were identified to 
construct weighted gene correlation network. Finally, the expression 
profile of genes in the weighted gene correlation network was 
input to WGCNA for co-expression modules. For GSE62098 (CC 
set), a power of 12 was chosen in this study and the parameters 
minModuleSize = 20, minimum height = 0.15 were set to cut 
tree. For GSE102741 (PFC set), power = 8, minModuleSize = 20, 
minimum height = 0.15 were set to cut tree. For each co-expression 
module, nodes with KME value > 0.8 were considered as hub genes.

Identification of Pivotal Regulators
TF-target interactions (785 TFs, 2,489 target genes) were 
recruited from AnimalTFDB v3 (24) and TRRUST v2 (25). For 
post-transcriptional regulation, miRNA- (1179 miRNAs, 6,677 
target genes) and lncRNA-target interactions (93 lncRNAs, 7,744 
target genes) were recruited from RAID v2.0 (26). If a factor 
(i) has >1 interactions and (ii) the number of its target nodes 
significantly enriched for the module (hypergeometric test, p < 
0.05) (27), the factor was identified as a pivot regulator.

Identification of Crosstalk Module Pairs
First, we compiled a list of 3,352 protein coding genes differently 
expressed between CC (white matter) and PFC (frontal lobe) 
using the Allen Human Brain Atlas (28) (|Fold Change| ≥4, 
p-value < 0.05), 814 were on STRING PPI network. Tissue-
specific modules were defined as modules of which specific 
expression parts containing DEGs. We counted the number 
of interactions between each tissue-specific module. Then by 
keeping the number of nodes unchanged compared to the 
corresponding tissue-specific module genes on PPI network, 
paired gene sets were randomly sampled for 100,000 times and 
also counted the number of interactions of each pair, which 
allowed us to assign the p value. Significant crosstalk module pair 
was defined as a pair of gene sets from CC and PFC set separately 

which of significantly more interactions between each other than 
random pairs (permutation test, p < 0.05).

Functional Enrichment Analysis
Gene ontology biological processes (GO-BP), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis were carried out 
with R package clusterProfiler (29). For pivot miRNAs, functional 
annotations were performed on DIANA-miRPath v3 (30).

RESULTS

Altered Gene Expression and Weighted 
Gene Co-Expression Network Analysis 
(WGCNA)
We performed a differential expression (DE) analysis to determine 
the gene significantly expressed in ASD compared to controls, and 
a total of 653 and 720 DEGs were identified for further analysis, in 
CC and PFC data respectively (|Fold change| > 1.2 and p-value < 
0.05, Supplementary Table S1). Since interacted genes imply 
co-expression (31), human protein–protein interaction (PPI) 
subnetwork based on DEGs containing 3,492 interactors for CC 
set and 3,243 for PFC set were constructed for additional analysis 
(see Materials and Methods section). Then based on WGCNA, 30 
(CC set) and 28 (PFC set) dysfunctional modules were initially 
determined (Figure 1). Taking the effectiveness of the modules 
into account, modules containing DEGs and size less than 500 
genes were kept for further analysis (Supplementary Table S2).

Dysfunctional Co-Expression Modules in 
CC and PFC
In order to detect whether there were common or distinct 
contributors perturbed in the functional modules, remained 
modules were further filtered by genomic variation burden 

