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Major depressive disorder (MDD) is a complex psychiatric disorder characterized by 
changes in both resting state and stimulus-evoked activity. Whether resting state changes 
are carried over to stimulus-evoked activity, however, is unclear. We conducted a combined 
rest (3 min) and task (three-stimulus auditory oddball paradigm) EEG study in n=28 acute 
depressed MDD patients, comparing them with n=25 healthy participants. Our focus 
was on the temporal dynamics of both resting state and stimulus-evoked activity for 
which reason we measured peak frequency (PF), coefficient of variation (CV), Lempel-
Ziv complexity (LZC), and trial-to-trial variability (TTV). Our main findings are: i) atypical 
temporal dynamics in resting state, specifically in the alpha and theta bands as measured 
by peak frequency (PF), coefficient of variation (CV) and power; ii) decreased reactivity to 
external deviant stimuli as measured by decreased changes in stimulus-evoked variance 
and complexity—TTV, LZC, and power and frequency sliding (FS and PS); iii) correlation of 
stimulus related measures (TTV, LZC, PS, and FS) with resting state measures. Together, 
our findings show that resting state dynamics alone are atypical in MDD and, even more 
important, strongly shapes the dynamics of subsequent stimulus-evoked activity. We 
thus conclude that MDD can be characterized by an atypical temporal dynamic of its 
rest–stimulus interaction; that, in turn, makes it difficult for depressed patients to react to 
relevant stimuli such as the deviant tone in our paradigm. 
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INTRODUCTION

Temporo-Spatial Dynamics Shape Rest and Task States
Major depressive disorder (MDD) is a complex psychiatric disorder that includes affective, cognitive, 
vegetative, sensorimotor, social, and perceptual changes (1). Neuronally, changes in stimulus-
evoked activity in response to especially affective and cognitive stimuli have been reported in MDD, 
including event-related potential (ERP) changes during auditory target detection paradigms as 
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well as atypical power in theta (5–8 Hz) and/or alpha (7–13 Hz) 
frequency ranges (2–6). The origin of these neuronal changes in 
stimulus-evoked activity in MDD, however, remains unclear. 

Recent studies have demonstrated changes in the resting state 
in MDD (7). FMRI resting state studies show atypical functional 
connectivity, especially in anterior regions of the prefrontal 
cortex, as well as in other networks such as the default-mode 
network (8), while EEG resting state studies demonstrate atypical 
activity, especially in theta and alpha frequencies in MDD (7, 9, 
10). Given the overlap of both rest and task findings in theta and 
alpha frequencies, one would suggest that resting state changes 
may also shape stimulus-evoked activity in depression. This link 
is yet to be shown. 

The brain’s resting state, or spontaneous activity, can be 
characterized by an intrinsic temporo-spatial dynamic (11–13). 
Such dynamics concern, among other features, various frequency 
bands, such as theta and alpha (14). Importantly, the strength of 
these frequencies can be characterized by peak frequencies (15–
17) which, for instance, has been shown to be atypically low in 
the resting state of first-episode psychosis patients (17). To our 
knowledge, no studies have examined peak frequency in MDD 
specifically; this temporo-spatial dynamic measure is yet to be 
probed in MDD. Other resting state studies, however, have found 
greater functional connectivity in the theta and alpha bands 
in MDD when compared with healthy controls (18) as well as 
a decrease in long-range temporal correlations (19). A recent 
review found that studies of alpha asymmetry in MDD patients 
had inconsistent findings (20), despite its early promise (21).

The brain’s temporo-spatial dynamic extends beyond its 
spontaneous activity to its stimulus-evoked activity. Two studies 
have demonstrated the interaction of prestimulus activity levels 
with poststimulus activity (22–24) by dynamic measures which 
account for complexity and variance. 

One recent EEG study in healthy participants showed the 
relationship of prestimulus complexity, as measured with 
Lempel-Ziv Complexity (LZC) (25), with poststimulus trial-
to-trial variability (TTV) (26–29). LZC, a measure from 
information theory (30), quantifies patterns, and their repetition, 
within a sequence, with higher values of complexity indicating 
less structure and predictability in the sequence (25). This study 
(29) showed that prestimulus complexity related to poststimulus 
variability reduction measured through TTV, and that the 
poststimulus decrease in LZC and variability may capture the 
increase in regularity of neural activity after stimulus onset, 
which has been shown in computational models (31). Whether 
LZC and TTV, or their relation, are atypical in MDD, however, is 
yet to be studied. 

A measure that has been applied recently is the change in peak 
frequency (PF) in specific bands, the alpha and theta bands in 
particular (17, 32, 33). The PF is defined as the frequency within 
a specified band—alpha, theta, and beta—which has the maximal 
power (for example, the peak frequency in the alpha band could 
change from 9 to 10 Hz when doing a task (16)) (32–34).

The PF and its change can be measured during the resting 
state or in response to a stimulus—PF can increase in alpha 
when performing a task (16), termed frequency sliding (FS) (32). 
Changes in PF is based on the neuronal principle that the firing 

rate of a neuron is proportional to the strength of its input (35); it 
has been shown (32) in both computational models and human 
EEG rest and task data that if input to a neural network increases, 
the “speed” of oscillations of a specific frequency band, and thus 
its PF, will increase accordingly. As a result, FS has shown to be 
an index, which can be measured using scalp EEG, of input to a 
neural network (32).

General and Specific Aims
The general aim of our combined rest and task EEG study in 
MDD consisted in investigating how changes in the resting state’s 
temporo-spatial dynamics shape stimulus-evoked activity. Our 
study can thus be conceived of as an example of rest–stimulus 
interaction (23, 24, 36) in MDD. For that purpose, we investigated 
resting state and task activity (auditory oddball) in MDD. 

We first applied the above-mentioned dynamic measures—
PF and its variance, and power—to the resting state in MDD 
and a control group. Based on previous findings (16, 17), we 
hypothesized lower PF in the theta (4–8 Hz) and alpha (7–13 Hz) 
bands in the MDD group in comparison to the control group.

Next, we applied the dynamic measures of LZC and TTV to 
stimulus-evoked activity in MDD and the control group. Given 
the previous findings of atypical ERP, we hypothesized decreases 
in both poststimulus TTV change and LZC poststimulus change 
in MDD. The employment of an auditory oddball paradigm 
also allowed us to distinguish between attention-demanding 
task-relevant deviant tones and task-irrelevant standard 
tones. Consistent with previous findings in MDD (2, 4, 6), we 
hypothesized atypical LZC and TTV results in the deviant tones 
in particular.

