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Adverse childhood experiences (ACEs) may be referred to by other terms (e.g., early 
life adversity or stress and childhood trauma) and have a lifelong impact on mental and 
physical health. For example, childhood trauma has been associated with posttraumatic 
stress disorder (PTSD), anxiety, depression, bipolar disorder, diabetes, and cardiovascular 
disease. The heritability of ACE-related phenotypes such as PTSD, depression, and 
resilience is low to moderate, and, moreover, is very variable for a given phenotype, which 
implies that gene by environment interactions (such as through epigenetic modifications) 
may be involved in the onset of these phenotypes. Currently, there is increasing interest in 
the investigation of epigenetic contributions to ACE-induced differential health outcomes. 
Although there are a number of studies in this field, there are still research gaps. In 
this review, the basic concepts of epigenetic modifications (such as methylation) and 
the function of the hypothalamic-pituitary-adrenal (HPA) axis in the stress response are 
outlined. Examples of specific genes undergoing methylation in association with ACE-
induced differential health outcomes are provided. Limitations in this field, e.g., uncertain 
clinical diagnosis, conceptual inconsistencies, and technical drawbacks, are reviewed, 
with suggestions for advances using new technologies and novel research directions. 
We thereby provide a platform on which the field of ACE-induced phenotypes in mental 
health may build.

Keywords: childhood trauma, stress disorders, mental health, the hypothalamic-pituitary-adrenal axis (HPA), 
epigenetic association studies

ADVERSE CHILDHOOD EXPERIENCES/CHILDHOOD TRAUMA
Stressful or traumatic events experienced in childhood or adolescence can be driven by a broad 
range of life events, including but not limited to physical injury, natural disaster, bullying, and 
childhood maltreatment (1). They are referred to by many terms, including early life adversity, early 
life stress, early life trauma, and adverse childhood experiences (ACEs) (2). It is reported that the 
worldwide average trauma exposure rate is 69.7% for children and adults (3). In the United States, 
around 60% of adults reported that they had experienced at least one type of ACE (2).
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ACEs/childhood trauma are associated with negative health 
outcomes, both mentally and physically (4). Individuals exposed 
to multiple types of childhood trauma show an increased risk of 
early mortality, which decreases their lifespan up to 20 years (5). 
Physically, childhood trauma has been associated with increased 
risk of cardiovascular disease (6), autoimmune disease (7), 
gastrointestinal symptoms (8), poor dental health (9), obesity, 
and type 2 diabetes (10). Psychologically, childhood trauma is 
regarded as one of the major risk factors for psychopathology. 
Childhood trauma has been associated with many mental 
disorders (11). Specifically, childhood trauma has been linked 
to posttraumatic stress disorder (PTSD) (12), insomnia (13), 
anxiety (14), depression (15, 16), bipolar disorder (17, 18), 
maladaptive daydreaming (MD) (19), hallucinations (20), 
borderline personality disorder (21), disruptive behavior (22), 
risky behaviors (23, 24), substance abuse (25, 26), antisocial 
behavior (27), and eating disorders (28, 29).

Childhood trauma impacts children to different extents. 
Some people are more vulnerable, whereas, others show 
the characteristic of “resilience,” with the ability to “bounce 
back” even after adversity (30). Multiple factors, e.g., genetic, 
epigenetic, and environmental factors, and their interactions 
contribute to the differential health outcomes induced by 
childhood trauma. According to a neural diathesis-stress model, 
genetic predisposition and environmental factors contribute 
synergistically to the development of mental disorders. The 
magnitude of the heritability of a phenotype is one way of 
estimating the relative magnitude of the genetic contribution. In 
the case of ACE-associated psychiatric disorders such as PTSD, 
the heritability is in fact low to moderate (31). Similarly, the 
heritability of resilience is low to moderate, varying in research 
reports from 25% to 60% (32–34). These heritability values 
suggest that there may be other mechanisms contributing to 
these phenotypes, such as gene by gene interaction and gene 
by environment interactions, and epigenetic mechanisms. 
Consequently, it might well be productive to explore genetic, 
epigenetic, and environmental interactions in resilience and 
ACE-associated health outcomes.

THE ASSOCIATIONS BETWEEN GENETIC 
AND EPIGENETIC AND CHILDHOOD 
TRAUMA

Epigenetic Modifications
The human genome is made up of DNA, which stands for 
deoxyribonucleic acid, the genetic code which is a continuous 
sequence of four “letters” or “bases,” A, G, C, T (A = adenine,  
C = cytosine, G = guanine, T = thymine). This encodes heritable 
information from parents to offspring. Part of this sequence is 
“read” during a process known as “transcription.” Transcriptional 
machines, which have a complicated structure and are made 
up of several protein subunits, are needed to start this process. 
Following transcription of the locus, the noncoding DNA areas 
(known as “introns”) are spliced out and the regions that are 
coding proteins/peptides, known as “exons,” are converted into 
mRNA sequences. These mRNAs are then used to build different 

protein structures from “building blocks” known as amino acids. 
In the next, “posttranslational,” stage, further modifications may 
occur and influence the function of the protein. In general, gene 
expression is a complicated dynamic process and controlled 
by diverse regulators at different levels, such as transcriptional 
regulation (cis: e.g., promoters, trans: e.g., DNA-binding proteins), 
RNA processing (RNA splicing, noncoding RNA, miRNAs, 
etc.), translational regulation, and posttranslational regulation 
(acetylation, phosphorylation, and glycation, etc.) (35).

Epigenetic modifications regulate this dynamic process of 
DNA to protein. Epigenetics, which means “outside conventional 
genetics” (36), focuses on the regulation of “turning on or off ” 
genes without changing the DNA sequence, but rather the 
accessibility of regulatory transcription factors to the gene. 
Epigenetic modifications impact on multiple nuclear processes, 
such as DNA packaging and chromatin structure, and thus on 
gene expression, with various directions of effect (which may be 
conceptualized as “epigenetic readers, writers, and erasers”) (37). 
Such modifications include changes in the spatial positioning 
of chromosomal territories (38). There are three main types 
of epigenetic modifications: DNA methylation, histone 
modifications, and various RNA-mediated processes (39, 40). 
Epigenetic modifications may be cell-type-specific.

Cytosine methylation (5-methylcytosine, 5-mC) is very 
common in both eukaryotes and prokaryotes (41). It largely 
happens at cytosine followed by guanine residues (CpG) sites; 
less commonly, cytosine may be methylated at CpA, CpT, or 
CpC sites. A family of enzymes named DNA methyltransferases 
(DNMTs) regulates DNA methylation through transferring a 
methyl group to the DNA base cytosine (42). Methylation, which 
is similar to a protective cover on the DNA, generally suppresses 
gene expression by physically preventing transcription factor 
binding (43). It also suppresses gene expression by interacting 
with other mechanisms, e.g., histone deacetylase (HDACs) 
complex recruitment. For example, methyl-CpG-binding 
proteins (MeCP) 2 binds tightly to chromatin in a methylation-
dependent way, which induces the formation of the histone 
deacetylase complex. This complex induces transcriptional 
suppression by changing chromatin structures (44). However, 
DNA methylation also enhances gene expression through more 
complicated mechanisms such as the methylation of CCCTC-
binding factor (CTCF) binding sites and/or intronic regions 
(45–49). Hydroxymethylcytosine (5-hmC) is another form of 
DNA methylation. It is in fact converted from5-mC through an 
oxidative reaction, by the ten-eleven translocation methylcytosine 
dioxygenase (TET) 1 enzyme. Similarly, 5-hmC is able to both 
activate and suppress gene expression in a bidirectional manner 
(50). The expression of 5-hmC is highly concentrated in the 
brain and is dynamic during fetal development (51). It has been 
reported to play important roles in neuronal function, learning 
and memory, and stress-mediated responses (52).