FIGURE 1 | Visualization of WGCNA results. Clustering dendrograms of genes within (A) CC and (B) PFC subset, X-axis represents genes and Y-axis represents 
height of the gene tree. Total of 30 (CC set) and 28 (PFC set) co-expression modules corresponding to different color bars while grey bars represent genes not 
included in any co-expression module. 
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and correlation with ASD. Based on our previous study 
(16), discordant variations in monozygotic twin (DVMT) 
including single nucleotide variants (SNVs), small insertions 
and deletions (InDels), and copy number variations (CNVs) 
presented in at least two twin pairs were filtered as putative 
ASD risk sites. A subset of 1,714 protein coding genes 
annotated by three types of DVMT were used to determine 
the genomic variance burden in the present study and made 
further analysis. First, we calculated the number of genes 
involved in ASD susceptibility to determine whether any 
of co-expression modules were associated with ASD, using 
SFARI Gene list (https://gene.sfari.org/autdb/). M4, M6, 
M17, and M29 for CC set and M2, M6, and M8 for PFC set 
showed significant enrichment, which were referred to be 
dysfunctional modules (p < 0.05). Next, we confirmed the 
results above by calculating overlaps between module nodes 
and DVMT genes using our previous WGS data, which were 
significantly converged into M4, M6, M7, M9, M29 (CC 
set), and M5, M11, M24 (PFC set) (p < 0.05). Notably, most 
of ASD-associated modules (M4, M6, and M29) of CC set 
showed DVMT significance, while none of that was observed 
with PFC set (Table 1 , Supplementary Table S3).

Functional enrichment analysis was performed for each 
dysfunctional module and revealed multiple biological processes 
of gene ontology (GO-BP) critical to major functions for both 
sets (Figure 2, Supplementary Table S4), including cognition, 
learning or memory, long term depression, nervous system 
development, and synaptic function. KEGG pathway analysis 
showed that common pathways like neuroactive ligand–receptor 
interaction, calcium signaling, MAPK and PI3K-Akt signaling 
were observed. We found that 28% (20/72) and 29% (9/31) of 
genes involved in neuroactive ligand–receptor interaction, and in 
CC and PFC set respectively, have been reported to be related to 
ASD. There were also module-specific terms like RNA transport 
and localization involved in M17 of CC set, protein ubiquitination 
and regulation of cell-substrate adhesion in M6 and M8 of PFC 
set, respectively. The ubiquitin–proteasome system has been 

considered to be a major non-lysosomal proteolytic process 
that regulates the levels of cellular proteins related to synaptic 
plasticity and long-term memory, and to ASD (32, 33).

Hub genes are those that show most connections in the 
network and of great use in identifying genes with significant 
biologically meaning. In line with functional enrichment 
results, CACNA1C, one of the hubs of CC M6 presented in 
both SFARI and WGS set, in which genetic variation have 
been associated with ASD, Major Depressive Disorder, 
Schizophrenia as well as some undiagnosable psychiatric 
illness (34). Other hub genes (GABBR2, GRM7, MEF2C, 
SCN2A, KMT2C, and DAGLA) dysfunction have been reported 
to contribute to ASD and other psychiatric disorders such 
as Attention-Deficit Hyperactivity Disorder (ADHD) (35), 
Huntington’s disease (36), and Rett-syndrome (37). These 
observations supported the existence of shared dysfunction 
convergence but might distinct mechanism under CC and 
PFC in ASD.

Pivot Regulators of Dysfunctional Modules
We determined pivotal regulators by transcriptional and post-
transcriptional level regulations among modules significantly 
enriched for genomic variants and/or known ASD-risk genes 
(see Materials and Methods section, Supplementary Table S5). 
Then, regulator-DEG and DEG-interactor subnetworks were 
constructed (Figure 3).

Recent whole exome sequencing (WES) has revealed 
substantial overlap in ASD-risk genes and cancer (38). The 
transcription factor MYC, regulating both CC-M4 and PFC-
M2, is a cell growth regulator which strongly oncogenic, and 
estimated to contribute to most cancers (39). Transcription 
factor SP1, regulating CC-M6, -M7, and PFC-M5, -M8, has been 
reported dysfunctional in the anterior cingulate gyrus (ACG) 
of ASD brain and the potential ASD candidate gene PTEN (in 
PFC-M5) regulated by SP1 was shown to be over-expressed (40, 
41). CREB1, down-regulated at PFC, can regulate CC-M4, -M9, 
and PFC-M8, assumed to be linked to cognition and behavior 
related to butyrate dysregulation in ASD (42). Moreover, 
de novo deletion within CREB1 was observed in a girl with 
developmental delay, autistic traits and Rett-like features (43). 
Pivot TFs E2F1, regulating CC-M17 while down-regulated at 
PFC, was involved in cell cycle regulation and apoptosis as well 
as functionally related to obesity which was consistent with the 
function enrichment results of M17 (44).