After the LZC and TTV analysis, we measured the dynamic 
FS—and corresponding power sliding (PS)—to the same deviant 
and standard tones in the theta and alpha frequency bands. We 
hypothesized that these measures in the MDD group would 
differ significantly from the healthy controls in the deviant tones, 
but not the standards.  

Finally, we sought to relate rest and task measures. We 
hypothesized that the dynamical measures of the resting state 
(PF, power) correlate with poststimulus TTV and LZC change in 
both groups. The temporo-spatial dynamics of the resting state, 
including its changes, may thus be conveyed to the subsequent 
stimulus-evoked activity and its own dynamics.

METHODS

Participants
Twenty-eight participants with Major Depressive Disorder 
(MDD) (age: mean = 54±18 years, range = 16–73 years; 19 
female) and twenty-five healthy controls (age: mean = 46±16 
years, range = 21–70 years; 14 female) completed this study. 
MDD participants were recruited from an outpatient population 
with major depressive disorder (MDD) that were participating in 
a larger adjacent clinical trial. Clinical assessments and diagnosis 
of depression were conducted with a study psychiatrist. MDD 
participants were evaluated with the Montgomery-Åsberg 
Depression Rating Scale (MADRS) (37) and found to have scores 
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between 14 and 37 (mean = 28±6) (inclusive) at the time of the 
electroencephalography (EEG) session. 

Exclusion criteria for the MDD participants were the 
following: DSM-IV disorder other than MDD; depression 
secondary to severe medical illness; positive urine drug screen 
for illicit substances or non-prescribed medicine; substance or 
alcohol abuse or dependence 6 months prior to enrollment; 
diagnosis of a neurological disorder; pregnancy or lactation; 
an unstable clinical finding that might be negatively affected 
by the treatment of the larger clinical trial; liver function tests 
three times the upper normal limit; inadequately corrected 
hypothyroidism or hyperthyroidism; clinically significant 
deviation from the reference range in clinical laboratory test 
results; imminent suicidal or homicidal risk; and participation 
in another clinical treatment study with a drug that had not yet 
received approval. 

Age- and sex-matched healthy adults were recruited from 
the local community as a control group. Participants were 
assessed using the SCID non-patient version (SCID-NP; 38) 
and the Family Interview for Genetic Studies (FIGS; 39), 
following an initial telephone session and a subsequent face-
to-face interview.

The Beck Depression Inventory (BDI) score was used to 
verify that the control participants did not have depression. We 
administered the BDI to the patient group as part of the larger 
adjacent clinical trial; BDI scores before and after treatment 
in the clinical study were compared. Only the BDI scores 
recorded before the treatment initiation were used here. MDD 
Participants had BDI scores greater than 13 (mean = 28±10), 
while all healthy control participants had BDI scores below 13 
(mean = 1±2).

The experimental protocols were approved by the research 
ethics committee of the University of Ottawa Institute of Mental 
Health Research, and the study was carried out with their 
permission. Written informed consent was obtained from each 
participant prior to study participation.

EEG Session
EEG data were recorded using a Brain Vision EasyCap with 32 
Ag/AgCl electrodes at a sampling rate of 500 Hz. Electrode AFz 
served as the ground and an additional nose electrode served as 
the reference during recording.

Additional channels were added for independent component 
analysis (ICA) decomposition: vertical ocular (above and below 
the left eye), and horizontal ocular (the outer canthi of the right 
and left eyes). The impedance of all channels was maintained at 
less than 5 kΩ during recording. 

Prior to beginning the task, participants completed three-
minute resting state EEG recordings with their eyes closed.

The task was an auditory oddball paradigm (40) and was 
presented to participants using the Presentation software 
(Neurobehavioral Systems, Albany, CA, USA). Participants were 
presented with 800 tones in four blocks (200 tones per block). 
Eighty percent of the tones, standard tones, were 1,000 Hz and 
70 dB pure tones 336 ms in length. Ten percent were deviant 
tones at 700 Hz (70 dB pure tones lasting for 336 ms, identical 

to standards). Participants were instructed to respond to the 
deviant tones by a button press. The remaining 10% were novel 
non-target—participants did not respond by a button press—
environmental sounds (ie., dog bark, horn, etc)  at 65–75 dB for 
169–399 ms. Between these stimuli, participants were presented 
with a fixation cross for 1 s. Reaction times to target responses 
were recorded.

The standard and deviant stimuli were the focus of this study 
as they were alike; both were pure tones with the same length 
and power. The novel stimulus had varying lengths and was not 
a pure tone, so not comparable to the other two stimuli. The 
novel stimuli, however, were analyzed with TTV and LZC for 
differences between MDD and controls. This was done only to 
determine if any differences found in the deviant stimuli were 
due to the infrequent presentation of the stimulus.

EEG Preprocessing
All EEG data preprocessing was completed using EEGLAB 
(v14) (41), which required MATLAB (The MathWorks) v2018b, 
including the use of the Optimization, Statistics and Signal 
Processing Toolboxes. All statistical analyses were completed in 
MATLAB v2018b.

The raw continuous data was low- and high-pass FIR filtered 
from 1Hz to 40Hz, and then visually inspected. If channels were 
flat longer than 5 s, had less than 0.80 correlation with neighboring 
channels, or had line noise greater than four standard deviations 
difference compared to other channels, they were spherically 
interpolated.

The task data was then epoched—with no baseline 
correction—to stimulus onset. All files were re-referenced to the 
surface Laplacian reference, according to the methods of previous 
studies (42, 43), to spatially filter the data; activity recorded at the 
specified electrode had a higher correspondence with cortical 
activity just below it than had an alternative reference montage 
been used. 

All stationary artifacts, specifically eye movements, were 
reduced using Independent Component Analysis (ICA) and the 
Multiple Artifact Rejection Algorithm (44, 45).

Resting State Measures: Peak Frequency 
(PF), Coefficient of Variation (CV), Power
We began our analysis by investigating the resting state data. All 
preprocessed resting state files were first cut to the same length 
(85,000 data points). According to previous studies (16, 17, 29, 
32, 34, 46, 47), our a priori interests were focused on activity in 
the alpha (7–13Hz) and theta (4–8Hz) bands. For this reason, 
and due to the findings of dmPFC in rest-task interactions (36) 
and its implication in MDD (48–50), all analyses were done with 
electrodes Fz for theta (51, 52) and broadband activity, and Pz for 
alpha related activity (53, 54). All data analysis was completed in 
MATLAB (v2018b).

