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Hypofunction of N-methyl-D-aspartate glutamate receptors (NMDARs), whether caused 
by endogenous factors like auto-antibodies or mutations, or by pharmacological or genetic 
manipulations, produces a wide variety of deficits which overlap with—but do not precisely 
match—the symptom spectrum of schizophrenia. In order to understand how NMDAR 
hypofunction leads to different components of the syndrome, it is necessary to take into 
account which neuronal subtypes are particularly affected by it in terms of detrimental 
functional alterations. We provide a comprehensive overview detailing findings in rodent 
models with cell type–specific knockout of NMDARs. Regarding inhibitory cortical cells, 
an emerging model suggests that NMDAR hypofunction in parvalbumin (PV) positive 
interneurons is a potential risk factor for this disease. PV interneurons display a selective 
vulnerability resulting from a combination of genetic, cellular, and environmental factors 
that produce pathological multi-level positive feedback loops. Central to this are two 
antioxidant mechanisms—NMDAR activity and perineuronal nets—which are themselves 
impaired by oxidative stress, amplifying disinhibition. However, NMDAR hypofunction 
in excitatory pyramidal cells also produces a range of schizophrenia-related deficits, in 
particular maladaptive learning and memory recall. Furthermore, NMDAR blockade in the 
thalamus disturbs thalamocortical communication, and NMDAR ablation in dopaminergic 
neurons may provoke over-generalization in associative learning, which could relate to the 
positive symptom domain. Therefore, NMDAR hypofunction can produce schizophrenia-
related effects through an action on various different circuits and cell types.

Keywords: schizophrenia, psychosis, N-methyl-D-aspartate receptor, N-methyl-D-aspartate receptor hypofunction, 
parvalbumin, ketamine, MK-801, catatonic schizophrenia

INTRODUCTION: THE GLUTAMATE HYPOTHESIS 
OF SCHIZOPHRENIA
Schizophrenia is characterized by a wide range of symptoms, classically grouped into positive 
(hallucinations, delusions, disordered thought), negative (social withdrawal, anhedonia, apathy), 
and cognitive (deficits of attention, working memory, cognitive flexibility) domains (1, 2). Despite 
decades of research, the circuit basis of schizophrenia remains elusive, hampering progress in 
diagnosis and treatment.
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No major breakthrough has been made in drug discovery 
for schizophrenia treatments since the introduction of the 
most effective atypical antipsychotic clozapine in 1971 (3, 4). 
All antipsychotic drugs currently approved for schizophrenia 
therapy have in common that they decrease signaling through 
dopamine D2 receptors (D2Rs), and are most effective on positive 
symptoms. However, negative and cognitive symptoms are largely 
resistant to currently available medication, and even positive 
symptoms respond only partially to the usual antipsychotic 
drugs, which in turn have significant side effects (1). Therefore, 
different treatment targets—not relying on dopamine receptor 
antagonism—are urgently required.

In that context, the so-called “glutamate hypothesis”—the 
assumption that aberrant glutamatergic signaling is at the 
core of schizophrenia pathology—has sparked the most hope. 
The only two new specific targets tested in phase III clinical 
trials in the last two decades in schizophrenia patients—the 
metabotropic glutamate receptor type 2/3 (mGluR2/3) (5–8) 
and the glycine transporter 1 (GlyT1) (9), which affects levels 
of the N-methyl-D-aspartate (NMDA) receptor (NMDAR) 
co-agonist glycine—result from work pointing to abnormal 
glutamatergic transmission in schizophrenia. A third target 
currently under investigation, D-amino acid oxidase (DAAO) 
(10), which also indirectly affects occupancy of the NMDAR 
co-agonist site, is also based on the “glutamate hypothesis.” 
A central pillar of this hypothesis is that hypofunction of 

NMDARs causes some or all of the symptoms of schizophrenia 
(11–13). NMDAR hypofunction may be a precursor to deficits 
in synaptic plasticity which have also been strongly linked to 
the disorder (14). The core question for preclinical research in 
this context is whether the NMDAR itself, or molecules that 
affect its activity, are appropriate drug targets in established 
schizophrenia. In turn, this can only be evaluated when the 
molecular phenomenon of NMDAR hypofunction is spelled 
out mechanistically in the context of neural circuits—i.e. 
when it is clarified which cell types in different brain 
structures are affected by NMDAR hypofunction and how 
such altered signaling could cause different aspects of the 
complex symptoms characterizing the disease.

LINKING NMDAR HYPOFUNCTION TO 
SCHIZOPHRENIA: GENETIC EvIDENCE
The glutamatergic synapse, and in particular the NMDAR, is 
one of the most prominent points of convergence of genetic 
risk factors for schizophrenia (15–17). Reduced expression of 
the obligatory NMDAR subunit GluN1 (also known as NR1; 
encoded by GRIN1) and also of GluN2C (NR2C, encoded by 
GRIN2C) has been reported in post-mortem prefrontal cortex 
tissue of schizophrenia patients (18, 19). In addition, the GRIN2A 
and GRIN2B genes, encoding the GluN2A (NR2A) and GluN2B 

FIGURE 1 | Risk genes and molecules producing N-methyl-D-aspartate receptor (NMDAR) hypofunction and their effects on different cell types. Overview of three 
different categories of risk genes or NMDAR-antagonistic molecules which may produce NMDAR hypofunction (yellow boxes). The expression of different GluN2-
subunits by different cell types may be a key driver of differential vulnerability of specific types of neurons in schizophrenia. The extent of GluN2B expression in 
interneurons and GluN2A expression in pyramidal cells is uncertain, as conflicting results exist in the literature and public databases, but they are likely to be small, 
at least in prefrontal cortex (see main text).
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(NR2B) subunit of the NMDAR respectively, are identified 
schizophrenia risk genes (Figure 1) (16, 17).

At least one GRIN2B risk allele (rs1805502) is associated 
with decreased expression of GluN1 in patients (18). 
Moreover, exome-sequencing studies revealed that rare 
damaging mutations in GRIN1, GRIN2A, and GRIN2B, 
which are expected to cause NMDAR hypofunction directly, 
are found in samples from schizophrenia patients, but not 
controls (20, 21).

Experiments in mice provide further support for a link between 
schizophrenia and hypofunction of GluN2A and GluN2B: Global 
ablation of Grin2A causes spatial working/short-term memory 
deficits (without impairing basic spatial processing) (22). Further, 
pharmacological blockade of GluN2B alone is sufficient to cause 
behavioral abnormalities in rodents, in particular increased 
locomotor activity, which has been likened to psychosis (23, 24), as 
well as reduced cognitive flexibility (25), but does not recapitulate 
the entire profile of schizophrenia, at least as far as the disease can 
be modeled in rodents. For instance, pharmacological GluN2B 
blockade does not affect pre-pulse inhibition and may increase 
motivation, working memory, processing speed, sustained 
attention, and also motor impulsivity (23, 24, 26–29)—note, 
however, that these pharmacological results can contrast strongly 
with the schizophrenia-related deficits seen with cell type–specific 
Grin2B-ablation in mice (see below).

Risk genes other than those encoding NMDAR subunits 
may affect the production or degradation of D-amino acids 
that act as obligatory co-agonists at the NMDAR, especially 
of D-serine (Figure 1). This includes the genes encoding the 
D-serine producing enzyme serine racemase (SR), the D-serine 
degrading enzyme D-amino acid oxidase (DAAO, encoded by 
DAO), and its activator DAOA, also termed G72 (30). Four 
other risk genes—dysbindin (DTNP1), neuregulin 1 (NRG1), 
neuregulin 2 (NRG2), and the NRG1/2-receptor ErbB4 
(ERBB4)—are implicated in regulating NMDAR function 
and synaptic plasticity, and their expression is altered in post-
mortem tissue in schizophrenia: downregulation of DTNP1 
in hippocampal and cortical tissue has been reported in 
schizophrenia patients, and Dtnp1 knockout in mice leads to 
reduced expression of NMDARs and correlates with working 
memory impairments (31, 32). Increased neuregulin 1–ErbB4 
signaling has been reported in the frontal cortex in patients 
and suppresses NMDAR activation (33, 34), modulating 
GluN2B subunits in particular (35). Two studies also found 
increased neuregulin 1 expression in post-mortem tissue from 
prefrontal cortex (36) and hippocampus (37) of schizophrenia 
patients, although a third did not detect this pattern (35).