LncRNAs are more abundant in the human brain and are 
involved in neurodevelopment and neurodevelopmental 
disorders, including ASD (45). It was observed that most pivotal 
lncRNAs examined in this study have been reported related to 
neurodegenerative disease and cancers. TUG1, regulating M7 
of CC set and M2, M5, and M8 of PFC set, was reported to 
be a tumor suppressor in breast cancer and high correlations 
were found between ASD prevalence and the incidence of in 
situ breast cancer (46, 47). FENDRR, regulating CC M4, M7, 
and PFC M6, is a kind of endothelial gene critical for vascular 
development that could inhibit breast cancer cell proliferation 

TABLE 1 | Co-expression modules significantly enriched for SFARI and/or DVMT 
genes. 

Module DEGs/Module 
size

SFARI p-value (a) DVMT p-value (b)

CC-4* 13/281 40 6.26E-08 35 4.75E-04
CC-6* 9/168 20 1.71E-03 19 2.49E-02
CC-7 1/167 10 6.02E-01 21 5.91E-03
CC-9 8/142 8 6.71E-01 17 2.00E-02
CC-17 2/75 9 3.01E-02 9 7.76E-02
CC-29* 3/32 5 3.67E-02 7 5.73E-03
PFC-2 58/315 37 4.26E-04 19 7.78E-01
PFC-5 11/179 17 9.35E-02 20 1.07E-02
PFC-6 21/152 23 1.63E-04 15 1.01E-01
PFC-8 15/147 19 4.12E-03 15 8.13E-02
PFC-11 56/112 2 9.97E-01 13 4.38E-02
PFC-24 2/24 3 2.19E-01 9 1.65E-05

*Denotes for modules that were significantly enriched for both ASD and DVMT genes, 
p-value (a) and (b) represent enrichment results for SFARI and DVMT genes respectively, 
p-values in bold denote which statistical threshold has been reached (<0.05).

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org
https://gene.sfari.org/autdb/


Convergent Molecular Pathways in ASDLi et al.

5 October 2019 | Volume 10 | Article 706Frontiers in Psychiatry | www.frontiersin.org

(48). Moreover, UCA1, regulating CC M6, M17, and PFC M6, 
has been identified as a pivotal regulator in the tumorigenesis 
of glioma which represent the most common solid tumor of 
childhood (49, 50).

MicroRNAs are post-transcriptional regulators that 
play key roles in brain development, synapse formation 
and fine-tuning of genes underlying synaptic plasticity 
and memory formation (51). We perform GO enrichment 
analysis and found that pivot miRNAs regulated DEGs were 
significantly enriched for GO terms like cellular protein 
modification process, neurotrophin TRK receptor signaling 
pathway, nervous system development, and axon guidance. 
Furthermore, KEGG pathway analysis showed that both sets 
were convergent into pathways like ErbB signaling, long-term 
depression, Estrogen signaling pathway and so on, which 
were closely related to ASD (52, 53). Taken all together, these 
results indicated that pivot regulators might play an important 
role in the disease process directly or indirectly.

Module Crosstalk Between CC and PFC
Modules do not act alone. We further analyzed the module 
interactions between CC and PFC set (Figure S1). To this end, 
CC-M4, -M6, and PFC-M2 were determined as tissue-specific 
modules using the Allen Human Brain Atlas and module 
pairs PFC M2-CC M4, and PFC M2-CC M6 were found to be 

connected with each other significantly with more interactions 
than random gene set pairs (p = 5.00E–05 and 2.50E–04, 
respectively) (see Materials and Methods section). All of these 
three modules were most significantly enriched for “neuroactive 
ligand–receptor interaction” pathway and participated in 
neuro system development, indicating the association of ASD 
pathogenic mechanism between CC and PFC.