The peak frequency (PF) was calculated according to the 
methods of MX Cohen (32). Specifically, the preprocessed 
broadband data was first FIR bandpass filtered—with 15% 
transition zones added to each edge of the filtered range 
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according to the published methods (32). The data were then 
Hilbert transformed to get the analytic signal, and the phase-
angle timeseries was extracted using MATLAB’s angle function. 
To compute the frequency of the peak within the filtered band, 
the first derivative of the phase-angle timeseries was taken. 
Finally, a median filter (filter order 10) was applied to the 
timeseries according to the published methods of this approach 
(32). The mean over the full three-minute resting state of the 
peak frequency was calculated at electrode Fz for the theta band 
(4–8 Hz) and Pz for the alpha band (8–13 Hz), as was the power 
in the same electrodes for the same bands.

The coefficient of variation (CV) has previously been 
measured in neuroscientific data on single neuron spike trains, 
as well as data from larger arrays (55, 56). Recently, however, it 
has also been applied to EEG data (28, 57). The CV, also termed 
the Fano Factor (58), is a measure of relative variability as 

 
CV = σ

µ  (1)

with σ being the standard deviation of the peak frequency in the 
resting state and µ being the mean. We measured the CV as it 
quantifies the stability of the peak and normalizes the standard 
deviation as it divides by the mean.

Trial-To-Trial Variability
Trial-to-Trial Variability (TTV) was calculated according to 
the methods of previous studies (23, 27–29). TTV is defined as 
the variability changes over trials with respect to variability at 
stimulus onset:

 
TTV t t xot ot

ot
( ) ( ) ( )

( )
= −σ σ

σ
0

0
100  (2)

where σot (t) is the SD of the EEG signal over trials at timepoint t 
and σot (0) is the SD over trials at stimulus onset. Therefore, each 
poststimulus timepoint is relative to stimulus onset.

In the task, eighty stimuli were deviants with many more 
standards. To compare the two stimuli, in this and subsequent 
analyses, eighty randomly chosen trials of standard stimuli 
were extracted. Therefore, all measures contained the same 
number of deviant and standard trials, with the standards 
randomly chosen.

To compare the TTV between stimuli and groups, the area 
under the curve (AUC) between stimulus onset (0 ms) and 500 
ms was computed and compared statistically.

Lempel-Ziv Complexity Analysis
As computed in a previous study (29), we applied a measure of 
complexity from information theory (30) to the non-baseline 
corrected data. Lempel-Ziv Complexity (LZC) was calculated 
from previous studies (25, 29, 59) in MATLAB v2018b using a 

custom script. In both the pre- and post-stimulus periods for 
which LZC was calculated, 300 ms of the signal was measured.

The EEG signal was first converted into a binary sequence 
with each data point in a timeseries x(i) being converted to a 
symbol in the sequence s(i):

 

s i
if x i T
if x i T

d

d

( )  
      ( )
      ( )  

=
<
≥







0
1  (3)

where Td is the threshold (25), the median of the timeseries here. 
The median was chosen according to previous studies (25, 29) as 
it is unaffected by extreme values in a sequence. This sequence 
s(i) is then scanned from left to right. The complexity measure 
c(n) is increased by one each time a new sequence of consecutive 
values occurs (25). Finally, the complexity C(n) is normalized to 
control for signal length:

 

C n c n
n

n

( ) ( )

log ( )

=

2

 (4)

where n is the length of the sequence. LZC has no units.
The difference between the pre- and post-stimulus was 

calculated (poststim LZC minus prestim LZC) and this was 
compared between MDD and controls (CON).

Peak Frequency Sliding (FS) and Power 
Sliding (PS) During Task
Calculated in the same way as the PF in the resting state (see above) 
according to the methods of MX Cohen (32), the peak frequency 
sliding (FS) in theta (4–8 Hz) and alpha (7–13 Hz) was calculated. 
For each of the deviant and standard trials, the FS was computed, and 
the mean over all the trials was then calculated. To account for any 
changes in PF at stimulus onset between groups (see Supplementary 
Figure 1), the data were converted to percent change; the PF in the 
task is the percent change relative to stimulus onset.

Next, to calculate the power sliding (PS), the same analysis 
was done, with one difference: rather than extract the phase-angle 
timeseries, the modulus (absolute value) of the Hilbert transform 
was extracted. This was then squared—at each timepoint—to give 
a timeseries of the power in the specified band. As with the FS, the 
PS was converted to percent change relative to stimulus onset to 
correct for any differences in power between MDD and controls.

Finally, the AUC in 100 ms intervals was calculated for both 
measures and compared statistically. The time intervals in which 
the AUC was measured were as follows: 376–476 ms for the alpha 
FS; 150–250 ms for the alpha PS; 400–500 ms for the theta FS; 
166–266 ms for the theta PS.

Task-Task Correlation: Trial-To-Trial 
Variability (TTV) and Frequency/Power 
Sliding (FS/PS)
To compare the results from the TTV analysis and the FS and 
PS analysis, two-tailed Spearman correlations were performed 
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for both stimuli on all participants (MDD and CON) together. 
The significance level for all correlations was 0.05. To correct 
for multiple statistical tests, the Benjamini-Hochberg False 
Discovery Rate (60) was applied to all p-values. The p-values 
stated in the results and figures are therefore corrected for 
multiple comparisons.

Rest-Task Correlation: Resting State PF/
CV and Task (TTV, LZC, FS, and PS)
Finally, to link the resting state findings (PF, CV, and Power) 
to those from the task (TTV, LZC, FS, and PS), two-tailed 
Spearman correlations were performed on all participants 
(MDD and CON) together. Again, the significance level for all 
correlations was 0.05. As above, the Benjamini-Hochberg False 
Discovery Rate (60) was applied to all p-values, so all p-values 
reported in the results and figures have been corrected for 
multiple comparisons.

Statistical Analyses
All statistical analyses were done in MATLAB v2018b, using the 
Statistics toolbox, at a significance level of 0.05.

It has been shown that large interindividual differences 
between participants exists and, in fact, is a particular focus 
of recent research (29, 44, 61–65). Typical parametric tests, 
however, often fail to account for a factor that has an effect in 
many individuals since they focus on the average effect (66). With 
that in mind, and at the direction of a study on that exact idea 
(66), to compare the effects of stimulus (deviant, standard) and 
group (MDD, CON), Kolmogorov-Smirnov two-sample tests 
were used. The Kolmogorov-Smirnov test is a nonparametric 
statistical test which compares the distributions of data rather 

than any parameter (mean, median). In MATLAB, the function 
kstest2 was used for this test.