Similarly, neuregulin 2 expression leads to internalization 
of GluN2B-containing NMDARs in cortical interneurons, but 
is also itself decreased by NMDAR activation (38). Neuregulin 
2 expression is, however, reduced in schizophrenia patients 
(36), and Nrg2 knockout in mice leads to a wide range of 
schizophrenia-related and partly clozapine-responsive deficits 
(reduced prefrontal dopamine, novelty- and amphetamine-
induced hyperlocomotion, and impairments of T-maze working 
memory, sociability, and pre-pulse inhibition) (39). Finally, 

exome sequencing has revealed rare schizophrenia-related 
damaging mutations in the gene encoding the tyrosine-kinase 
FYN, which regulates NMDAR-trafficking (20, 21).

LINKING NMDAR HYPOFUNCTION TO 
SCHIZOPHRENIA: PHARMACOLOGICAL 
EvIDENCE
Support for the NMDAR hypofunction hypothesis of 
schizophrenia also comes from the observation that ketamine 
and phencyclidine (PCP), which are use-dependent non-
competitive blockers of the NMDAR-channel, induce 
cognitive, negative, and positive symptoms of the disease (and 
increased dopamine signaling) in humans and rodents (13). 
The finding that dopaminergic agonists, in contrast, may only 
reproduce positive symptoms is central to the proposal that 
NMDAR hypofunction is causally upstream of dopaminergic 
aberrations in schizophrenia (11, 40, 41). Importantly though, 
both PCP and ketamine have also been reported to act as 
agonists on D2Rs as well, they display a similar affinity for 
D2Rs as for NMDARs and a considerably higher affinity for 
the high dopamine-affinity functional state D2RHigh (42–45). 
Such D2R-agonism could contribute synergistically to the 
psychotomimetic effects of PCP and ketamine. Also, low-
affinity binding of both drugs to 5-HT2 receptors has been 
suggested (42) but has not been confirmed by others (46). 
Low-affinity binding of PCP to the serotonin transporter 
(SERT) has also been found (47, 48), but the contribution to 
its psychotomimetic effects are unclear. Finally, ketamine—
through its main metabolite hydroxynorketamine—also 
increases expression of prefrontal and hippocampal AMPA 
glutamate receptor subunits, alters striatal BDNF signaling, 
and—just like ketamine itself—increases Gs-protein mediated 
signaling, including cAMP response element binding (CREB) 
protein levels, independently from NMDARs (49, 50).

The similarity between the psychological effects of 
NMDAR blockers in humans and symptoms of schizophrenia 
was described in a large review of over two dozen studies, 
which report the effects of PCP when used as an anesthetic 
or recreationally, or when administered experimentally in 
schizophrenia patients (51). This evidence was complemented 
with several subsequent controlled studies using ketamine 
(11, 52–54). Some studies showed that ketamine (55) or 
PCP (51, 56–58) may re-institute psychotic symptoms in 
therapeutically stabilized patients with schizophrenia. 
Notably, in healthy humans, ketamine induces a resting state 
connectivity pattern (especially involving the prefrontal 
cortex) that resembles the brain state of the prodrome and 
early-stage schizophrenia, rather than the chronic brain state 
in schizophrenia (59).

Furthermore, there is evidence that maternal PCP abuse 
during pregnancy (putatively causing NMDAR hypofunction 
in the developing brain) increases the risk for developing 
schizophrenia later in life (60). Complementary rodent 
studies show that NMDARs have a crucial role in virtually all 
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processes of cellular neuronal development (61, 62), leading 
to alterations of neuronal circuits (63) and behavior later 
in life (64).

SCHIZOPHRENIA DOES NOT EQUAL 
NMDAR BLOCKADE: A NEED TO REFINE 
THE FRAMEwORK
While the evidence summarized above supports an association 
between NMDAR hypofunction and schizophrenia, several 
recent studies call for qualification of some earlier conclusions.

Firstly, the specific deficits seen with PCP and ketamine 
do not precisely recapitulate the specific symptoms seen 
in patients with schizophrenia. The apparent discrepancy 
might, at least in part, result from over-generalization 
during symptom classification, for instance when referring 
too airily to “symptom domains.” One recent study 
evaluated the experiences reliably induced by ketamine—as 
reported by recreational drug users; the experience items 
of the questionnaire used in this study had previously been 
matched to distinct psychiatric disorders by professional 
psychiatrists. Notably, ketamine was not reported to reliably 
induce experiences that cluster specifically within any of the 
cognitive, positive, or negative domains of schizophrenia 
as opposed to other psychiatric disorders (e.g. depression) 
(65). In fact, non-glutamatergic drugs such as psilocybin and 
amphetamine provided a better match (65).

Another study demonstrated that the psychotic 
experiences induced by ketamine, especially body image 
disturbances and “out-of-body” experiences—also described 
in previous PCP-studies (51, 66)—do not correspond to 
psychotic symptoms seen in schizophrenia (66). The effects 
seen after higher doses of PCP (e.g. 10 mg PCP i.v.) may be 
better categorized as “delirium” as defined by DSM-V (66, 
67). There is also evidence that the use of ketamine as an 
anaesthetic seems to be tolerated by schizophrenic patients 
at least as well as, if not better than, depressed subjects (68). 
The specificity of symptom-matching required to evaluate the 
suitability of this pharmacological model also raises a note 
of caution for preclinical research, which does not even come 
close to the level of precision in measuring psychological 
deficits achieved in humans.

Secondly, there are questions surrounding data from 
mouse models designed to exhibit reduced NMDAR 
function. So-called NMDAR hypomorph mice which 
have a 90–95% reduction of NMDAR levels exhibit a very 
wide range of behavioral and physiological abnormalities 
not restricted to those related to schizophrenia (69–74). 
Indeed, there were no behavioral assays on which these 
mice performed normally. Thus, these mice exhibit a global 
behavioral impairment, and it is impossible to determine 
what psychological processes are disrupted in these mice. 
For instance, they also show altered ultrasonic vocalizations 
and increased repetitive behavior which are more suggestive 
of autism (75). Likewise, electrophysiological biomarkers 
of both schizophrenia and autism are found (69, 75). In 

essence, these mice may not show a specific schizophrenia-
related endophenotypic profile.

Thirdly, although the identification of anti-NMDAR 
encephalitis as an important neurological disease with marked 
psychotic features (76, 77) at first sight provides a direct link to 
schizophrenia (78), the syndromes exhibit important differences. 
These patients develop an autoimmune disorder associated with 
antibodies targeting the extracellular domain of the obligatory 
NR1 (GluN1) subunit present in all NMDARs, leading to 
receptor clustering and internalization (79). In primary neuronal 
cultures, patient antibodies can reduce the surface expression 
of NR1 in both excitatory and inhibitory neurons (80). Some 
patients experience symptom patterns that are remarkably 
similar to schizophrenia—including positive symptoms such 
as hallucinations, delusions, and agitation; deficits in attention, 
executive functioning, working, and short-term memory present 
in around 50% of patients (77, 81–83). A further common 
endophenotype of both diseases is increased delta oscillations 
(84, 85). However, these schizophrenia-like symptoms do not 
occur in all patients with anti-NMDAR encephalitis, and negative 
symptoms are rather rare (86). Furthermore, deficits unrelated to 
schizophrenia such as hyper-religiosity, strong speech reduction 
and disintegration, high anxiety and impulsivity, epileptic 
seizures, breathing problems, and autonomic instability are 
common. Given the frequent occurrence of rigidity, mutism, or 
dystonia (83), there might be parallels to catatonic schizophrenia 
(a sub-category, which has, however, been separated from 
schizophrenia in DSM-V), but, overall, NMDAR encephalitis 
appears to extend beyond and is not a perfect match for 
schizophrenia (86). This conclusion is supported by the very 
different temporal trajectories of pathologies in the two disorders 
with a rapid onset of symptoms in NMDAR encephalitis (86) but 
a more prolonged (likely neurodevelopmental) disease course 
over multiple years in schizophrenia (87).