As for histone modification, it impacts chromatin structure 
and DNA packaging (37) [e.g., the acetylation of histones may 
render DNA more or less accessible to transcription factors, 
leading to enhanced or reduced transcriptional activity (53)]. 
It has been estimated that the full length of DNA is more than 
500 billion kilometres in the human body (54). Consequently, 
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DNA needs to be packed tightly into cells. Histones are directly 
involved in the packaging process. Basically, a core of DNA 
(around 146 base pairs) wraps around each histone to form a 
structure known as a “nucleosome.” Subsequently, an octamer 
comprising four different histones (H3, H4, H2A, and H2B) is 
formed. This is further packed into chromatin fibres and then 
into chromosomes, a unit now visible under a light microscopes. 
There are several types of histone modifications, including 
acetylation, methylation, phosphorylation and ubiquitylation. 
The specific modification patterns of histones, which are called 
histone codes, work with the other chromatin associated proteins, 
change the structure of the local chromatin, and thus impact the 
process of gene expression, such as transcription, replication and 
DNA repair. The proper topological structure of chromatin is 
essential in gene expression and genome maintenance (55).

Lastly, noncoding small RNAs (e.g., miRNAs) are also able 
to mediate sequence-specific modulation of gene expression by 
different mechanisms (56). For example, miRNAs bind to their 
target mRNAs via complementary sequences, which induces 
the cleavage and degradation of the corresponding mRNA (57). 
More recently, additional epigenetic modifications have been 
discovered, including for example, RNA methylation (58).

Each cell in the living organism, under normal conditions, 
essentially shares the same copy of DNA, but eventually develops 
and differentiates to different cell types under regulatory 
mechanisms. Epigenetic modifications such as genetic imprinting 
(59) are necessary for embryogenesis and gametogenesis (60, 61), 
differentiation, and development. In fact, epigenetic regulation 
occurs throughout the lifespan and can be induced by random 
changes (62) or by multiple different environmental factors (63). 
For example, changes in human epigenome have been associated 
with processes related to adaptation and evolution (64, 65), and 
have also been linked to several diseases, such as cancer (66), 
type 2 diabetes (67), and autoimmune rheumatic disorders, 
such as systemic lupus erythematosus (SLE) (68). Epigenomic 
alterations are also associated with pathologies characterized by 
behavioral or/and cognitive problems, e.g., Alzheimer’s disease 
(69), Rett syndrome (70), Cushing’s syndrome (71), depression 
(72), addiction (73), aggression and antisocial behavior (74), and 
also with illnesses characterized by childhood trauma exposures, 
such as mental disorders (75).

Early life is a special period characterized by a high level of 
plasticity and fast development (76). Thus, the impact of childhood 
trauma is particularly deleterious, since the developmental 
trajectory of the brain is affected, with resultant alteration of 
the circuitry for threat detection, emotional regulation, and the 
reward system (77).

In this paper, we will focus on the epigenetic modification 
of DNA methylation, as this has the most data relevant to  
childhood trauma.

The Associations Between Methylation 
and Childhood Trauma
Stress and the HPA Axis
Why does childhood trauma impact health outcomes? One 
mechanism is by the induction of toxic stress. In fact, stress 

can be classified into “good stress,” “bearable stress,” and “toxic 
stress” (78), and has acute, delayed and long-term effects on the 
body (79). “Good stress” can be coped with by physiological 
mechanisms, encouraging healthy growth; “bearable stress” states 
may eventually be turned into homeostasis through successful 
interventions; whereas, “toxic stress,” which is characterized by 
prolonged or frequent activation and dysregulation of the stress 
response pathway, induces long-term changes and damage not 
only to the brain but also to the rest of body (2, 80).

The central biological pathway involved in the response 
to stress is the hypothalamic-pituitary-adrenal (HPA) axis 
(Figure 1). In 1914, Walter B. Cannon put forward the “fight or 
flight” model, which described the body’s response toward stress 
(81). Around the 1950s, Selye’s general adaptation syndrome 
was put forward: that chronic stress could induce a nonspecific 
response in the body, such as increased heart rate and blood 
pressure (82). More recently, more in-depth research has 
illustrated that alterations in the HPA axis have been associated 
with the process of dealing with stress, especially toxic stress-
induced negative health outcomes (83).

When a threat signal is recognized, the central nervous 
system (CNS): amygdala (84), hypothalamus (85), and parts 
of brainstem such as the locus coeruleus, (86–88), which are 
regarded as the central components of the stress response, will 
be activated. Neurotransmitters such as glutamate, serotonin 
(89), and γ-aminobutyric acid (GABA) are involved in this signal 
transmission. On receipt of the neuronal signal from the amygdala 
and locus coeruleus, numerous neuropeptides are released from 
the hypothalamus, including arginine vasopressin (AVP) and 
stress-induced corticotropin-releasing factor/hormone (CRF/H) 
(90). The CRF Receptor 1 (CRFR1) on the anterior pituitary is 
activated, which results in the secretion of adrenocorticotropic 
hormone (ACTH). AVP works together with CRH to contribute 
to the ACTH response (91). ACTH acts on receptors in the 
adrenal cortex, leading to the release of stress-related hormones: 
glucocorticoids (cortisol) and mineralocorticoids (aldosterone). 
These stress-related hormones mediate the stress response (92) 
to induce changes in heart rate, blood pressure, metabolism (93), 
and immune function (94). Other neuropeptides/neurotrophic 
factors, such as neuropeptide Y (95), dynorphin (96), and 
oxytocin as well as brain-derived neurotrophic factor (BDNF), 
are also involved in the HPA axis and in the orchestration of the 
response to stress.

On the other hand, in the sympathetic adrenal medullary 
(SAM) axis, a signal from the hypothalamus activates the adrenal 
medulla, and then induces the secretion of the catecholamines 
adrenaline and noradrenaline. Peripheral organs (e.g., heart, 
liver), glands, and vessels have receptors for these hormones and 
are in addition regulated by the sympathetic autonomic neurons. 
Together with the HPA axis as mentioned above, the downstream 
effects, e.g., increased heart rate and blood pressure, are intended 
to be biologically adaptive, to enhance the individual’s ability to 
respond to the stressor.