For the correlations, the Spearman’s two-tailed correlation 
was performed for all tests as most of the variable distributions 
were non-normal. The function corr, with type = “Spearman,” 
was used in MATLAB for this correlation.

To correct for multiple statistical tests, the Benjamini-
Hochberg False Discovery Rate (60) was applied to all p-values.

RESULTS

Modulation of Peak Frequency and 
Coefficient of Variation During the Resting 
State in Depression
We began our analysis with the resting state data. Over the full 
3-min resting state, the mean peak frequency (PF), coefficient 
of variation (CV), and mean power in the theta (4–8Hz) and 
alpha (7–13Hz) bands was measured and statistically tested with 
Kolmogorov-Smirnov two-sample nonparametric tests.

In the theta band, we first found a difference between the 
MDD and control participants in the PF (D28,25 = 0.496, p = 
0.002). We then tested to see if there was an effect of group 
on the CV and power and found that this was also true in 
the theta band (D28,25 = 0.541, p = 9.021×10−4 for CV; D28,25 = 
0.670, p = 1.042×10−5 for power) (Figure 1A). In the MDD 
participants, the PF was higher, and CV and power lower than 
the healthy controls.

We then repeated the same statistical analysis for the alpha 
band. Again, we found a difference between MDD and controls 
in the PF (D28,25 = 0.546, p = 3.947×10−4), CV (D28,25 = 0.554, p = 
3.947×10−4), and power (D28,25 = 0.479, p = 0.003) (Figure 1B). 

FIGURE 1 | Resting state activity showed differences in theta and alpha between the MDD group and healthy controls. (A) The peak frequency (PF), coefficient of 
variation (CV), and power measures showed higher PF, lower CV, and lower power in the MDD participants than the controls. (B) In the alpha band, the MDD group 
had lower PF, higher CV, and lower power. All p-values are FDR corrected for multiple comparisons. **: < 0.01, ***: <0.001. 
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In contrast to the theta band, the PF and power were lower and 
CV higher in the MDD when compared to the healthy controls.

Taken together, these data suggest opposite, or reciprocal, 
modulation of PF and CV in theta and alpha in MDD. High PF 
and low CV were found in theta while the opposite pattern — 
low PF and high CV — was observed in alpha. Interestingly, both 
alpha and theta show reduced power. Together, these findings 
suggest more unstable resting state activity pattern in theta and 
alpha in MDD.  

Trial-To-Trial Variability Reduced for 
Deviant Stimuli in Depression
After completing the analysis of the resting state data, we then 
investigated the differences between the MDD and control group 
during the task. As TTV has been stated as measuring the effect 
of the stimulus to decrease/increase the ongoing spontaneous 
activity of the brain, we wanted to investigate whether there was 
an effect of group (MDD, control) or stimulus (deviant, standard) 
on TTV. To do so, the AUC of the TTV curve between stimulus 
onset and 500 ms at electrode Fz was calculated (Figure 2A).

A two-sample Kolmogorov-Smirnov test found a difference in 
AUC between the MDD and control participants when presented 
with the deviant stimuli (D26,25 = 0.489, p = 0.005), with smaller 
AUC in the MDD participants. Therefore, there was less of a 
change in variability in the MDD participants when presented 
with the deviant stimuli than in the control participants. As the 
TTV was measured relative to stimulus onset, it can be inferred 

that the deviant stimulus made less of an impact on the ongoing 
spontaneous activity in the MDD group than in the control 
group. In contrast, no difference was found between groups in 
the standard stimuli (D26,25 = 0.326, p = 0.105) (Figure 2B).

Since the deviant stimuli were only presented 10% of the 
time (see Methods), this difference may be due to the rarity of 
the stimulus; the control participants had more of a change in 
variability as they were presented with a rarer stimulus, not 
because they were presented with a rarer stimulus also relevant 
to the task. To determine if this was the case, we did the same 
analysis on the novel stimuli (baby cry, so environmental non-
target auditory stimulus) which were also presented for 10% of 
the trials.

We found no difference between MDD and controls for these 
novel stimuli (D26,25 = 0.169, p = 0.823). This result supports the 
idea that the difference found in deviant stimuli is not simply 
because they are more infrequent than the standards, as were that 
true, a similar difference would also exist in the novel stimuli. 
This was not the case.

In sum, TTV change after stimulus onset was reduced in the 
task-relevant deviant tone in MDD, suggesting decreased impact 
of this tone on stimulus-evoked activity. 

Decreased Lempel-Ziv Complexity 
Change for Deviant Stimuli in Depression
The next step in the task-related analysis was to measure Lempel-
Ziv Complexity (LZC). This was done to determine if there 

FIGURE 2 | Trial-to-trial variability (TTV) showed significantly less change in variability in the MDD group for deviant stimuli. (A) TTV curves (80 trials) in both groups 
for deviant and standard stimuli. (B) Area under the curve (AUC) was measured between 0-500ms for both groups and stimuli. The AUC in the MDD group was 
significantly lower in the deviant stimuli compared to the healthy controls. All p-values are FDR corrected for multiple comparisons. **: < 0.01.
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was an effect of group (MDD, control) or stimulus (deviant, 
standard) on the structure or pattern of the timeseries, which 
LZC measures. LZC (no units) was measured in 300 ms windows 
before and after stimulus onset. The difference was calculated by 
subtracting the prestim from the poststim as we wanted to see if 
the arrival of the stimulus coincided with a change in LZC and 
by what amount. It was tested, for each stimulus, for statistical 
difference between the two groups of participants with the two-
sample Kolmogorov-Smirnov test.

After calculating the difference—poststim minus prestim—
there was found to be a difference between groups in the deviant 
stimuli (D26,25 = 0.402, p = 0.049), but not in the standard stimuli 
(D26,25 = 0.308, p = 0.133) (Figure 3). As we did in the TTV AUC 
above, we calculated the LZC difference in the novel stimuli to 
see if the difference found in the deviant stimuli was only because 
they are rarer than the standard stimuli. We found no difference 
between MDD and controls for the novel stimuli (D26,25 = 0.183, 
p = 0.742). If there had been a difference between groups here, 
the difference found in the deviant stimuli would be due to the 
infrequent presentation of the stimulus, not due to the stimulus 
itself; we would conclude that the MDD group responded 
differently to rare stimuli, not task-related rare stimuli. As there 
was found to be no difference between the groups, we can infer 
that the finding in the deviant stimuli is not due to its frequency.