A final note of caution derives from the limited clinical 
success of pharmacological enhancement of NMDAR function. 
Several phase III clinical trials evaluating the GlyT1 inhibitor 
bitopertin, which elevates extrasynaptic levels of the NMDAR 
co-agonist glycine, have failed to show significant symptom 
improvements (9, 88). Moreover, a meta-analysis of the 
therapeutic efficacy of glycine, D-serine, and other NMDAR 
co-agonists or positive modulators revealed that—while these 
drugs had small-to-medium significant beneficial effects 
when given to non-clozapine-treated schizophrenia patients 
(with glycine having qualitatively a larger effect-size than 
D-serine)—none of the approaches was superior to therapy 
with clozapine (89); for a review, see (90). In line with these 
results, knockout mice lacking serine racemase failed to show 
key deficits expected for a mouse model of schizophrenia, 
including no impairment of social interaction or various 
forms of short-term memory (91). Furthermore, the evidence 
that the glycine-binding site can be activated by these drugs is 
actually quite weak. Indeed, the lack of strong effects might be 
due to the fact that this binding site is already largely saturated 
(92, 93). On the other hand, the DAAO inhibitor sodium 
benzoate, which blocks degradation of D-serine, has shown 
promising effects on positive and negative symptoms (10). 
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Several clinical trials with DAAO inhibitors are underway. 
Providing a potential proof of concept for DAAO inhibitors, 
genetic ablation of DAAO in mice results in enhancement of 
multiple forms of short-term memory—but not long-term 
memory (94, 95).

In summary, numerous studies link NMDAR hypofunction to 
schizophrenia-related deficits in humans and animal models, but 
the actual nature and extent of its contribution to the causation 
of human schizophrenia remains uncertain. The effects of 
global NMDAR antagonism exceed the symptom spectrum of 
schizophrenia. This discrepancy might be explained if NMDAR 
hypofunction in human schizophrenia is only partial (i.e. 
weaker than, for example, in anti-NMDAR encephalitis), and 
potentially causes aberrations across many years of learning 
and brain development, reflective of the neurodevelopmental 
nature of schizophrenia (87). Another possibility explored in 

the remainder of this review is that schizophrenia might be 
associated with NMDAR hypofunction in only some cell types 
of the brain, but not others. These alternative explanations are, of 
course, not mutually exclusive.

DOES NMDAR BLOCKADE EXERT 
ITS EFFECTS PRIMARILY THROUGH 
INTERNEURONS?
Pharmacological blockade of NMDARs by ketamine or PCP 
leads to an increase in extracellular glutamate levels (96). 
Elevated glutamate in the hippocampus and prefrontal cortex 
has also been suggested to occur in patients with schizophrenia, 
measured using magnetic resonance spectroscopy (MRS) 
(97), although the relationship between glutamate detected 

FIGURE 2 | Effects of acute and chronic blockade of NMDARs. (A) Baseline state with GluN2 NMDA receptor subunit types most prevalent in each of the three 
cortical neuron classes (somatostatin-positive interneuron, SST; glutamatergic pyramidal cells, PCs; parvalbumin-positive interneuron, PV) color-coded. SST and 
PV interneurons provide inhibition to pyramidal cells. (B) PCs express mainly GluN2B-containing NMDARs that are less sensitive to ketamine and strongly blocked 
by magnesium ions at normal (hyperpolarized) resting membrane potential; in some areas they might also express GluN2A subunits, which are similar in terms of 
sensitivity to magnesium and ketamine. NMDARs containing GluN2C (on PV cells) and GluN2D (on PV and SST cells) (78, 102–106), in contrast, may be more 
sensitive to ketamine (107), and are hardly blocked by magnesium (107–109), therefore contributing to the glutamate-mediated excitation of these cells even at 
non-depolarized resting potential. [Although note that a recent RNAseq study questions the notion that GluN2C/D are strongly expressed in neocortical PV cells 
(110, 111)]. Consequently, when ketamine is applied, glutamatergic excitation of SST and PV cells could be strongly reduced, while excitation of PCs is not altered 
much, and the activity in the circuit increases due to disinhibition. Note, that—as an important qualification of this model—NMDARs are only weakly expressed by 
the somata of PV cells, but they occur in their presynaptic terminals, and their blockade reduces release of their inhibitory neurotransmitter GABA (see main text). 
Also, this model is complicated by the fact that the affinities of different GluN2-subunits differ for the two NMDAR blockers frequently used to model schizophrenia, 
ketamine and MK-801, and, furthermore, that the relevant literature is inconsistent. While one study reported nearly equal efficacies of MK-801 for all GluN2-
subunits (112), another study reported nearly equal efficacies for ketamine but a 10-fold higher efficacy of MK-801 on GluN2A/B relative to GluN2C/D (108, 113). 
A more recent study demonstrated a high selectivity of ketamine for GluN2C/D over GluN2A/B, and additionally reported that the discrepancy with the earlier study 
might have been due to lack of Mg2+ (114, 107). Also note that a further blocker applied frequently in both humans and animals, phencyclidine (PCP), seems to 
cause schizophrenia-related abnormalities preferentially by blockade of GluN2D-NMDARs (115), similarly to ketamine (116). (C, D) Repeated blockade of NMDARs 
on pyramidal cells and PV interneurons (C) results in an adaptive increase of NMDAR expression in PCs, but a reduction of NMDAR expression in PV cells (D) (117). 
This means that the contribution that NMDARs make to the excitation of these two neuron classes shifts, which could be responsible for the observed overactivity 
of the hippocampus produced by chronic ketamine, and could make the circuit prone to different responses (e.g. leading to catatonic states of schizophrenia) when 
global blockade of NMDARs occurs again (see main text). Note, however, that the adaptation shown in (C, D) has been shown in prefrontal cortex using MK-801, 
while the mechanisms in acute blockade (A, B) largely reflect data collected in the hippocampus and usage of ketamine or PCP.
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using MRS and extracellular (synaptic or extrasynaptic) 
levels of glutamate remains uncertain. In rodents, NMDAR 
blockade has been reported to lead to increased activity 
of excitatory neurons and release of glutamate (98–101). 
This counterintuitive finding, that the blockade of a major 
excitatory ionotropic receptor leads to an elevated activity of 
cortical excitatory cells releasing glutamate, has been explained 
by a preferential decrease of NMDAR-mediated excitatory 
drive on to inhibitory cells within the circuit, leading to a net 
disinhibition of excitatory cells (78, 99) (Figure 2).

So far, however, this local disinhibitory mechanism has only 
been demonstrated in the CA1-network of the hippocampus 
(101). The observed increase of excitatory activity in prefrontal 
cortex (mPFC) (99) appears to be a consequence of NMDAR 
blockade in the hippocampus or/and thalamus, rather than local 
disinhibition in the mPFC (101, 118–121).

Both acute and chronic application of ketamine in mice 
increases glutamate release in the ventral hippocampus, 
corresponding to hyperactivity of the anterior hippocampus in 
patients (98). However, while acute blockade of NMDARs leads 
to elevated dopamine release in the prefrontal cortex (122, 123), 
repeated treatment blunts prefrontal dopamine release and—in 
contrast to acute application—also decreases mismatch-negativity 
and both the power and coherence of gamma oscillations (124). 
Given that schizophrenia patients also show reduced prefrontal 
dopamine release (125), the adaptation to NMDAR hypofunction, 
rather than—or in addition to—NMDAR hypofunction itself, 
could be important to the pathophysiology of the disease.