Importantly, cortisol provides negative feedback are the 
level of the hypothalamus (97) to stop the HPA axis from being 
excessively activated with consequent deleterious health effects. In 
addition, within the autonomic nervous system, parasympathetic 
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neurons balance the activation of the sympathetic system, 
inducing a “rest and digest” body state. Childhood stress and 
trauma alter the HPA axis (98) and the long-term dysregulation 
of the HPA axis induced by childhood stress/trauma has been 
associated with increased risk of adverse health outcomes. 
For some of these, the effects of adversity appears to be dose- 
dependent (99–101).

Hotspot Genes
There is increasing interest in the investigation of epigenetic and 
environmental interactions in ACE-induced differential health 
outcomes. In humans, studies have mainly focused on peripheral 
tissues, such as peripheral blood, buccal cells, or saliva. There are 
also studies with human postmortem brain tissue. For example, 
Labonte and colleagues reported that in hippocampal tissues 
derived from those who had died by suicide, comparing those 
with and without a history of childhood abuse, there were 362 
differentially methylated promoter sites. Among these, 248 sites 
were hypermethylated and 114 were hypomethylated (102). 
Similarly, there was a bidirectional regulation of methylation 
in the cingulate cortex of those with/without childhood trauma 
who has had depression and died by suicide, with the highest 
differential methylation occurring in genes that related to myelin 
(103). In a 2017 systematic review of epigenetic associations 
with childhood trauma in first episode psychosis patients and 

healthy individuals, childhood trauma was associated with global 
hypomethylation in peripheral blood samples (104, 105).

A key limitation of such epigenetic research as described 
above is nonetheless the tissue specificity of effects, which 
means that for only very limited sites scan congruent changes 
across tissues be expected (106, 107). In fact, even with the 
same sample, e.g., saliva taken at different times from the same 
individual, the cellular composition (proportion of different 
cells) may vary, which brings challenges to the analysis of 
methylation results (108).

Relevant biological systems relevant to the HPA axis are 
summarized in Figure 1 with highlights provided below.

FKBP5
The FKBP5 gene encodes a heat shock protein 90 (HSP90) 
cochaperone that modifies the sensitivity of steroid receptor 
hormones, interacting with the glucocorticoid receptor (GR), 
the progesterone receptor (PR), and the androgen receptor 
(AR). Together with other chaperone proteins such as Hsp90, 
FKBP5 inhibits GR function by slowing ligand-receptor complex 
translocation to the nucleus (109). It has been reported that in 
the HPA axis, the activation of GR inhibits the expression of 
CRH and ACTH, thus restraining overactivation of the HPA 
axis (110). Although GR activation increases the expression of 
FKBP5, the increased binding of FKBP5 to the GR suppresses GR 

FIGURE 1 | Biological mechanisms involved in HPA axis induced dysregulation in response to toxic stress.
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activity in a negative-feedback way. Thus, alterations in FKBP5 
hinders this negative feedback loop and induces “glucocorticoid 
resistance” (111).

Genetic variants of FKBP5 impact gene expression. For 
example, the SNP rs1360780, which has been associated with a 
change in the three-dimensional structure of the genetic locus, 
influences the physical contact between RNA polymerase and 
the transcription start site, as well as the hormone responsive 
elements (HREs) located in intron 2 (112, 113). Consequently, 
FKBP5 genetic variants may induce differential health stress-
related outcomes via their influence on GR sensitivity (114), the 
HPA axis, and subsequent regulation of neuronal function and 
synaptic plasticity (115). Exposure to childhood trauma has been 
shown to interact with the rs1360780 risk allele (T) to increase 
risk for a number of psychiatric disorders (115). It has been 
proposed that rs1360780 risk allele carriers show an increased 
FKBP5 mRNA response on exposure to stress (through enhanced 
binding of the promoter and the intron 2 glucocorticoid response 
element GRE), along with decreased negative feedback signal to 
the GR, which induces prolonged cortisol secretion. Enhanced 
cortisol secretion induces decreased DNA methylation in the 
intron 7 GRE, which in turn further enhances the activation 
of FKBP5 (116). This dual genetic and epigenetic disinhibition 
may increase FKBP5 levels and induce downstream changes 
in cellular and circuit function to a level that promotes risk for 
psychiatric disorders (116). For example, in major depressive 
disorder (MDD) patients who have been exposed to childhood 
trauma, the risk allele (T) of rs1360780 has been associated with 
a lower methylation level of FKBP5 in peripheral blood cells, 
and lower methylation of FKBP5 has been linked to functional 
as well as to structural alterations in the inferior frontal orbital 
gyrus (117). This region of the brain belongs to the anterior 
limbic and paralimbic structures and plays an important role 
in response inhibition and cognitive function (118). Also, 
alterations of this area have been associated with symptoms of 
PTSD induced by childhood sexual abuse (119). Interestingly, it 
has been found that the FKBP5 rs3800373 minor allele alters the 
secondary structure of FKBP5 mRNA, decreasing the binding of 
a stress- and pain-associated microRNA, miR-320a. This results 
in relatively greater FKBP5 translation, unchecked by miR-320a, 
increasing glucocorticoid resistance and increasing vulnerability 
to stress such as posttraumatic pain (120).

MAOA
Other genes that have been associated with the effects of childhood 
trauma are the monoamine oxidase (MAO) gene (located on the 
X chromosome), encoding the mitochondrial bound isoenzyme 
MAO A and B, which break down monoamine neurotransmitters 
such as dopamine, serotonin and noradrenaline (121). This 
degrading function of MAOA and MAOB is essential for the 
maintenance of synaptic transmission and thus proper motor 
control, emotional regulation, and cognitive function (122). 
There are more data relevant to this review on MAOA than  
on MAOB.

In 1993, it was reported that a point mutation in exon eight of 
the MAOA gene (leading to a premature stop codon) contributes 
to Brunner Syndrome, with prominent aggressive behaviors 

(123). Polymorphisms in MAOA have in fact been associated 
with antisocial behavior in general (27, 124), as well as with 
panic disorder (125), restless legs syndrome (126) and attention 
control (127).

The variable number tandem repeats (VNTRs) in the MAOA 
gene have been associated with differential health outcomes after 
stressful life events. VNTR may be variously defined, generally 
referring to short tandem repeats of 20–100 nucleotides. They 
regulate gene expression and have been associated with human 
diseases (128) such as spinocerebellar and Friedreich ataxia, 
fragile X syndrome, Huntington’s disease (128), and other 
psychiatric disorders.

There is a VNTR comprising CCCCTCCCCG (known as the 
“A repeat”) and CTCCTCCCCG (known as the “B repeat”) of a 
10-base pair unit near the transcription start site (TSS) of MAOA 
that contributes to antisocial behavior after exposure to childhood 
trauma in females (129). The first six repeats are the same within 
different individuals, ABABAB; variants occur in at or after the 
seventh repeat. For example, seven repeats (7R) is ABABABA, and 
10 repeats (10R) is ABABABAAAA. The risk allele (comprising 10 
repeats) is associated with lower MAOA activity. Lower MAOA 
activity, which is associated with higher levels of the relevant 
neurotransmitters, has been associated with increased risk of 
conduct disorder and antisocial behavior (130, 131). Another 
well-studied VNTR in the MAOA gene is the 30 base pair (bp) 
upstream VNTR (u-VNTR) with a repeat sequence of 5’-ACCGG 
CACCGGCACCAGTACCCGCACCAGT-3’ (132). The risk allele 
is three repeats, which has been associated with a significantly 
decreased level of MAOA expression (133). Similarly, maltreated 
children with the risk MAOA u-VNTR genotype develop 
conduct disorder, antisocial personality, and violent criminality 
in adulthood (131).