In the deviant stimuli then, the change in LZC was larger in the 
control participants than in the MDD group; MDD participants 
had less of a LZC decrease after hearing the deviant stimulus 
than healthy controls. One final statistical test determined that 
the prestim LZC for both stimuli did not differ between groups 
(D26,25 = 0.182, p = 0.752 for deviants and D26,25 = 0.131, p = 0.752 
for standards). This finding is important to consider as it is the 
degree of change that is relevant; this indicates that the MDD 
subjects show decreased propensity of change when presented 
the deviant stimulus.

In sum, MDD patients showed less changes in LZC from the 
prestim period to the poststim period in deviant stimuli. This 
again suggests decreased impact of the external stimulus on 
stimulus-evoked activity which, as the LZC findings suggest, is 
related to decreased propensity of prestimulus activity for change 
by the external stimulus. 

Frequency and Power Sliding in the Task 
Showed Differences in Depression
Our final task-related analysis was to measure the effect of group 
(MDD, control) and stimulus (deviant, standard) on change in 
peak frequency (PF) and power (PS) after stimulus onset. To do 
so in the theta and alpha bands after stimulus onset, the AUC in 
a 100 ms interval was calculated.

In the alpha band, we found a difference between groups in FS 
when participants were presented with deviant stimuli (D26,25 = 
0.430, p = 0.032) (Figure 4C). The MDD group had larger AUC 
than the control group. This difference was not found when 
the participants were presented with standard stimuli (D26,25 = 
0.149, p = 0.917) (Figure 4D). For the PS in the same band, 
the difference between the MDD group and the controls was 
significant for both stimuli (D26,25 = 0.460, p = 0.006 for deviants 
and D26,25 = 0.539, p = 0.001 for standards), with larger AUC in 
the MDD participants than the controls.

Conversely, there was no difference in FS for both stimuli in 
the theta band (D26,25 = 0.332, p = 0.188 for deviants and D26,25 = 
0.192, p = 0.685 for standards) (Figure 4A, B). As in the alpha 
band, however, there was a difference in PS in both the deviant 
stimuli (D26,25 = 0.922, p = 2.453×10−10) and the standards (D26,25  = 
0.462, p = 0.006). The power for the MDD group was higher for 
the deviant stimuli and lower for the standard stimuli.

These same time intervals for AUC were analyzed again in 
the same way, however the absolute values of the FS—not the 

FIGURE 3 | Lempel-Ziv Complexity (LZC) changes after stimulus onset were significantly lower in the MDD group for deviant stimuli. LZC was measured in 300ms 
time windows before and after stimulus onset. When the difference was calculated (poststim minus prestim), for deviant stimuli the MDD group showed less of a 
decrease when compared to healthy controls. All p-values are FDR corrected for multiple comparisons. *: < 0.05.
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percent change—were measured to see if there was an absolute 
difference in these intervals, not just a relative difference. No 
difference in FS was found in the alpha band (D26,25 = 0.177, p = 
0.806 for deviants and D26,25 = 0.220, p = 0.806 for standards), 
however there was a difference in PS (D26,25 = 1.0, p = 1.887×10−12 
for deviants and D26,25 = 1.0, p = 1.887×10−12 for standards) 
(Supplementary Figures 1C, D). The same results were found 
in the FS (D26,25 = 0.145, p = 0.934 for deviants and D26,25 = 0.188, 
p = 0.934 for standards) and PS (D26,25 = 1.0, p = 1.887×10−12 for 
deviants and D26,25 = 1.0, p = 1.887×10−12 for standards) in the 
theta band (Supplementary Figures 1A, B).

In both bands and both stimuli, there was a difference in PS 
between the MDD and control group, while FS showed a difference 
between groups in percent change only in the deviant stimuli of 
the alpha band. Together, the increased changes, especially in 
PS, suggest larger instability of poststimulus activity over time in 
MDD than in healthy subjects. Our data on the relative difference 
clearly point out a reduced propensity for change by the external 
task-related stimulus on the ongoing spontaneous neural activity.

Task–Task Correlation Between Trial-To-
Trial Variability and Frequency/Power 
Sliding
After the results found above, we sought to determine if there 
was a relationship between the TTV and the FS/PS results. This 
was tested with two-tailed Spearman’s correlations.

We first found significant correlations in the deviant stimuli 
between TTV AUC and both theta FS AUC (ρ = 0.334, p = 0.023) 
and PS AUC (ρ = 0.377, p = 0.023) (Figure 5A). This indicates 
that as the TTV variability increased after stimulus onset (larger 
AUC), two things happened: 1) theta peak frequency decreased; 
2) theta power increased.

Next, we did the same analysis in the standard stimuli. We 
found a significant correlation between TTV AUC and PS 
AUC in the alpha (ρ = -.324, p = 0.023) and theta (ρ = 0.319, 
p = 0.023) band (Figure 5B). This indicates two points: 1) as 

the TTV variability increased in the alpha band, the power 
decreased; 2) as the TTV variability increased in the theta band, 
the power increased.

Finally, to link the neural activity to the behavioral data, we 
correlated the TTV AUC with the mean reaction times. We 
found a significant negative correlation in the deviant stimuli 
(ρ  = −0.351, p = 0.023) (Figure 5C), but not in the standard 
stimuli. Therefore, participants with higher variability increase 
in the deviant stimuli had faster reaction times.

In sum, we had three findings: 1) participants had positive 
correlations between variability changes and theta power in both 
stimuli, with an increase in variability corresponding with an 
increase in theta power; 2) participants had a positive correlation 
between variability changes and PF in theta for the deviants, 
with an increase in variability corresponding with an increase in 
PF; 3) participants had a negative correlation between variability 
changes and PS in alpha for the standards, with an increase in 
variability corresponding with a decrease in PS. The TTV AUC 
also showed behavioral relevance with greater increases in 
variability showing faster reaction times.

Rest–Task Correlations Between Resting 
State and Task-Related Measures
The last group of analyses we did was to test whether there was 
a relationship between the resting state findings and the task-
related findings. To do this, two-tailed Spearman’s correlations, 
with the resting state measures as the independent variables, 
were done.