LOCALIZING SCHIZOPHRENIA-
RELATED NMDAR HYPOFUNCTION 
TO PARvALBUMIN-POSITIvE 
INTERNEURONS
To date the most influential version of the NMDAR hypofunction 
hypothesis of schizophrenia localizes this defect to interneurons 
that express the calcium-buffer protein parvalbumin (PV, 
encoded by PVALB), which are typically fast-spiking and 
implicated in gamma oscillations (41). PV interneurons 
appear to react uniquely when NMDAR hypofunction is 
induced globally: For example, in rodents PV expression is 
reduced following MK-801 (126–128), PCP (129), or ketamine 
treatment (130, 131) [although see (132)], potentially due to 
hypermethylation of the Pvalb promoter (133). This recapitulates 
the reduced expression of PV found post-mortem in cortical 
tissue from schizophrenia patients (134, 135), which is expected 
to alter GABAergic output from PV interneurons given that 
PV buffers calcium during the high-frequency firing of these 
interneurons (41, 136, 137). Also, acute NMDAR antagonism by 
MK-801 leads to a chronic reduction of NMDAR expression in 
PV interneurons but not in the vast majority of other neurons 
(117). Furthermore, increased expression of NRG1 in transgenic 
mice, reproducing an endophenotype in patients (36, 37), leads 
to reduced NMDAR expression in PV-positive basket cells of 
the hippocampus, although CCK-positive cells also show this 

pattern (138). Interestingly, the NRG1-receptor ErbB4, encoded 
by a schizophrenia risk gene (16), is preferentially expressed in 
PV and other hippocampal interneurons, but not pyramidal cells 
(139), and may regulate NMDAR expression also in response 
to the NRG1-homolog NRG2, which is expressed by those 
interneurons themselves (38).

FROM NMDAR HYPOFUNCTION TO Pv 
INTERNEURON HYPOFUNCTION
The PV cell population itself includes several subtypes, and 
there is continuing uncertainty regarding which population and 
which brain region (the hippocampus, the prefrontal cortex, the 
neocortex as a whole, or other brain areas such as the thalamus) 
is the most relevant. The most prominent account (41), which 
has become known as the “Lisman/Grace model,” assumes that 
NMDAR hypofunction in PV interneurons of the CA1-subfield 
of the human anterior hippocampus (corresponding to the rodent 
ventral hippocampus) is the key starting point of schizophrenia 
pathology (Figure 3).

From the outset, this seems to be an unlikely scenario, 
since PV cells have very low expression of NMDA receptors 
compared to other neuron types in this region (140). In fact, PV 
interneurons across the brain (in common with other medial 
ganglionic eminence–derived interneurons) have relatively 
small NMDAR-mediated currents and, conversely, a high 
synaptic calcium current through inward-rectifying calcium-
permeable AMPA-receptors (141). This implies that a reduction 
of NMDAR expression might not be expected to reduce the 
excitation or calcium influx in PV cells appreciably. However, 
it is important to note that there are input-specific differences 
in the magnitude of NMDAR currents recorded in CA1 PV 
interneurons (142). More specifically, Schaffer collateral feed-
forward inputs onto PV-basket cells—as recorded in (141)—have 
vastly lower NMDAR currents compared to feedback inputs 
from within CA1 (142, 143). This likely has consequences for 
dendritic computations in PV interneurons, as has been shown 
with NMDAR-dependent supra-linear summation of local CA1 
inputs (143).

However, a key twist in this model (which posits a deficit 
of NMDAR signaling in PV cells as a core pathological 
mechanism, Figure 3) is the assumption that NMDARs in 
such PV interneurons serve primarily as sensors of the overall 
glutamatergic activity present in a local circuit—thereby 
obviating the need for a receptor to be present in large quantities 
in order to have strong effects (41). Lower activation of NMDARs 
and a resulting decrease in calcium entry could signal reduced 
overall excitatory network activity and lead to a homeostatic 
downregulation of inhibitory output from PV cells in order to 
maintain the excitation/inhibition balance. Reduced expression 
of the primary GABA-producing enzyme GAD67 (encoded 
by GAD1) and PV could then reflect adaptive reductions of 
inhibitory output, and are indeed seen in post-mortem cortical 
tissue from schizophrenia patients (134, 144, 145). While the 
number of neocortical PV interneurons does not seem to 
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decrease in schizophrenia, about half of them lack GAD67 (at 
least in prefrontal and anterior cingulate cortex) (135, 146, 147), 
and may thereby lose their ability to exert an inhibitory influence 
on the network (148, 149). Notably, the expression of GAD67 and 
PV seems to be constantly changing even under physiological 
conditions, depending on sensory experience and memory 
formation (150). This implies that a pathological situation that 
decouples NMDAR activity in PV cells from actual glutamate 
release in the circuit could lead to a maladaptive reduction of 
GABA release from PV interneurons (41).

The nature of this decoupling is unclear. Post-mortem findings 
in schizophrenia have reported reduced NMDAR expression in 
multiple cell types, including interneurons, but notably PV cells 
were not disproportionately affected (146, 151, 152). However, the 
GluN2C subunit, which is much more prominently expressed in 
cortical PV interneurons than pyramidal cells according to some 
studies (102, 103, 117)—but not others (110, 111)—is indeed 
downregulated in the prefrontal cortex (18). Alternatively, a 
decrease in levels of NMDAR co-agonists (D-serine, glycine; for 
example due to genetic changes in the schizophrenia risk genes 
SR, DAO, or DAOA/G72) or increased levels of endogenous 

NMDAR blockers such as zinc or kynurenic acid, could play 
a role (Figure 1). The tryptophan-degradation metabolite 
kynurenic acid, which is also an endogenous non-specific 
antagonist of the NMDAR glycine site, exhibits elevated levels 
in the cortex (153) and cerebrospinal fluid (154) in patients with 
schizophrenia. Application of kynurenic acid induces spatial 
working memory deficits in rodents (155), while blockade of its 
production enhances cognition (156) and reduces firing activity 
of ventral tegmental area (VTA) dopamine neurons, as would 
be predicted from a specific augmenting action on inhibitory 
neurons of the ventral hippocampus (41, 157). However, it is 
unclear why such global NMDAR hypofunction should affect 
PV cells with relative specificity.

In the Lisman/Grace model (Figure 3), at the circuit level 
the proposed key downstream consequences of the resulting 
disinhibition of CA1 pyramidal cells are hyperactivity of the 
anterior hippocampal output stage, the subiculum, and excess 
activation of dopamine neurons in the VTA resulting from 
a disinhibitory loop through the nucleus accumbens and the 
ventral pallidum (41). Virtually all of those physiological 
aberrations have been documented in patients with 