Moreover, different genetic variants have been associated 
with differential methylation status of MAOA and corresponding 
phenotypes. For example, nine-repeat (9R) carriers (the lower 
risk allele) of the 10 bp MAOA VNTR show a lower methylation 
level in the MAOA promoter in females (129). In regard to the 
30 bp u-VNTR, carriers of the lower-MAOA-activity variants (i.e., 
the higher risk alleles such as 3.5) had a higher risk of depression 
with histories of childhood trauma in females compared to those 
who without trauma histories, and the overall methylation of 
MAOA was reduced in depressed patients (130). Interestingly, the 
lower-activity MAOA-allele (3.5 repeats) of the MAOA u-VNTR 
has been associated with other epigenetic modifications, such as 
NR3C1 hypermethylation after childhood trauma (130).

In monozygotic twin studies, hypomethylation of all 
MAOA CpG sites has been negatively associated with 
depressive symptoms, but not with childhood trauma; whereas, 
hypermethylation of the MAOB gene shows a nominally 
significant association with childhood sexual abuse (134).

NR3C1
Another well-studied candidate in the HPA axis is the GR gene: 
nuclear receptor subfamily 3 group C member 1 (NR3C1). NR3C1 
encodes the GR. The binding of glucocorticoid to the GRs plays 
important roles in glucose homeostasis (135) and regulates 
the stress response through both genetic (136) and epigenetic 
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mechanisms (137). Childhood trauma and early stress alter the 
methylation status of this gene and its expression.

Research has shown that altered methylation status in this 
gene has been associated with childhood trauma, especially the 
CpG sites located in the noncoding first exons of NR3C1 (138). 
In a rat model, pups who received less early nurturing behaviors 
(low licking and grooming (LG) and arched-back nursing (ABN) 
from the mother rat) presented significantly higher levels of 
methylation in the exon 17 GR promoter nerve growth factor-
inducible protein A (NGFI)-A binding site (139). Since NGFI 
binding decreases GR expression, this alteration is thought to be 
associated with impaired regulation of the HPA axis (140, 141).

In humans, it has been shown that experiencing childhood 
trauma increases methylation of NR3C1 (142). In Melas and 
colleagues’ study, one specific type of childhood trauma (parental 
death) was associated with hypermethylation of the NR3C1 
CpGs close to the NGFI-A binding site, at, in association with 
the L-allele (3.5 repeats) of the MAOA u-VNTR in salivary DNA 
samples (130). In postmortem brain tissue (hippocampus) from 
those who have died by suicide, there was decreased expression 
of GRs, along with enhanced cytosine methylation of the NR3C1 
promoter in those with a history of childhood trauma. Also, 
in the same group there was decreased NGF1-A transcription 
factor binding and NGF1-induced gene transcription (137). 
Labonte and colleagues also investigated methylation and NR3C1 
expression in postmortem (suicide) brains. In the hippocampus, 
total GR expression, and the 1B,1C, 1H GR RNA variant levels 
decreased with history of childhood trauma. Site-specific 
methylation showed that the methylation of variants 1B and 1C 
was negatively associated not only with their expression but also 
with total GR mRNA level. Variant 1H was associated with effects 
in the opposite direction (143). Other tissues, such as cord blood, 
peripheral blood, buccal epithelial cells and placental tissues 
were also tested, and the majority of them showed similar results 
in regard to enhanced methylation of NR3C1 in association with 
early life adversity (138, 144).

Stressful life events occurring slightly later in life, such as in 
adolescence, are associated with a further independent increase 
in methylation of NR3C1 (142). Interestingly, the effects of 
methylation within the NR3C1 promoter can be sex-specific. 
Vukojevic et al. showed that enhanced methylation of NR3C1 
promoter at the NGFI-A binding site has been associated with 
less intrusive memory, and thus decreased risk of PTSD among 
survivors of the Rwandan genocide, but only in males (145).

In a recent study in mice, hemizygosity of a deletion of 
nr3c1 (nr3c1-/+ heterozygote) has been associated with changes 
in DNA methylation in fetal placenta, and these changes have 
been associated with methylation changes in the adult prefrontal 
cortex, as well as with increased anxiety-like behaviors in the same 
animals (146). In addition, hydroxymethylation modifications of 
nr3c1 have been suggested to be involved in the stress response 
pathway. Li and colleagues reported that acute stress induces 
accumulation of 5-hmC in the nr3c1 3’ untranslated region 
(UTR) in the mouse hippocampus (147). Further investigation of 
molecular mechanisms involving 5-hmC and childhood trauma 
in not only NR3C1 but also in other genes could be productive.

HTRs and SLC6A4
Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine 
neurotransmitter. It can be found in the gastrointestinal (GI) 
tract, blood platelets, and the CNS (148). In the CNS, serotonergic 
neurons are widely distributed in the brain, especially the limbic 
system (149). Serotonin contributes to brain development (149) 
and to maintenance of normal brain function. It promotes 
neural and glial cell growth, differentiation, survival and synapse 
formation (150). Alterations in the serotonin system have been 
associated with structural and functional changes in the brain 
(149). Stress induces brain serotonin turnover (151, 152). 
Excessively raised serotonin is associated with neurotoxicity 
(153). Stress-induced serotonin turnover has been associated 
with conditions such as impulsive violence (154), depressive 
symptoms (155), and substance dependence (156).

The HTR genes encode serotonin receptors, which are widely 
distributed in the CNSs including the prefrontal, parietal, 
and somatosensory cortices as well as the olfactory tubercle. 
Variants in these gene have been associated with differential 
treatment responses and with various psychiatric disorders, 
such as panic disorder (157), impulsive disorder (158), PTSD 
(159), and eating disorder (160). In children, HTR2A variants 
are related to differential risk of being hyperactive (161) with 
harsh parenting styles (162, 163) or after experiencing childhood 
abuse (164). It has been reported that early life adversity alters 
HTR2A methylation, and the effects were allele-specific. 
Contextual stress experienced in childhood induces enhanced 
HTR2A methylation at site-1420, in those of A/A genotype 
at rs6311- (-1438 A/G). Moreover, enhanced methylation of 
HTR2A at site-1420 was negatively associated with PTSD and 
depression; whereas, those of G/G genotype presented decreased 
methylation (165). Notably, hypermethylation of site-1420 has 
also been found in schizophrenia and bipolar patients (166). In 
the serotonin 3A receptor (HTR3A) gene, the mother’s life-time 
exposure to interpersonal violence is associated with altered 
methylation in the HTR3A gene, which has been associated 
with their children’s secure base distortion (167). In addition to 
the HTR2A and HTR3A, there are several other serotoninergic 
genes that undergo epigenetic modifications and have been 
associated with childhood trauma, such as that encoding the 
serotonin transporter.