We first found a significant negative correlation between 
the resting state PF in the theta band and the prestimulus LZC 
for the standard stimuli (ρ = −0.345, p = 0.018) (Figure 6A); 
participants with higher PF had lower prestimulus complexity 
when presented with standard stimuli.

Next, we correlated the CV with the task-related measures. In 
the theta band we found a significant positive correlation between 
the CV and the TTV AUC in the deviant stimuli (ρ = 0.360, p = 

FIGURE 4 | Frequency Sliding (FS) and Power Sliding (PS) found greater changes to deviant stimuli in the MDD group for theta and alpha frequency bands. (A) In 
the deviant stimuli, Theta PS was higher in the MDD group and lower (B) for standard stimuli. (C) In the alpha band, both FS and PS were significantly higher for the 
deviant stimuli in the MDD group. (D) Only the PS was higher in the MDD group for standard stimuli in the alpha band. Area under the curve for 100ms time intervals 
were measured. Time intervals are shown with grey shading. All p-values are FDR corrected for multiple comparisons. *: < 0.05, **: < 0.01, ***: <0.001.
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0.016). A significant positive correlation between the CV and the 
PS for deviants was also found in the theta band (ρ = 0.420, p = 
0.009) (Figure 6B). Therefore, the greater the dispersion around 
the mean in the theta band, as measured by the CV, the greater 
the a) variability increase and b) theta power increase for the 
deviant stimuli.

To finish, we correlated the resting state theta power with 
the task-related measures. We found significant negative 
correlations with both the pre- and poststimulus LZC in both 
stimuli: prestimulus LZC was ρ = −0.411, p = 0.009 for deviants 
and ρ = −0.311, p = 0.029 for standards; poststimulus LZC was 
ρ = −0.397, p = 0.009 for deviants and ρ = −0.308, p = 0.029 
for standards (Figure 6C). Therefore, participants with higher 
resting state theta power had lower complexity both before and 
after the stimulus was presented in both stimuli.

In sum, only the measures in the resting state theta band 
correlated with the task measures; significant correlations were 
found between a) power and both pre- and poststimulus LZC 

in both stimuli; b) CV and both TTV AUC and PS in deviant 
stimuli only; c) PF and prestimulus LZC in standard stimuli only. 
This suggests that the increased instability of the resting state in 
MDD is carried over to the pre- and poststimulus activity, where 
it is manifest in decreased responsiveness to external stimuli as 
measured by decreased changes in LZC and TTV.

DISCUSSION

The main findings of our combined rest-task EEG study in 
MDD are as follows: i) opposite changes in peak frequency (PF) 
and coefficient of variation (CV) in theta and alpha ranges in 
MDD; ii) decreased neural response to deviant stimuli in MDD 
as measured by the change in LZC and TTV, and an increased 
change in FS and PS in the alpha band; iii) significantly different 
PS change in both stimuli and bands with theta power in standard 
stimuli lower in MDD and the other stimulus and band showing a 

FIGURE 5 | Spearman correlations found significant relationships between area under the curve (AUC) in TTV and FS, PS and reaction times. (A) For deviant stimuli, 
AUC in TTV had significant correlations across all participants with FS and PS in the theta band. (B) For standard stimuli, AUC in TTV had significant correlations 
with PS in theta and alpha. (C) AUC in TTV for deviant stimuli correlated significantly with the mean reaction time. All p-values are FDR corrected for multiple 
comparisons. *: < 0.05.
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higher change in MDD; iv) significant correlation of the dynamic 
resting state measures with stimulus-evoked dynamics.

Together, our findings show how differences in the resting 
state’s temporo-spatial dynamics, as seen here in participants 
with MDD, are carried over and thus shaping subsequent 
stimulus-evoked activity as has been previously shown in healthy 
participants (23, 24). MDD can thus be characterized by atypical 
temporal dynamics of rest–stimulus interaction—specifically 
in the theta and alpha frequency bands—during attention-
demanding stimuli such as the deviant tone in our auditory 
oddball paradigm. 

Resting State—Reciprocal Modulation of 
Theta-Alpha Dynamic
EEG resting state studies have demonstrated differences between 
participants with MDD and healthy controls (5, 7, 18, 67–69), 
among them decreased selectivity of functional connectivity 
during the resting state in MDD, and some with a particular 
emphasis on the theta and alpha frequency bands (19–20, 21, 70).

Our findings in the theta band is consistent with previous 
studies and symptoms of MDD. Depression has been related 
to neuronal atrophy in the hippocampus (71) and almost the 

complete absence of long-range temporal correlations in the theta 
band (19). Theta oscillations have been closely related to activity 
of the hippocampus (72), and a common symptom of depression 
(1) is memory impairment (73), which has been localized to the 
hippocampus (74, 75). These studies link theta, the hippocampus 
and symptoms of depression with our results which may be due 
to issues in the hippocampus or in the wider limbic system (67).

To our knowledge, no studies have examined peak frequency 
changes in MDD specifically, however a recent study found 
participants with first episode psychosis to have lower alpha peak 
frequency during the resting state (17). Other alpha findings 
include a study that found decreased alpha activity in participants 
with MDD (76). Our study replicated these findings and extend 
them significantly. 

Applying the measurement of PF, in conjunction with a 
variance measure—coefficient of variation (CV)—to resting state 
data, we could show opposing patterns of these two measures 
in theta and alpha. The CV is a measurement of the dispersion 
around the mean, with an increase in the CV corresponding to 
an increase in the dispersion of the data in the variable being 
measured. Also, since it divides the standard deviation of the 
data by the mean (Equation 1), it normalizes for individual 
mean values, thus negating any differences. As this measure was 

FIGURE 6 | Spearman correlations found significant relationships between resting state measures in the theta band and LZC in both stimuli and PS and TTV AUC 
in deviant stimuli. (A) Resting state theta PF had a negative correlation with prestim LZC in standard stimuli. (B) The CV in the theta band had significant correlations 
with PS and TTV AUC for deviant stimuli. (C) Resting state theta power had significant negative correlations with both pre- and poststim LZC in both bands. All 
p-values are FDR corrected for multiple comparisons. *: < 0.05.
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applied to the PF during the resting state, a lower CV indicates 
more stability and uniformity of the PF during the resting state. 

We did not specifically examine the inter-dependence of theta 
and alpha dynamics to their respective psychological functions 
such as memory recall (theta) (52, 77) and attention/gating 
(alpha) (78–81), though a reciprocal link may exist. The shift 
towards slower PF and higher CV in theta may indicate that the 
memory recall (52, 77) is dominant over attention and gating 
(78–81) which may be diminished by higher PF and lower CV in 
alpha. This notion is speculative, though consistent with clinical 
symptoms long studied in MDD (1). 