FIGURE 3 | Circuit model of NMDAR hypofunction induced deficit of PV neurons. The original model by Lisman et al. (41) proposed that parvalbumin-positive (PV) 
interneurons of the CA1 region of the human anterior (rodent ventral) hippocampus is the primary location of NMDAR hypofunction in schizophrenia. Reduced 
NMDAR activity in these PV cells is supposed to lead to a downregulation of PV and Gad67 expression and thereby of the GABAergic output of PV cells and 
resulting disinhibition of surrounding excitatory glutamatergic (Glu) cells. The resulting disinhibition of CA1 excitatory glutamatergic projection neurons would lead 
to overactivation of the output stage of the hippocampus (subiculum) as seen in patients (98), and through a disynaptic loop through the basal ganglia cause a 
hyperactivity of ventral tegmental area (VTA) dopamine (DA) neurons innervating the nucleus accumbens (potentially causing psychosis) and also the hippocampus 
(positive feedback loop).
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schizophrenia, and the control of VTA dopamine neurons 
by the subiculum has been established in rodents (158, 
159). However, it is as yet unclear if such a hyperactivity of 
the hippocampal output actually results from a decrease of 
inhibitory output from CA1 PV interneurons. While direct 
chemogenetic silencing of hippocampal PV interneurons 
failed to evoke behavioral correlates of elevated VTA-
dopamine activity—elevated locomotion and amplification 
of amphetamine-induced locomotion—inhibition of 
other hippocampal interneurons (specified by GAD2-
expression) was able to do so (160). Also, putative blockade 
of GluN2A-containing NMDARs, which are particularly 
prominent in PV interneurons (117, 161), does not appear 
to cause hyperlocomotion at all (23). On the other hand, 
mouse models in which hippocampal PV interneurons are 
permanently reduced in numbers did recapitulate core deficits 
of schizophrenia, including hippocampal hyperactivity and 
increased novelty-induced hyperlocomotion which was 
partially resistant to anti-dopaminergic treatment (162, 163). 
It should be noted that although the characteristic increase 
of locomotion (a rodent correlate of positive symptoms) 
seen with stimulation of the ventral subiculum is usually 
attributed to increased VTA dopaminergic activity (41, 159), 
the locomotion-inducing effect of NMDAR blockers may not 
entirely require intact dopamine release given that it is also 
apparent in dopamine-depleted rodents (164–167).

Other versions of this hypothesis propose that NMDAR 
hypofunction is instead localized to prefrontal PV interneurons 
(134, 145, 168–170). Decreased PV expression has so far 
been documented in neocortical tissue from schizophrenia 
patients rather than in the hippocampus (146–148). It has 
been suggested that weakening of the output of prefrontal PV 
interneurons would lead to less synchronized output from 
prefrontal projection neurons targeting a specific subset of 
dopamine and GABAergic neurons in the VTA (168). Given 
their known target specificity, this would be expected to result 
in reduced activation of prefrontal-projecting (mesocortical) 
dopaminergic neurons and concomitant disinhibitory 
activation of (mesolimbic) dopamine cells projecting to the 
nucleus accumbens, thereby giving rise to the well-documented 
co-existence of hypofrontality and striatal hyperdopaminergia 
in schizophrenia (168). However, a direct demonstration of 
this mechanism is so far lacking. Related accounts focused 
rather on the link between NMDARs in PV interneurons and 
gamma oscillations, which are relevant to various cognitive 
functions and are disrupted in schizophrenia (145, 169–171).

Finally, a recent study showed that NMDARs are expressed 
presynaptically by prefrontal PV interneurons innervating 
pyramidal cells, and that their activation can enhance evoked 
GABA release (i.e. PV cell–mediated inhibition), and their 
blockade by MK-801 reduced inhibitory currents in pyramidal 
cells, if (and only if) glutamate was released by surrounding 
neurons (172). This finding could resolve the long-standing 
puzzle as to how acute application of NMDAR antagonists could 
lead to an effective PV disinhibition of pyramidal cells, despite 
the fact that NMDARs might not contribute significantly to the 
somatodendritic excitation of PV interneurons.

GENETIC MODELING OF NMDAR 
HYPOFUNCTION IN CORTICAL 
INTERNEURONS
In order to assess whether NMDAR hypofunction in 
PV-positive interneurons—during both postnatal development 
and adulthood—can indeed cause core aberrations of 
schizophrenia, several laboratories have now deleted the 
obligatory NMDAR subunit GluN1 (and thereby all NMDARs) 
selectively from PV-positive interneurons in mice. The 
principal method to achieve this is to cross a mouse line in 
which an exon of the GluN1-encoding gene Grin1 is floxed, 
to a mouse line that expresses Cre-recombinase selectively in 
PV-positive interneurons. In the resulting double-transgenic 
mice, NMDARs are ablated only in neurons where Cre is 
expressed. The time at which this occurs depends on when the 
promoter that drives Cre is activated and on the location of 
the lox-sites within the Grin1 gene because recombination is a 
stochastic event whose probability increases the closer the lox-
sites are to each other (78, 173). Because the average lifetime 
of an individual NMDAR-molecule in the post-synaptic 
membrane is not known, it is difficult to estimate precisely 
the actual time course of the removal of those NMDARs that 
had been produced before the gene disruption. In practice, 
strategies to delete NMDARs from PV interneurons have 
placed Cre under the control of the promoter of either the 
Ppp1r2 gene, with expression onset at postnatal day (P) 7, or the 
PV gene (Pvalb) with an estimated onset between P10 and P14 
in neocortex (174), generating Grin1ΔPpp1r2 or Grin1ΔPV mice, 
respectively. In our experiments using the Pvalb promoter, 
a significantly reduced NMDAR-mediated current in PV 
cells could be measured at 2 months of age, although some 
PV interneurons did still show NMDAR-mediated currents, 
despite the comprehensive coverage of the PV cell population 
by the genetic driver line that was used (175).

Pv-SPECIFIC NMDAR ABLATION 
ALONE DOES NOT RELIABLY INDUCE A 
SCHIZOPHRENIA-RELATED SPECTRUM 
OF DEFICITS
Surprisingly, selective genetic deletion of NMDARs in PV 
interneurons in mice has, by and large, not supported the 
model that NMDAR hypofunction in these cells is sufficient 
to mimic schizophrenia. Table 1 summarizes the results of 
the behavioral assessment of these mouse lines published to 
date. In our hands, using either the Ppp1r2-Cre (176) or the 
more commonly used Pvalb-Cre (175) line to drive GluN1 
ablation, there were hardly any behavioral deficits across a 
wide spectrum of rodent correlates of positive, negative, and 
cognitive symptoms when the mice were raised in enriched 
environments (that is, involving a shelter, such as a house and/
or tube, and nesting material). This is largely supported by the 
results from three other labs that have used the same Pvalb-Cre 
mouse line, albeit in combination with a floxed-GluN1 line that 

November 2019 | Volume 10 | Article 835Frontiers in Psychiatry | www.frontiersin.org

https://www.frontiersin.org/journals/psychiatry#articles
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org


NMDAR Hypofunction in SchizophreniaBygrave et al.

9

TABLE 1 | Deficits induced by putative genetic N-methyl-D-aspartate receptor (NMDAR) ablation in parvalbumin interneurons. Results of behavioral tests conducted 
in the indicated studies (top row) measuring rodent correlates of schizophrenia in the positive, cognitive, and negative domain as well as anxiety (see left two columns) 
in distinct double-transgenic conditional knockout lines (stated in rows 2–4). Green →, no change; magenta, schizophrenia-related deficit; orange, deficit provoked or 
exacerbated by environmental stress; blue, apparent improvement of function or opposite of the expected. ↑, increase of behavioral measure; ↓, decrease of behavioral 
measure. Studies: Belforte 2010 (173), Billingslea 2014 (178), Bygrave 2016 (175), Bygrave 2019 (176), Carlen 2012 (171), Jiang 2013 (181), Korotkova 2010 (180), 
Saunders 2013 (177), Pozzi 2014 (179). Cre-Driver lines: Ppp1r2 (Jax# 012686) (173), PV (Monyer) (182, 183), PV (Arber, Jax# 008069) (175, 184, 185). Floxed-Grin1 
responder lines: Seeburg (186), Li (187), Tonegawa (Jax# 005246) (188). 

Publication Belforte 
2010
Jiang 
2013

Belforte 
2010

Bygrave 
2019

Korotkova 
2010

Carlen 
2012

Saunders 
2013

Billingslea 
2014

Pozzi 
2014

Bygrave 
2016

Li
ne

Driver Ppp1r2 Ppp1r2 Ppp1r2 PV (Monyer) PV (Arber) PV (Arber) PV (Arber) PV (Arber) PV (Arber)
Responder Li Tonegawa Seeburg Seeburg Tonegawa Tonegawa Tonegawa Tonegawa Seeburg

loxP-to-loxP distance 2.1 kb 12 kb 3.3 kb 3.3 kb 12 kb 12 kb 12 kb 12 kb 3.3 kb

Po
si

tiv
e

Novelty-induced LMA ↑ periphery; 
↓center*

– → → → (young) → – → (young)
↑ (old)

MK801-induced LMA ↓ (0.2) – ↓ (0.2) – ↓ (0.3) – – – ↓ (0.2, 0.5)

Pre-pulse inhibition ↓ →* → – → – – – →

C
og

ni
tiv

e

SWM: T-maze rewarded 
alternation

– – (↓) $ ↓ → (↓ 1s) – – – → (↓ 1s)

SWM: spontaneous 
alternation; Y-maze/T-maze)

↓** (Y) → * (Y) – – –
→ (discrete)

→ (discrete)
↑ (contin.)