These serotonin transporter (responsible for serotonin 
reuptake) encoded by SLC6A4 (also known as the 5-HTT gene) is 
in fact a frequently studied candidate in psychiatric genetics and 
epigenetics. Higher methylation of SLC6A4 has been associated 
with childhood trauma, and with worse clinical presentation in 
MDD (168). In women, there is a significant association between 
sexual abuse and SLC6A4 hypermethylation, which has been 
linked to antisocial behavior (74). In newborn babies whose 
mothers have depressive symptoms in the second trimester, 
methylation at SLC6A4 promoter CpG sites is lower in both 
the newborns and in the mothers compared to controls (169). 
Methylation also mediates allele-specific cortisol response 
patterns of the 5-HTT linked polymorphic region (5-HTTLPR) 
(rs25531) (170). The 5-HTTLPR, consisting of a 20 to 23 bp 
GC-rich VNTR repeated 14 times in the short allele (S) and 
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16 times in the long allele (L), is located 1 kb upstream of the 
SLC6A4 gene. The short variant is associated with reduced 
5-HTT expression (171). The S/S HTTLPR genotype has been 
associated with increased risk of depression and suicide attempts 
after stressful events (172), as well as with adult depression after 
childhood trauma (173). In Alexander and colleagues’ study, it 
was showed that those of S/S genotype with lower methylation 
level exhibited higher cortisol response; while the association 
of the 5-HTTLPR short allele with enhanced cortisol response 
disappeared at a higher SLC6A4 methylation level (170).

BNDF
BDNF has been investigated not only for association with 
childhood trauma, but also for association with mental health 
outcomes such as psychotic or depressive symptoms (174–176). 
BDNF encodes a neurotrophin, which promotes the growth, 
differentiation and survival of neurons. BDNF is also involved 
in neuroplasticity. Structural brain changes are seen after trauma 
and BDNF is hypothesized to be involved in these (177). For 
example, early isolation (one type of ACEs) causes decreased 
BDNF levels in the amygdala and infralimbic cortex; however, the 
combination of resocializing and the antidepressant fluoxetine 
reverses the reduction of bdnf in rodents (178). In a rat model, 
early stress (being abused by caretakers) induces enhanced BDNF 
methylation and decreased bdnf gene expression in the prefrontal 
cortex in exon 9 and 14, which includes the transcription start site 
(TSS) and cyclic adenosine monophosphate (cAMP) response 
element and the enhanced methylation persists until adulthood 
(179). In rodents, the bdnf gene contains 9 noncoding exons, each 
of which can be linked to the protein coding exon IX (9) after 
splicing, and transcription can be initiated before the protein 
coding exon in the intronic area. Exon-specific transcription is 
tissue-specific. Importantly, methylation-induced altered gene 
expression of BDNF is also cell-type specific (180, 181).

In humans, childhood trauma has been associated with 
decreased serum levels of BDNF (182). Also, childhood 
maltreatment induces alterations in BDNF promoter methylation 
(75). It has been shown that a lower maternal care condition is 
associated with higher BDNF DNA methylation levels (183). 
Furthermore, differential BDNF methylation has been associated 
with structural brain changes. For example, socioeconomic 
disadvantage has been negatively associated with BDNF DNA 
methylation, specifically at the exon IV promoter site, and this 
lower level of BDNF methylation has been linked to greater 
thickness of the lateral orbitofrontal cortex (IOFC), medial 
frontal cortex and decreased thickness of the bilateral IOFC in 
adolescence (age 12–13) (184). These brain areas are relevant to 
decision-making, emotion, and memory processing.

In addition, BDNF works synergistically with other genes after 
childhood trauma, such as the 5-HTTLPR (182), noradrenaline/
norepinephrine transporter (NET) and corticotropin releasing 
hormone receptor 1 (CRHR1) genes (185), as well as tryptophan 
hydroxylase (TPH) 2 (186). In fact, the BDNF receptor TrkB and 
GRs, as well as mineralocorticoid receptors, are coexpressed in 
hippocampal neurons. Additionally, as mentioned above, BDNF 
directly regulates the HPA axis. The administration of BDNF in 
vivo induces increased CRH level and reduction of BDNF or 

its receptor normalizes the CRH level and thus, the HPA axis. 
This cross-talk between BDNF and CRH may be at least partly 
mediated by the CREB and MAPK pathway and is involved in the 
enhancement of fear memory under stress (187).

Other Candidate Genes
There are other candidate genes with at least some data in 
childhood trauma and epigenetic alterations, such as COMT, 
IL-6 (188), and OXTR (189).

The catechol-O-methyltransferaseenzyme encoded by the 
COMT gene on chromosome 22q11.2 (190), is involved in the 
metabolism of catecholamines including the neurotransmitters 
dopamine, adrenaline, and noradrenaline, in reactions that 
involve the transfer of a methyl group from S-adenosyl-
methionine (SAM) to a hydroxyl group (191). There appear to be 
epistatic effects between COMT and NR3C1 on working memory 
(192). In addition, methylation of the COMT promoter has been 
associated with a change in prefrontal cortical connectivity in 
schizophrenia (193), as well as in depression (194).

Interleukin 6 (IL-6) encodes the IL-6 protein, which is a 
proinflammatory cytokine. Alterations in IL-6 have been 
associated with psychiatric disorders, such as depression (195). In 
addition, patients with schizophrenia and a history of childhood 
trauma have a pro-inflammatory phenotype (196). Inflammatory 
factors can in fact be regarded as mediators that connect the 
environmental stimulus of childhood trauma with clinical 
symptoms. Changes in the IL-6 methylation has been associated 
with childhood trauma related phenotypes. In African American 
men, there was an association with decreased methylation of IL-6 
and enhanced IL-6 protein level after childhood trauma (197). 
Importantly, altered expression of IL-6 can be associated with 
other genetic variants that are involved in neural pathways. For 
example, women who carry two short alleles of the 5-HTTLPR 
present a higher IL-6/IL-10 ratio when dealing with stress (198).

Oxytocin is a neuropeptide hormone facilitating labor and 
breastfeeding in mammals. In the brain, oxytocin receptors 
(OXTRs) are expressed mainly in the central nucleus of the 
amygdala (cAmyg) and the ventromedial nucleus of the 
hypothalamus (VMH) (199). The cAmyg regulates the fear 
response (200) while the VMH regulates a range of behaviors 
including female sex behaviors (201). Oxytocin and its receptor 
are involved in the regulation of attachment, social behavior 
and the stress response (202). In a recent study, there was 
hypermethylation at OXTR CpG sites in children who had 
experienced childhood trauma, and hypermethylation has 
been associated with decreased grey matter volumes in the 
orbitofrontal cortex (OFC), which may be related to insecure 
attachment styles (189).

Complicated Interactions/Cross-Talk
Research has shown that altered methylation has been associated 
with childhood trauma-induced phenotypes. Several candidate 
genes (FKBP5, MAOA, NR3C1, HTR and SLC6A4, BDNF) have 
been discussed in this review. However, the actual regulatory 
network and mechanisms are more complicated.