Stimulus-Evoked Activity—Intrinsic and 
Extrinsic Components
Though EEG studies have shown similar task-related changes 
in participants with MDD—decreased ERP amplitude in 
participants with MDD when presented with a novel task-related 
stimulus (2, 4, 6)—and one similar resting state finding (76), our 
results extend these observations by showing altered dynamics in 
pre- (resting state activity) and poststimulus activity and apply 
methods new to psychiatric data.

We show first that the TTV has significantly lower change 
after the deviant stimulus is presented in participants with MDD. 
This finding implies a decreased response to the deviant stimulus 
of the prestimulus activity at stimulus onset as TTV change 
has been thought to show how a stimulus impacts the ongoing 
variability of activity (23, 24, 26, 29, 82), and has shown to be 
different than controls in participants with autism (83). This is 
further supported by our second finding: decreased change in 
LZC after stimulus onset in MDD participants when presented 
with deviant stimuli, though there was no difference in the 
prestimulus period between groups. We therefore suggest that 
the prestimulus activity in MDD participants is less responsive to 
task-related stimuli when compared to healthy controls. 

The specific role of the prestimulus’ reactivity to this 
task-relevant stimulus is further supported by our PS and 
FS findings during stimulus-evoked activity. Both FS and PS 
show significantly larger relative changes [no difference in the 
absolute values (Supplemental Figure 1)], especially in the 
alpha band, in the patient group. This suggests the dynamic 
instability of poststimulus activity in MDD as the basis for 
these changes. The differences between the groups can be 
observed mainly in deviant tones, but differences in power 
were evident in standard tones.

We now assume that such decreased responsiveness to task-
relevant external stimuli, such as the deviant tone, is related to 
increased internal instability with higher variance across time 
in the poststimulus period. Our results on FS and PS support 
this; though we could not analyze single-trials, we could 
observe increased variance in both frequency and power in 
a time-resolved manner after stimulus onset. The decreased 
responsiveness to task-relevant external stimuli—seen in the 
decreased TTV and LZC changes—may thus be related to 
instability in the spontaneous activity during the stimulus 
period. This can be seen in the increased FS and PS; TTV 
changes are theorized to have the purpose of changing ongoing 

spontaneous activity as a way to increase the signal-to-noise 
ratio in favor of the stimulus (26, 27, 29, 82, 84). Further support 
for this is the correlation of TTV with both FS and PS in alpha 
and theta. This thus connects more intrinsic measures (FS, PS 
as measured also during the resting state)—intrinsic as being 
changes of the ongoing spontaneous activity which is always 
present—and extrinsic–extrinsic as resulting from a stimulus 
from the external environment—(TTV) dynamic features of 
stimulus-evoked activity. 

Taken together, all three findings—1) TTV and LZC, 2) 
FS and PS, and 3) their correlation—suggest the following: 
poststimulus activity in MDD may be characterized by increased 
neural activity instability. This in turn may decrease its ability 
to react to external task-relevant stimuli from the environment. 
Put more generally, MDD patients may suffer from an imbalance 
between ongoing spontaneous neural activity (internal) and 
components from the environment (external) in their stimulus-
evoked activity, with the internal component dominating the 
external one. 

This imbalance seems to have a particularly strong impact 
on attention-demanding task-relevant stimuli (85–91). This is 
in accordance with the fact that we observed the main changes 
during the deviant tone that is more attention-demanding—
participants were told to respond to it—than the standard. We 
therefore hypothesize that the high degree of intrinsic noise 
from the ongoing spontaneous activity during stimulus-evoked 
activity (increased FS and PS differences) may make it impossible 
for the depressed participants to suppress this intrinsic noise 
when the stimulus is presented. They are required to devote 
attention to, and thus process, the task-relevant external stimulus 
(here the deviant tone) which we see in the decreased change 
in TTV and LZC in the healthy participants. Maybe, MDD 
participants are not capable of doing so, or doing so to the degree 
necessary; stimulus-evoked activity may be simply too noisy for 
attention-demanding stimuli to be properly processed. Our aim 
in this study was to determine if there were differences between 
groups, which we did, so a future study must be done specifically 
to examine this signal-to-noise ratio hypothesis in participants 
with MDD.

Rest–Stimulus Interaction—Resting State 
Dynamics Shape Intrinsic and Extrinsic 
Components of Stimulus-Evoked Activity
Our results, as measured by FS and PS, suggest differences 
in theta and alpha dynamic activity in the MDD participants 
during the poststimulus period. These dynamics may influence 
other stimulus-related activity which can be measured by TTV 
and LZC. The question for us, then, is what is the source of such 
dynamics in the ongoing spontaneous activity? One possibility is 
the resting state itself; its dynamics may transfer and shape that 
of the poststimulus period, as it has been shown that the state of 
this spontaneous activity when the stimulus is presented has a 
differential impact on the stimulus-evoked activity (23, 24).

We explored such a hypothesis by correlating resting state 
measures (PF, CV, and power) with those of stimulus-evoked 
activity (TTV, LZC, FS, and PS). As expected, this yielded 
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significant correlations; these findings suggest a direct relationship 
between resting state dynamics and those of the stimulus-evoked 
activity as measured by LZC and TTV; the former is carried over 
to the latter, as was previously shown in healthy participants only 
(23, 24, 29). Our aim in this study was to determine if there was 
a difference between groups, but the strength and boundaries 
of this transfer from ongoing spontaneous activity to stimulus-
evoked activity, as well as a possible role in psychiatric symptoms, 
however, must be examined specifically in a future study.

These findings suggest that the resting state dynamics in 
the MDD group, especially in the theta band, is related to the 
decreased reactivity to task-relevant external stimuli which was 
measured by TTV and LZC changes. This may be mediated by 
the resting state dynamics as measured by FS and PS. Together, 
these findings suggest that the differences in the resting state 
temporal dynamics of MDD participants are carried over to 
subsequent stimulus-evoked activity. 

Physiologic–Mechanistic Basis of Atypical 
Rest–Task Interaction in MDD
It has been shown, through computational modelling (32) 
and human/animal studies (16, 92, 93) that changes in input 
intensity at the neural network level can be measured by changes 
in PF, not power, measured on the scalp using EEG. It was also 
shown that changes in PF — as a result of changes in input to 
the corresponding neural network—can produce changes in the 
networks’ subsequent response to inputs (16, 32, 94). This leads 
to sensitization/desensitization of the neuron by lowering/raising 
the threshold to generate an action potential (32). 