DISCUSSION

Although the symptoms of ASD are the most striking among 
the behavioral and functional manifestations of affected 
individuals, however, findings are profoundly heterogeneous 
and the etiology of ASD is still unclear. The corpus callosum 
plays a central role in mediating signal communication 
between the brain hemispheres through the axons extending 
from different cortical layers (54), whereas the prefrontal 
cortex plays an essential role in the organization and control of 
goal-directed thought and behavior (55). Recent advances have 
reported ASD clinical heterogeneous based on typical brain 
functional regions (56, 57). Most genetic abnormalities are 
difficult to verify at the level of variation, however significance 
is repeatedly observed at the gene and pathway levels. (58).

In this study, we compared the transcriptome signatures of 
CC and PFC across ASD-affected individuals versus healthy 

FIGURE 2 | Functional enrichment results. (A) GO biological process and (B) KEGG pathway enrichment results of ASD-related dysfunctional modules which 
enriched for at least one GO term or pathway with p.adjust < 0.05. The node size represents gene ratio and color represents p.adjust value.
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controls. WGCNA was performed to identify co-expression 
patterns of DEGs and their protein–protein interactors. Then, 
based on DVMT and SFARI genes, 12 of 49 (6/24 for CC set, 
6/25 for PFC set) dysfunctional modules significantly enriched 
for genomic variants and/or known ASD susceptibility genes 
were identified as ASD-correlated modules and kept for 
additional analysis. GO-BP and KEGG pathway enrichment 
analysis showed that pathophysiological process of both CC 
and PFC in ASD seem to converge on specific molecular 
dysregulation, mainly for synaptic and neuronal signaling 
pathways, which in line with earlier studies for de novo 
mutations associated with ASD (59–61). In addition, PFC M5, 
which showed significantly enriched for DVMT but not SFARI 
genes, shared most ASD-related GO terms and pathways with 
CC M4 and M6, supporting its potential role in the disorder. 
Moreover, we identified pivot regulators that might perturb 
gene regulation or affect gene function by constructing multi 
factor-mediated regulation subnetworks.

Cross-talk between dysfunctional modules revealed 
that modules can not only affect each other through PPIs 
but be perturbed directly or indirectly by multi-regulators. 

Remarkably, we found that there were significantly more 
interactions between CC-M4, -M6 and PFC-M2. These 
three modules mainly converged on synaptic and neuronal 
developmental functions indicated the close correlation 
between different brain area, which also highlighted the 
importance of integrative strategy to ASD. Collectively, 
our system-level analysis of the ASD brain transcriptome 
demonstrated the existence of common and distinct 
molecular abnormalities in CC and PFC for the first time, 
and implicated different distribution of genomic variants 
burden as underlying mechanisms of neuronal dysfunction  
for the disorder.

There are also limitations to this study. First, our analysis is 
biased by the available data. Gene transcriptional profiling in 
ASD is mainly performed on post-mortem brain samples, but 
the availability of human ASD brain tissues often represents a 
significant challenge. Given this fact, we can only use tissues 
from different individuals as sample sources, which may reduce 
the comparability to some extent. Second, the SFARI and DVMT 
gene list, although comprehensive, is likely to have potential 
curation bias, further confirmations are needed. Third, gene 

FIGURE 3 | Regulatory subnetworks. (A) DEGs and their direct or indirect interactors within ASD-related modules (CC-M4, -M6, -M17, M29, and PFC-M2, -M6, -M8). 
The node size is proportional to degree. (B) The transcriptional and post-transcriptional pivot regulator-DEG subnetworks of ASD-related modules, containing 6 
pivot TFs, 4 pivot lncRNAs, and 23 pivot miRNAs.
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expression studies highlight just one aspect of gene regulation. 
We have considered some additional regulatory levels (TFs, 
miRNAs, and lncRNAs), nevertheless, post-translational 
regulation mechanisms that affect the development of the 
disease are still under investigation.
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