Firstly, multiple functional pathways or circuits are involved in 
processes relevant to stress, including both the reward and the fear 
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circuits, emotional regulation and executive cognitive function. 
Secondly, in the HPA axis, molecules and their receptors interact 
and cross talk with each other. Thirdly, there are potential gene 
by gene, gene by environment, gene by epigenetic modification, 
and even epigenetic by epigenetic modifications interactions. All 
these components influence stress-related phenotypes.

For example, the reward pathway/circuit in the brain has been 
associated with trait optimism, which has been associated with 
resilience after stress (203).There are two main reward pathways 
in the brain: the mesocortical dopamine pathway and the 
mesolimibic dopamine pathway. Glutamatergic and GABAergic 
connections are also involved in the reward circuit (204). 
Similarly, glutamatergic and noradrenergic neuronal signalling 
(203) and dopaminergic connections participate in neuronal 
regulation in the fear circuit. In addition, adrenergic receptors 
(205) and GRs (206) are also involved in fear conditioning. The 
serotonergic and noradrenergic systems have an established 
role in mood regulation, while the former is involved in 
motivation as well, with both anxiogenic and anxiolytic effects 
(207). Dopamine is relevant to mood regulation too. Enzymes 
regulating these pathways, such as COMT, MAOA and MAOB, 
regulate these phenotypes.

At the molecular level, there are different levels of cross-
talk. For example, the dopamine D1 receptor interacts with 
glutamate-mediated excitatory neurotransmission through 
protein-protein interactions (208). In addition, serotonin 
signalling, has been reported to interact with cannabinoid 
receptors (209). Acting as retrograde synaptic messengers (210), 
the endogenous cannabinoids, such as anandamide, sleep-
inducing substance oleamide (211) and palmitoylethanolamide 
(212), regulate numerous biological processes such as neuronal 
migration (213), learning, memory (214), pain processing (215), 
motility (216), and emotional-and reward-related processing 
(217–219).Further, both serotonin and endocannabinoids are 
involved in stress-related phenotypes, such as anxiety (212). In 
addition, serotonin is also involved in the regulation of GRs, 
such as in primary hippocampal cell cultures (220) and in the 
rat brain (221). At the genetic level, it has been reported that 
different genotypes of the 5-HTT gene has been associated with 
the altered GRs’ mRNA level under conditions of childhood 
adversity (222). A variant in MAOA gene is associated with 
differential NR3C1 methylation (130). For BDNF, its expression 
level responds to stress-related HPA axis activation. Moreover, 
there is a feedback loop whereby directly regulates CRH, and 
thus, the HPA axis (187). Besides, as mentioned above, multiple 
other genes, act in concert with BDNF (185). These genes 
further interact with other genetic/epigenetic variants to form a 
sophisticated molecular and functional network, which has not 
yet been fully characterized. For example, TPH2 also interacts 
with the adenosine deaminase, RNA specific B1 (ADARB1) gene, 
which affects pre-mRNA splicing. The interaction of these two 
genes predicts risk of suicide attempts after childhood trauma 
(223). A given neurotransmitter/neuronal pathway may conduct 
more than one function, e.g., glutamate signaling has been 
associated with both activation and inhibition of the HPA axis 
through inotropic and kainite/group I metabotropic receptors 
respectively (224). Interestingly, cognitive therapy and cognitive 

reappraisal decreases amygdala and HPA activation in response 
to stress (225), suggesting that there is some “flexibility” in stress-
related psychiatric phenotypic presentations. Hence, molecular 
mechanisms of the HPA axis and the stress response pathway 
more widely are not only highly complex and orchestrated but 
also require further illumination.

LIMITATIONS AND NEW DIRECTIONS

Limitations
Limitations exist in this field. Even though numerous studies 
have been done, evidence of associations between epigenetic/
epigenomic alterations and differential health outcomes induced 
by childhood trauma are limited (226). Additionally, there 
are inconsistencies in the field. For example, the association 
between childhood trauma and NR3C1 methylation has not 
been consistently replicated (138) and likewise the differences in 
SLC6A4 methylation between trauma- and nontrauma-impacted 
groups (104).

The full complements of molecular mechanisms involved 
in childhood trauma related health outcomes remain to be 
elucidated (31). As mentioned above, a further complication is 
the possibility of coordinate regulation of epigenetic processes 
in more than one gene/pathway. In addition, there may be 
pleiotropic or polygenic effects. Pleiotropy means that a gene is 
associated with more than one phenotype (e.g., the association 
between disrupted in schizophrenia 1 (DISC)1 mutations and 
various psychiatric disorders) (227), and polygenic means 
that one phenotype may be influenced by several genes (e.g., 
AOB blood type systems). Moreover, metastable epialleles, 
differential expression of alleles induced by epigenetic 
modification during early embryonic development have been 
identified in genetically identical individuals, and these may 
also induce phenotypic changes (228). Additionally, study 
heterogeneities may have limited the conclusions possible in 
this data synthesis.

Phenotypic Heterogeneity
Between study heterogeneity includes the investigation of 
different types of childhood trauma. Research has shown that 
different types of trauma stimulate different brain areas (77). 
Although psychological trauma might induce similar biological 
responses to physical trauma (229), the affected brain areas are 
different: physical stressors mainly impact the brainstem and 
hypothalamus (230); whereas, psychological stressors mainly 
impact regions that regulate emotion, learning, memory and 
decision making, e.g., the hippocampus, the amygdala and the 
prefrontal cortex (231, 232). Moreover, long-term stress and 
acute stress have different effects on the brain. Trauma timing, 
and frequency also impacts differential health outcomes owing 
to neurodevelopmental stages (233). However, the exact timing 
as well as the frequency are difficult to reliably record, since the 
most common type assessment for childhood maltreatment is 
retrospective self-report, which may map relatively poorly on to 
prospective assessments (234).
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In addition, phenotypic measurement and diagnosis for 
children who experience childhood trauma may be ambiguous. 
In diagnosis, children exposed to childhood trauma may 
develop PTSD, but the potential outcomes are not limited to 
PTSD (235). Even with PTSD, there are arguments about the 
diagnostic criteria in DSM-5 (e.g., lack of connection between 
exposure to stressor and some specific symptoms, some very-
well-documented symptoms failing to be captured in DSM-
5, and lack of extensive field trial data (236)). Consequently, 
the term ‘complex PTSD’ has been put forward to describe 
complicated traumatic outcomes not captured by standard PTSD 
(237). Importantly, in behavioral measurement, it is necessary 
to develop appropriate mathematical models and measurements 
to correctly quantify within- and between-individual variability 
(238).In behavioral studies, it is hard to define associations 
between single genetic/epigenetic variants, as behavioral traits 
are usually controlled by multiple genes (239). In the definition 
of childhood trauma induced phenotypes, cultural and ethnic 
differences may bring additional between study heterogeneity 
(240). There are other factors such as sex/gender differences 
in response to stress (241, 242), and the use of different tissues 
(saliva, cord blood, whole blood and peripheral blood) by 
different researchers (243). The latter brings complexity to data 
comparisons since the epigenetic signature differs between and 
within tissues (244).