Together these findings suggested a hypothesis (16, 32): 
changes in PF is a gain–control mechanism. Briefly, faster 
oscillations—which would have higher PF—allow for accurate 
but restrained responding as the neurons must meet a higher 
threshold before an action potential is generated. At the same 
time, slower oscillations—lower PF—enable fast responding 
as the threshold to generate an action potential is lower. The 
drawback to this lower threshold is that these oscillations may 
be guided by noise as it permits a response to weaker inputs, so 
more inputs will meet this threshold.

In addition, input from a relatively slower oscillation will have 
a longer time window into which to integrate voltage; one cycle 
is longer in a slower frequency such as 9 Hz than a relatively 
faster frequency like 10 Hz. Therefore, bands with decreased 
PF have longer time windows in which action potentials can 
occur [relevant for detecting temporally coincidental inputs 
at the synapse (14)]. This in turn leads to greater spike timing 
variability (32). This adaptive mechanism (16) responds to the 
demands presented by a task and may adjust the sampling rate—
increasing the PF would allow for more cycles in the same period 
of time—of incoming information required by this task. This is 
supported by findings from several studies (95, 96).

How does this apply to our results? Our findings of opposing 
differences between groups in theta and alpha show that PF is 
directly related to uniformity; MDD participants had higher 
theta PF and a lower, more stable CV, and lower alpha PF and a 
higher, less stable CV. The power in both bands was lower in the 

patient group, illustrating the nonlinear relationship between PF 
and power as shown previously (32, 97).

We found that the group with the faster PF also had the 
more stable PF, as measured by the CV. In the patients with 
depression, therefore, the resting state theta band was faster, 
more uniform—thus stable—and less powerful than the 
controls. In the resting state alpha band, the patients with 
depression were slower, less stable and less powerful, which is 
consistent with previous studies (76). This suggests an extreme 
instance of reciprocal inter-dependence in MDD between 
theta and alpha in opposite directions. 

These theoretical studies that lead to the adaptive gain-
control mechanism hypothesis are consistent with our results. 
As described above, a lower PF experiences more spike timing 
variability and is driven more by noise. Higher PF, in contrast, has 
more selective responses due to a higher threshold for generating 
action potentials. Our resting state results showed that the MDD 
group had lower PF and higher CV, but they also had a greater 
relative response to the deviant stimuli in the alpha band. This 
could be an attempt to overcome the lower baseline level and to 
increase the sampling rate (increase the PF), thereby increasing 
the information being taken in, as required by the task-relevant 
deviant tone. This PF increase response to the stimulus was also 
seen in the control group, however the baseline activity of the 
two groups differ (Figure 7), which may be the most important 
finding. The lower threshold in the alpha band that comes with 
a lower PF allows for more noise and variability generally in the 
signal. The signal-to-noise ratio (SNR) is then insufficient to 
respond to the task-relevant stimulus, despite this increase in 
alpha PF after stimulus onset.

This possibility may underlie the decreased changes in TTV 
and LZC after stimulus onset we found in the MDD group when 
compared with the healthy controls. It may be that the variability 
in the ongoing resting state alpha activity in the MDD group, 
specifically in this important band for sensory processing (33, 
80, 98–101), due to a lower action potential threshold is too 
high for the PF increase seen in our results. The SNR is below 
what is required for changes in TTV and LZC after presentation 
of a task-relevant stimulus, as both these measures have been 
shown to relate to activity in the alpha band (29). If supported, 
this hypothesis would support symptoms of depression which 
include decreased response to sensory stimuli (1, 6), and present 
resting state alpha PF as a possible therapeutic target.

Limitations
There were several limitations to this study. To begin, the relatively 
small number of participants in each group (<30), as well as their 
age (means of 54 and 46 years), made distilling out differences 
related to the MDD diagnosis—amid the large interindividual 
differences—more challenging. This was aided using the 
nonparametric Kolmogorov-Smirnov (KS) test which measures 
differences in distributions rather than the mean. This statistical 
test provided two advantages here: 1) it is robust to outlying 
participants while mean-based statistical tests are sensitive to 
them, and 2) it is effective with small sample sizes (less than 30 
participants) (66). Therefore, though our study did have relatively 

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
www.frontiersin.org


Abnormal Depression Resting State DynamicsWolff et al.

13 October 2019 | Volume 10 | Article 719Frontiers in Psychiatry | www.frontiersin.org

small sample sizes, and there was large interindividual variability 
in some of our results, our use of the KS test lessened these factors.

Furthermore, a third possible factor may have accounted for the 
differences between groups found in our results. As noted above, 
the mean age difference between the MDD and control group was 
just under 10 years. This difference may have contributed, at least 
partially, to the differences we found (102–104). In fact, it may be 
the case that a third unknown factor contributed to our findings 
of differences between the MDD and control groups. Replication 
of this analysis would determine if this were to be the case.

Next, the recording of data would benefit in future studies 
from high density EEG or MEG rather than the 32 channels used 
here. High-density recordings would allow for source localization 
and analyses in source space, as well as greater topographical 
specificity of activity on the scalp.

Finally, though the task paradigm presented a simple sensory 
stimulus with behavioral response (reaction times), the short 
intertrial intervals may have prevented some of the measures in 
our analysis (FS, PS, LZC) from a return to baseline before the 
presentation of the subsequent stimulus. As the intertrial interval 
was only one second long, the stimulus-evoked activity may have 
carried over into the trial of the subsequent stimulus; the EEG 
activity measured just after onset of that next stimulus would 
have been the result of a) the ongoing spontaneous activity, b) 
activity evoked by the stimulus just presented, and c) activity 
carried over from the stimulus of the previous trial. For this 
reason, the analyses described here should be applied to other 
task paradigms and datasets to verify the results. Until then, 
these findings are preliminary.

CONCLUSION

We here investigated combined rest and task EEG in major 
depressive disorder (MDD). Our findings show differences in 
resting state dynamics between the patient group and healthy 
controls, and that this is carried over to subsequent stimulus-
evoked activity. We therefore tentatively postulate atypical 
temporal dynamics of rest–stimulus interaction in MDD. This 
difference in MDD patients may predispose them to respond in 
an atypical way to task-related external stimuli. 
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