– –

Spatial novelty-preference – – → ; ↓*** – – – – – →

Novel-object recognition, 
short-term

– – → ; ↓*** ↓ – – – – →

Object displacement, 
short-term

– – – ↓ – – – – –

Object displacement, 
long-term

– – – ↓ – – – – –

Spatial ref. learning – – → (+) → (Y) → (water) – – – → (+)

Cue fear-conditioning – – – – ↓ (1 
shock)

– – – –

Context fear-conditioning – – – – ↓ (1 
shock)

– – – –

Reversal learning – – – – → (water) – – – → (+)

Attention (5CSRTT) – – – – – – – – →

Social memory (→)* (→)* (→) – – – – – →

N
eg

at
iv

e

Reciprocal sociability ↓* →* → – – – – – –

Non-reciprocal sociability – – → (→) – ↓ ↓ – –

Nest building ↓** →* → – – – ↓ – –

Anhedonia (sweet preference) →/↓** (Sacch) – → (Sucr) – – – – → (2% Sucr) → (10% Sucr)

Motivation – – – – – – – → (FST) –

An
xi

et
y

EPM (young age) ↑** – – – – – – – ↓

EPM (medium/old age) ↑ →* – – – – – – →

Open field ↑ – – – → – → – –

Light/dark-box – – – – – – – – →

Hyponeophagia – – – – – – – ↓

m
. Impulsivity (5CSRTT) – – – – – – – – →

Perseverance (5CSRTT) – – – – – – – – →

Qualifications of results: * phenotype only tested after many days of social isolation/if deficit present, potentially or reportedly dependent on social isolation; ** not present 
or present in a mild form in group-housed animals but provoked/exacerbated by social isolation; *** phenotype only evoked by decreased environmental enrichment 
(genotype–environment interaction); () indicative or partially unclear result. $ Deficit very mild, only seen across multiple test (repeated-measures), not within any individual 
test or protocol. +, plus-maze used for spatial reference testing.
5CSRTT, 5-choice-serial-reaction-time task; contin, continuous;  FST, forced swim test of behavioral despair;  LMA, locomotor-activity; m., miscellaneous behavioral 
assessments; PV, parvalbumin (Pvalb); Sacch, saccharine-based sweet preference; Sucr, sucrose-based assessment of sweet preference; Y, Y-maze used for testing of 
spatial alternation, spatial habituation (novelty-preference), or spatial associative learning; 0.2, 0.5 dose of MK-801 used.
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featured a larger distance between lox-sites (171, 177–179); see 
Table 1. A possible exception is a deficit in alternation-based 
spatial working memory assays, which has been seen in either 
strong (180) or very subtle (171, 175, 176) forms by some labs 
but not by others (177, 178).

However, there are some technical differences among the 
published studies using mouse models with NMDAR knockout 
in PV interneurons (Table 1). Firstly, they differ partly with 
respect to the deployed Cre-driver lines. While most recent 
studies (171, 175, 177–179) used a widely adopted targeted 
PV-Cre 3’UTR knock-in line (184) that covers the vast 
majority of PV neurons in neocortex and hippocampus with 
high specificity (175, 185), the Ppp1r2-Cre line (173) as well 
as the PV-Cre line (180, 182, 183) used in earlier studies are 
BAC-transgenic lines that did not target the PV cell population 
comprehensively. The Ppp1r2-Cre line had originally been 
reported to express in roughly 70% of the cortical PV cell 
population, while—conversely—around 75% of the targeted 
cells were PV-positive (173). A recent re-evaluation in 
neocortex, however, reported that fewer than 40% of neurons 
targeted by Ppp1r2-Cre are PV-positive, 10–16% are reelin-
positive and 8–12% are somatostatin (SST)-positive (40). In 
addition, a small fraction of neurons in the hippocampus were 
also Gad67-negative, and expression in such putative pyramidal 
cells was reported to expand strongly, especially in CA1, by the 
~20th week of age (173). In general, therefore, the Ppp1r2-Cre 
line cannot be considered a strictly PV-specific driver.

NMDAR HYPOFUNCTION ON Pv 
INTERNEURONS AND ENvIRONMENTAL 
STRESSORS INTERACT TO PRODUCE 
BEHAvIORAL DEFICITS
Another important reason for the potential differences 
between previous results in different labs, even with the 
same line, is that NMDAR hypofunction in PV interneurons 
may interact with environmental risk factors in order to be 
pathophysiologically harmful. Environmental stressors such 
as drug abuse, social stress, or even urbanicity can influence 
both symptoms and treatment success in patients with 
schizophrenia (189–194). There are now two studies showing 
that both post-weaning long-term social isolation (181) 
and a long-term reduction of environmental enrichment 
starting in early adulthood (176) may provoke or exacerbate 
various schizophrenia-related deficits in Grin1ΔPpp1r2 mice. 
A further study demonstrated elevated novelty-induced 
locomotion in Grin1ΔPV mice with increasing age (175). 
Jiang et al. demonstrated that genetic deletion of NMDARs 
renders PV interneurons more susceptible to oxidative stress 
which may, in turn, be evoked by environmental stressors 
such as social isolation (181). It is therefore possible that the 
susceptibility to stress that NMDAR deletion confers to PV 
interneurons interacts with differences in housing conditions 
or other stress-inducing manipulations and thereby causes 
the differences observed at the behavioral level across studies. 

Notably, as marked in Table 1, the vast majority of testing in 
the first study in Grin1ΔPpp1r2 mice was conducted in mice that 
had been socially isolated for at least a week, and sometimes 
for many weeks, before testing (173). Indeed, for two of 
these deficits—anhedonia and decreased alternation-based 
working memory—their dependence on social isolation was 
subsequently demonstrated explicitly (181, 195). Bygrave 
et al. demonstrated that even seemingly minor changes in 
animal housing conditions—as likely exist between different 
laboratories (reflecting e.g. different regulatory conditions in 
different parts of the world)—are sufficient to provoke deficits 
in Grin1ΔPpp1r2 mice, which are otherwise absent in highly 
enriched conditions (176).

OXIDATIvE STRESS AND ZINC 
RELEASE CONSTITUTE POSITIvE 
FEEDBACK LOOPS AMPLIFYING NMDAR 
HYPOFUNCTION AND DISINHIBITION
There is evidence that increased oxidative stress in the brain is 
involved in the pathophysiology of schizophrenia (196, 197) 
and, due to their high metabolic demands, fast-spiking PV 
interneurons are thought to be particularly sensitive to oxidative 
stress (198) (Figure 4). In patients with schizophrenia, levels of 
the antioxidant glutathione (GSH) have been shown to be reduced 
(199), whereby GSH levels correlated with the severity of negative 
symptoms of the disease (200). In the rodent neonatal ventral 
hippocampus lesion model of schizophrenia, early administration 
of N-acetylcysteine (NAC), a precursor to GSH, is able to prevent 
oxidative stress and rescue associated electrophysiological and 
behavioral abnormalities (201).