Crucially, more than one trait contributes to health outcomes 
after experiencing trauma. The same genetic/epigenetic 
modification may impact differently on different traits in one 
individual. For example, 7 repeat (7R) carriers of the DRD4 exon 
III VNTR exhibit the highest sensitivity toward parental-induced 
stress (245); however, they also show a higher level of emotional 
resilience due to the association between the 7R and specific 
personality types (246).

Methodological Heterogeity
Although epigenetics is not a novel concept [the first scientific 
hypothesis of epigenetics was put forward by Malpighi (247) in 
1673, with a key milestone of epigenetic development in 1975 
by Riggis (248), Holliday and Pugh (249)], and may simply 
mean inherited altered gene expression states, it may also refer 
to inter- versus trans-generational effects, where the former 
refers to transmission across one generation, and the latter to 
transmission across multiple generations (250). Historically, 
these terms have been ambiguously defined (247, 251, 252). This 
has led to misunderstandings as well as to bias in methodologies 
and interpretations, especially in interdisciplinary research 
(253). Indeed, inherited epigenetic patterns (254–256) and 
environmental factors (257, 258) other than childhood trauma 
(such as heavy metals (259), parenting style, and early trauma 
such as maternal separation (260)) may all impact the epigenetic 
pattern and hence childhood trauma-induced differential health 
outcomes. However, how much these changes are due to these 
factors, and to what extent, remains, unclear (261).

In regard to methylation, except for CpG methylation, there 
are some non-CpG methylations, such as CpA, CpT, and CpC. 
These are expressed in cell types such as pluripotent stem cells, 

oocytes, neurons, and glial cells. Importantly, these non-CpG 
methylations are critical in maintaining neuronal function and 
are thus involved in neurological disorders (262). Kigar and 
colleagues posited that adenosine methylation could be regarded 
as an epigenetic marker of mammalian early life stress (263). 
However, more research is needed in regard to the above non-CpG 
methylations, and also that of 5-hmC. As for non-coding RNA, 
and histone acetylation, there are to date few investigations of 
associations between these and childhood trauma. Furthermore, 
the various epigenetic mechanisms, such as methylation, histone 
modification and noncoding RNA, while often studied one by 
one, may cooccur and act in concert.

Research has shown that the effects of trauma can be 
intergenerationally passed on through epigenetic mechanisms, 
such as methylation (264). Specifically, childhood trauma has 
been associated with alteration in methylation patterns in human 
sperm, which may induce intergenerational effects. Further 
such analyses in larger samples are required (265). Importantly, 
in addition to epigenetic modifications, other factors, such 
as epimutations (an mutation occur at the epigenetic level), 
fetal reprogramming (266), and even gut microbiome transfer 
(267) may induce intergenerational phenotypic changes. It is 
challenging and costly to investigate/exclude all of these factors 
in one human study.

Sex/Gender Differences
Sex/gender differences exist in this research field. In stress-
related psychiatric disorders, there are sex-associated differences 
in incidence, symptoms and treatment response (268). For 
example, in PTSD, the life time prevalence in females (10-12%) 
is 2-3 times higher than that in males (5-6%) (269). Similarly, 
depression is more common in females than males (268). 
Interestingly, both sex- and gender-related concepts contribute 
to these differences (270).

There are multiple reasons that may explain these 
phenomena, such as differential traumatic exposures, cognitive 
factors, coping strategies and biological factors between 
different sexes. There are also fundamental sex-dependent 
brain differences between males and females, e.g., the size of 
vasopressin (AVP) neurons (271). Moreover, when dealing 
with stress, males and females present different sex-specific 
cortico-striatal and limbic patterns. In the work of Cahill and 
colleagues (272), men showed greater activation of the right 
amygdala; whereas, women showed greater activation of the 
left amygdala when facing stress (272). In addition, brain 
connectivity in response to stress also differs by sex: e.g., there 
was greater connectivity between the anterior and dorsal 
anterior insula, as well as between the anterior and dorsal 
anterior mid-cingulate in males than females after stress (273, 
274).Similarly, Helpman and colleagues showed that males 
present overactivation and increased connectivity of salience 
hubs (including anterior insula (AI) and dorsal anterior 
cingulate cortex (dACC)); whereas, females show an overactive 
and possibly enlarged amygdala. In addition, males lose more 
grey matter after stress in limbic system structures (prefrontal 
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cortex, amygdala and the hippocampus (275). These differences 
contribute to differential fear processing, emotional regulation 
and decision-making. Moreover, males and females cope with 
stress differently. For example, when facing traumatic stress, 
females tend to be more emotion-focused and to use more 
palliative coping skills than males. Also, females tend to seek 
social support more and benefit more from psychotherapies 
(269). Differential stress-related phenotypes between males 
and females are also related to the gonadal hormones, which 
play important roles in the establishment, activation and 
regulation of the HPA axis (276). In animal models, both 
female rats and mice exhibit more robust responses of the HPA 
axis (such as a higher level of ACTH), owing to circulating 
estradiol. In rats, progesterone and estrogen have been shown to 
directly impact the stress response in females (277). Epigenetic 
modifications are also involved in gonadal hormone setting up 
and maintenance of sex differences in the brain, even before 
puberty (278). In rodents, it has been shown that females 
have significantly higher level of methylation in the estrogen 
receptor-alpha (ER-α) promoter than estradiol treated females 
or males (279). Note that, early exposure to estradiol induces 
masculinization/defeminisation (280, 281). Interestingly, these 
sex-dependent epigenetic changes are dynamic across the 
lifespan (279).

Current studies in regard to epigenetics and sex-dependent 
phenotypes mainly focus on steroid hormones and targets 
related to the HPA axis, such as NR3C1, and majority of them are 
association studies, e.g.,the enhanced methylation of NR3C1and 
PTSD risk (145). There are also neurotransmitter specific 
effects in sex differences. For example, in a study by Oswald 
and colleagues, the availability of the dopamine D2 receptor 
(D2R) has been associated with childhood trauma and pleasant 
drug (amphetamine) effects. In males, there was a positive 
association between childhood trauma and pleasant drug effects 
but not in females (282), which suggests that there may be by 
sex differences in the reward pathway after childhood trauma 
(283). Autonomic systems are also different between males and 
females (284), which may also contribute to sex differences in 
stress-induced phenotypes. Groleau and colleagues reported 
higher methylation of the DRD2 promoter in women with an 
eating disorder and a history of childhood trauma versus those 
without such a history (285). Comparison studies between both 
males and females are limited, probably owing to the different 
prevalence within different sexes; in some studies with both 
females and males, the sample sizes were too small to have 
enough power; the comparison study between the differences 
of self-identified gender and biological sex, which may provide 
us the biological and psychological effects about sex-dependent 
stress responses, are limited; in addition, current studies are 
mainly focused on the candidate genes that are related to steroid 
hormones, and they are mainly association studies, which 
can’t provide the information about the causality. Research 
about more in-depth molecular mechanisms between different 
sexes, and their interactions with other genetic, epigenetic, as 
well as environmental factors is limited. Thus, the epigenetic 
contribution to sex-dependent stress-related phenotypes is still 
filed for research exploration.