Intriguingly, there appear to be reciprocal interactions 
between NMDAR hypofunction and oxidative stress (198) 
(Figure 4). NMDARs are themselves sensitive to oxidative 
stress because GluN1 and GluN2A-NMDAR subunits 
contain redox-sensitive cysteine residues that can form 
disulfide bonds resulting in reduced receptor currents (203). 
Conversely, the activation of NMDARs can promote the 
transcription of antioxidant genes (204, 205). This coupling of 
NMDAR activation and regulation of the antioxidant system is 
thought to equip metabolically active neurons with sufficient 
antioxidant defenses (198). Therefore, NMDAR hypofunction 
could reduce such antioxidant mechanisms, and the ensuing 
oxidative stress then further reduces the conductance of 
GluN1/GluN2A-containing NMDARs, effectively creating a 
positive feedback loop. PV interneurons would be particularly 
vulnerable to this vicious cycle because of their relatively high 
content of GluN2A-containing NMDARs (117) and their high 
metabolic activity (206).

A second pathological positive feedback loop involves 
perineuronal nets (PNNs), which provide an antioxidant defense 
system, particularly around PV interneurons, but are themselves 
damaged by oxidative stress. PNNs are reduced in post-mortem 
tissue from schizophrenia patients, as well as in a variety of 
related rodent models (206–208).
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Beyond cellular mechanisms, NMDAR hypofunction 
may also induce oxidative stress through circuit-wide effects. 
Through initiating disinhibition of cortical circuits, NMDAR 
antagonists can boost levels of the pro-inflammatory cytokine 
IL-6, with subsequent activation of NADPH oxidase (Nox2) 
and the production of H2O2 [reviewed in (209, 210)]. Therefore, 
repeated or chronic global NMDAR hypofunction—as induced 
by multiple applications of ketamine, but not by a single 
injection—leads to an IL-6/Nox2–mediated reduction of 
GABAergic inhibition from PV interneurons specifically (202, 
211). Complementing this finding, interneuron-specific deletion 

of NMDARs increases reactive oxygen species (ROS), albeit in 
both inhibitory and excitatory cortical neurons (181). Notably, 
IL-6 is also increased by immune challenges (212) which in this 
way—and particularly during development—may contribute to 
disinhibition independently from (but synergistically with) an 
NMDAR-dependent mechanism (Figure 4).

Environmental stressors, in turn, may lead to oxidative 
stress if NMDARs on PV interneurons are hypofunctional, 
thereby provoking damage to cortical circuits that lead to 
schizophrenia-related deficits. Interestingly, chronic treatment 
with the antioxidant apocynin was reported to improve many 

FIGURE 4 | Potential positive feedback loops provoking PV interneuron dysfunction and oxidative stress. (A) Healthy baseline state; parvalbumin-positive (PV) 
interneurons are prone to higher oxidative stress due to their fast-spiking activity and resulting higher metabolism, but perineuronal nets (PNNs) around them 
and signaling triggered by NMDARs provide antioxidant defenses. They express high levels of PV and Gad67 (producing the inhibitory neurotransmitter GABA) 
and therefore provide intact inhibition to the neurons in the surrounding circuit. (B) Once oxidative stress prevails, e.g. evoked by additional environmental 
stressors or hypofunction (downregulation/decreased activation) of PV-NMDARs, multiple positive feedback loops are triggered that further amplify oxidative 
stress and decrease PV interneuron function: the prior protection mechanisms are themselves reduced by oxidative stress—perineuronal nets are degraded by 
oxidative stress, and specifically, GluN2A-containing NMDARs (that are prominent in PV cells) become oxidized and thereby hypofunctional. Also, the resulting 
reduction of Gad67 and GABAergic inhibitory output leads to disinhibition of excitatory neurons of the circuit, and via IL6/NOX2 and calcium influx through 
voltage-gated calcium channels increases oxidative stress further. Disinhibition also provokes more glutamate release entailing co-release of zinc ions (Zn2+), 
which block preferentially GluN2A-NMDARs. See (195, 198, 202) for details. Lines with arrows indicate enhancement; lines with vertical line-endings indicate 
suppression or degradation.
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social isolation–induced behavioral deficits in Grin1ΔPpp1r2 mice, 
including nest building, spontaneous alternation, and pre-pulse 
inhibition, while also normalizing the production of ROS (181).

A similar circuit-level pathological positive feedback loop 
may revolve around zinc: zinc is co-released with glutamate 
by glutamatergic synapses and reduces the open probability 
(at low concentrations) and blocks (at high concentrations) 
preferentially GluN2A-containing NMDARs (213–215). In 
this way, disinhibition in the circuit leads to more zinc release, 
causing GluN2A-NMDAR hypofunction in PV interneurons, 
and thereby more disinhibition (Figure 4).

NMDAR HYPOFUNCTION IN Pv CELLS AS 
A RISK FACTOR FOR SCHIZOPHRENIA
A model that emerges from this work is that NMDAR 
hypofunction in PV interneurons is likely to be a risk factor for 
developing schizophrenia, but may not be sufficient on its own. 
Other (risk) factors, such as environmental stress (potentially 
causing oxidative stress at the cellular level), or acutely occurring 
NMDAR hypofunction in other cell types of the circuit [see 
below and (175)] need to be present and to interact with the 
cellular consequences of reduced NMDAR expression in PV 
interneurons to provoke symptoms of schizophrenia (Figure 4). 
Moreover, it is interesting to note that NMDAR knockout in 
PV interneurons provokes molecular and electrophysiological 
endophenotypes of schizophrenia potentially predisposing 
the circuit to future insults. For example, Grin1ΔPpp1r2 mice 
show reduced expression of GAD67 (as also seen in patients 
with schizophrenia (173) and excess amphetamine-induced 
accumbal dopamine release aside blunted prefrontal dopamine 
release (40). The same dopaminergic phenotype was seen in 
Grin1ΔPV mice (40).

DOES NMDAR HYPOFUNCTION 
IN Pv INTERNEURONS INDUCE 
SCHIZOPHRENIA ONLY wHEN 
OCCURRING DURING DEvELOPMENT?
Against this backdrop of discrepancies between studies (Table 
1), it has also been proposed that NMDAR hypofunction in PV 
cells may cause schizophrenia-related deficits only if it occurs 
at a young age but not if it begins after adolescence (173). For 
example, NMDAR blockade by ketamine leads to reduced 
PV expression (as also seen in neocortical and hippocampal 
post-mortem tissue from schizophrenia patients) if the drug is 
administered during adolescence but not in adulthood (126). 
It has also been reported that juvenile NMDAR ablation in PV 
interneurons in mice leads to schizophrenia-related deficits, 
while ablation later in life does not (78, 216). According to this 
view, the P7-onset of the Ppp1r2-promoter activation, potentially 
in combination with the 2.1-kB-short distance between lox-P 
sites used in the Belforte et al. study (173), which reported a 
wide range of deficits, might result in NMDAR hypofunction in 

a critical juvenile developmental window, while the ~P14-onset 
of the PV-Cre promoter (174), potentially in combination with 
a slightly (3.3 kB) (175) or even a much larger distance between 
loxP sites (12 kB) (177, 178) achieves significant NMDAR 
hypofunction only in adulthood and is therefore less effective in 
causing deficits (Table 1).

Indeed, some evidence aligns directly with this view. Most 
importantly, two studies from the Nakazawa lab have shown 
directly that NMDAR ablation which is stochastically delayed by 
using the 12-kB-long inter-loxP distance responder line does not 
lead to a schizophrenia-related phenotype even when combined 
with long-term social isolation (see Table 1), while ablation 
of GluN1 at an earlier time point using the 2.1 kB inter-loxP 
distance responder line does (40, 173).

However, when looking across the large body of studies 
as a whole (Table 1), the argument is not always empirically 
supported. For example, when using the same early-onset 
Ppp1r2-Cre driver line and only a slightly larger distance between 
loxP sites, we (176) obtained a rather different phenotype from 
the originally published one (173).