By sex and gender differences are still relatively new areas of 
research, and hence replications are required and interactions 
between the above components remain to be explored (285–288).

Technical Limitations
Interestingly, it has been reported that epigenetic patterns 
and phenotypic changes can be induced by a single genetic 
variant, combined with random epimutation (289). Hence, it 
has been recommended that when investigating epimutations 
and phenotypic changes, the DNA sequence, replication, 
GC%, and the topological structure of chromosomal 
bands, especially in unstable genomic areas, should be first 
analyzed (290) - in an integrated combined “omic” approach. 
Chromosomal banding was first used with light microscopy 
and divides chromosomes into regions visible at that level of 
magnification. These regions include G bands, which have a 
lower number of genes and lower gene expression level, which 
replicate late in the cell cycle, and R bands, which have a 
higher gene number, GC content and expression levels (291). 
Alterations in the topological structure of chromosomal 
bands have been associated with changes in gene expression 
and thus with phenotypes (292–294).

In epigenome-wide association studies (EWAS), although 
these provide the opportunity to investigate epigenetic variants 
(methylation, noncoding RNA and histone modification) on 
a genome-wide level, which could assist with identification of 
disorder-related markers in different populations (295), the 
individual CpG sites detected by array methods are limited 
(296). Genome-wide sequencing approaches can be helpful, 
but DNA methylation sequencing at a depth to reliably detect 
the small changes often observed in mixed tissues in human 
studies is very costly. Targeted assays with high sensitivity 
covering functionally relevant regions could be an interesting 
complement here (297). Nonetheless, issues such as cost, 
speed of delivery, errors of variant annotation, logical and 
methodological issues (e.g., the appropriate selection of the 
cohort, population stratification and statistical approaches) 
remain in human genomic and epigenomic studies (298, 299). 
Consequently, multiple validations via more than one method 
might bring more reliability.

New Directions
New technologies and strategies have emerged in this field. For 
example, the nanopore sequencing framework, able to distinguish 
five types of methylation variants with high-throughput (300). 
The usage of this technology reduces sample preparation 
processes and increases the detection speed (300). In addition, 
nanopore sequencing is able to detect 5-hmC (301), which is 
not adequately covered by traditional array/bisulfite sequencing 
methods. We suggest a more in-depth investigation of molecular 
mechanisms including 5-hmC in relation to childhood trauma 
related effects.

In living cells, fluorescence recovery after photobleaching 
(FRAP) has been reported to be able to detect histone mobility 
(302), which permits real-time investigation of dynamic histone 
modification. In regard to chromatin structure, Stevens and 
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colleagues reported that the combination of chromosome 
conformation capture (3C) and tagged fluorescent imaging was 
able to detect the folding of a genomic sequence <100bp in a 
single cell (303). This provides the opportunity to investigate 
how epigenetic modifications dynamically and spatially mold 
chromosomes and thus, cellular function and related phenotypes 
in animal models in vivo.

In addition, the CRISPR-CAS9 system can be used to 
study targeted genetic/epigenetic variant-induced phenotypic 
changes in animal models. In fact, usage of a modified 
CRISPR-cas9 system has been expanded beyond genome 
editing, to RNA targeting, chromatin topology, chromatin 
imaging, and developmental trajectories as well as to lineage 
tracing (188, 304). Since the effects of childhood trauma 
are neurodevelopmental stage-sensitive, a tracing-based 
technique may provide us with information about when 
sensitive periods toward different stress are, and how stress 
impacts on neuronal differentiation (305). The CRISPR-
cas9 system can also be used as an effective tool to edit 
the epigenome (306). Liao and colleagues reported that 
the endogenous gene was activated via trans-epigenetic 
remodelling by using a CRISPR-cas9 system, and phenotypic 
changes were observed in acute kidney injury, type 1 diabetes 
and Duchenne muscular dystrophy rodent models (307). 
Thus, epigenome editing may help us to better understand the 
molecular mechanisms in diverse stress-related phenotypes 
with known targeted sequences. More in-depth molecular 
insight may also be helpful for improving the definitions and 
diagnoses of different psychiatric phenotypes.

Given the cell-type specificity of epigenetic changes, 
achieving single cell-, or at least single cell type-resolution is 
also an important goal. Single cell sequencing is able distinguish 
methylated changes in different cell types, and thereby reduce 
in errors/bias. Using such techniques in combination with 
sex-dependent stratification, different network mechanisms in 
males and females may be distinguished. So far, a number of 
single cell sequencing techniques have in fact been developed 
to facilitate investigation of methylation (308). For example, 
single-cell nucleosome, methylation and transcription 
sequencing (scNMT sequencing), combining epigenome 
and transcriptome data, are able to detect several “layers” 
of epigenomic and molecular dynamic coupling processes 
(309). Psychiatric disorders are more regarded as network 
dysfunctions (310). As mentioned above, focusing on only one 
cell type, brain area or neuronal pathway may not be sufficient. 
Thus, a combination of single cell sequencing and a pathway 
approach to the analysis of methylation patterns similar to 
network analysis in genomics (as exemplified by weighted gene 
coexpression network analysis or WGCNA) could be fruitful 
in this field.

Furthermore, the assay for transposase-accessible chromatin 
by sequencing (ATAC-seq) is able to get access to DNA 
sequences in open chromatin and to produce high quality data 
with a low background in a high-through output way (311). 
When being used at the single cell level, ATAC-seq detects DNA 
regulatory variations, e.g., trans-factors, cis-elements, which 

have been associated with induction or suppression of cell-to-
cell variability. Such DNA variation data can be combined with 
chromatin accessibility and thus form a three-dimensional 
informative “regulome” in the genome (312). The concept of 
“connectomics” put forward by Fornito and colleagues, may also 
benefit this field of research (313). “Connectomics” was originally 
characterized as brain-network topological regulation of neural 
activities after injury (313). The combination of the different 
“omic,” such as genomic, epigenomic, transcriptomic, and even 
connectomics studies, may form interesting perspectives about 
how genetic/epigenetic and their molecular and topological 
mechanisms impact different cells and brain areas, and thus, 
stress-related phenotypes. So far, combined “omic” studies such 
as the combination of GWAS data with enhancer enrichment 
profiles, RNA sequencing data (RNA-seq) and chromatin status 
have been utilized (314). The integration of in vitro cell culture 
and multi “omic” analysis in the investigation of human germline 
epigenome reprogramming has been reported, producing 
some hints about the origin of neuropsychiatric disorders and 
transgenerational inheritance (315, 316).

In summary, by using new technologies, “omic” analysis 
and “big data”-integration of data from different platforms in a 
system biology approach-bias will be reduced and understanding 
of molecular mechanisms will be deepened (317). In the 
future, integration of genomics, epigenomics, transcriptomics, 
proteomics, metabolomics, regulomics, and connectomics 
could shed light on both basic biological processes in response 
to childhood trauma and disorder-related mechanisms, and 
thereby produce innovations in mental health and addiction 
health service provision.
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