ACUTE GLOBAL NMDAR HYPOFUNCTION 
IN MICE wITH CHRONIC Pv-SPECIFIC 
NMDAR HYPOFUNCTION AS A MODEL 
OF CATATONIC SCHIZOPHRENIA
A single exposure to the NMDAR blocker MK-801 reduces 
NMDAR expression in PV interneurons but increases 
expression of NMDARs in all neocortical neurons combined (i.e. 
presumably in excitatory cells, Figure 2) (117). This means that 
a brain that has previously been exposed to an NMDAR blocker 
resembles a mouse line with NMDAR hypofunction in PV cells. 
In such a brain, the balance of NMDAR-mediated contribution 
to excitation is shifted between the excitatory and PV inhibitory 
populations of neurons, and when a NMDAR blocker is applied 
to such a brain—i.e. when global NMDAR hypofunction 
occurs—the consequences are expected to be different. In line 
with these considerations, we found that MK-801 may induce 
cognitive and negative deficits of schizophrenia in Grin1ΔPV mice 
at concentrations lower than those required in wild type animals 
to produce similar effects (175). Again, this argues that NMDAR 
hypofunction in PV interneurons is a risk factor—rather than a 
direct cause—of schizophrenia.

However, the most pronounced phenotype observed with 
MK-801 application at moderate doses in Grin1ΔPV mice was the 
induction of catalepsy, with mice often remaining in the same 
posture for several minutes. Such cataleptic episodes alternated 
abruptly with phases of increased locomotion and various forms 
of stereotypic movement, including circling and repetitive head-
shaking (175). Those symptoms are most akin to catatonia—a 
condition that can occur in, but is not specific for, schizophrenia. 
Catatonic episodes can last for days or even weeks and can 
be resistant to antipsychotic drugs (217). We also observed 
pronounced prefrontal delta-frequency (4 Hz) oscillations 
induced by MK-801 application in these mice (175). An abnormal 
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TABLE 2 | Deficits induced by putative genetic NMDAR ablation in excitatory cells of the cortex, including hippocampus. Results of behavioral tests conducted in the 
indicated studies (top row) measuring rodent correlates of schizophrenia in the positive, cognitive, and negative domain as well as anxiety (see left two columns) in distinct 
double-transgenic conditional knockout lines (stated in rows 2–4). Green →, no change; magenta, schizophrenia-related deficit; orange, deficit seen in specific test 
phases or with specific test conditions but not others; blue, apparent improvement of function or opposite of the expected. ↑, increase of behavioral measure; ↓, decrease 
of behavioral measure. Studies: Tsien 1996 (188), McHugh 1996 (227), Tatard-Leitman 2015 (228), Nakazawa 2002, 2003 (222, 223), Finlay 2015 (229), Bannerman 
2012 (226), Rompala 2013 (230), Vieira 2015 (231), Brigman 2010, 2013 (224, 232). Cre-Driver lines: T29-1/CamK-Cre (225) [originally assumed to target CA1 pyramidal 
cells, but later shown to target excitatory cells across neocortex and hippocampus, e.g. (224); TgCre4/CamK-Cre (233); KA1/G32-4-Cre expresses in CA3 pyramidal cells 
(222); TgCN12;TgLC1 expresses in excitatory cells of CA1 and dentate gyrus (226); G35-3-Cre expresses in excitatory neurons of the hippocampus and the frontal, 
parahippocampal, and sensory cortex, esp. in layers 2/3 (230). AAV-CamK, Cre is expressed from a locally injected AAV-vector and driven by the CamKIIα-promoter 
(229). Floxed-Grin1 and -Grin2B responder lines: Tonegawa (Jax# 005246) (188), Seeburg (186), Holmes (224), Monyer (234).

Publication Tsien 1996
McHugh 

1996

Tatard-
Leitman 

2015*

Nakazawa 
2002, 2003;
Finlay 2015

Bannerman 
2012

Rompala 
2013

Finlay 
2015;
vieira 
2015

Brigman 
2010, 2013

v. Engelhardt 
2008

Li
ne

Driver CamK: 
T29-1

CamK: T29-1 KA1/G32-4; 
AAV-CamK

TgCN12;TgLC1 KA-1/
G35-3

AAV-CamK CamK: T29-
1; TgCre4

Responder Tonegawa Tonegawa Tonegawa Seeburg Tonegawa Tonegawa Holmes; 
Monyer

Gene, loxP–loxP distance Grin1, 12 kb Grin1, 12 kb Grin1, 12 kb Grin1, 3.3 kb Grin1, 12 
kb

Grin1, 12 
kb

Grin2B, 1 kb; 
2 kb

Targeted region CA1 (& 
cortex)

Cortex/HC CA3 CA1, DG Cortex, 
HC

mPFC Cortex, HC

Po
si

tiv
e

Novelty-induced LMA – ↑ – ↑ → – –

MK801-induced LMA – – – – → – –

Amphetamine –induced LMA – – – – → – –

Pre-pulse inhibition – – – – ↓ – –

C
og

ni
tiv

e

SWM: spontaneous alternation – ↓ (T) #& – – → (Y) – ↓ (T, Y) #

Spatial novelty-preference – – – – → (Y, 3h 
delay)

– –

Novel-object recognition, short-term – – – – →, ↓ £ – ↓

Spatial reference learning ↓ (MWM) – → (MWM) ↓ (MWM&, 
RM, Y) 

– – ↓ (MWM)

Spatial ref. learning w. partial cue – – ↓ – – – –

Spatial reference learning—beacon – – – ↓ MWM) & – – –

Spatial reversal learning – – – ↓ (MWM) – – ↓

Visual discrimination assoc. 
learning

→ (MWM) – – → (MWM, T) – – → (T.Sc.), ↓ (T)

Visual discrimination reversal – – – → (MWM, T) – – ↓ (T.Sc.)

Context/cue fear-conditioning (FC) – – – – → (context 
FC)

→ (cue FC) → (delay); ↓ (trace)

Cue-discrimination FC – – – – – ↓ –

Fear-memory extinction – – – – – ↓ –

Operant learning – – – – – – →

Social memory – – → – (→) ↑ –

Sustained attention, 5CSSRT – – → – – → –

Inattentiveness, 5CSSRT – – → – – → –

Response latency, 5CSSRT – – → – – → –

N
eg

at
iv

e

Reciprocal sociability – – – – → → –

Non-reciprocal sociability – ↓ ↓ – – – –

Nest building – ↓ – – – – –

Anhedonia (sweet preference) – – – – → (Sacch.) – –

Motivation (reward latency) – – – – – – →

(Continued)
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enhancement of delta oscillations in the awake state has also been 
described in patients with schizophrenia (85), and it would be 
intriguing to investigate their presence in patients with catatonic 
schizophrenia, specifically. These considerations suggest that 
PV-specific NMDAR hypofunction may be a necessary pre-
condition particularly for catatonic schizophrenia patients. 
This predicts that repeated episodes of pronounced NMDAR 
antagonism may produce first the pre-condition (downregulation 
of NMDARs specifically in PV cells) and subsequently the trigger 
(global NMDAR hypofunction) of catatonic episodes.

THE ROLE OF NMDAR HYPOFUNCTION 
IN CORTICAL EXCITATORY CELLS
Most studies relevant to the potential consequences of NMDAR 
hypofunction in excitatory cortical cells have not been designed 
to study the relevance to schizophrenia, but rather to investigate 
the role of NMDAR-dependent synaptic plasticity in various 
forms of learning and memory. Despite early demonstrations 
that associative spatial learning in the Morris water maze 
(MWM)—but not non-spatial, visual discrimination learning—
was impaired by pharmacological blockade of NMDARs (218), 
it was subsequently shown that rats treated with NMDAR 
antagonists were in fact perfectly capable of acquiring the MWM 
task if they were given drug-free pre-training prior to subsequent 
spatial testing (219–221).

Likewise, the evidence from genetically modified mouse 
studies that NMDARs on hippocampal principal cells are 
required for associative memory formation is equivocal at best. 
Initially, genetically targeted NMDAR ablation (Table 2) focused 
on subsets of cell types such as the principal cells of CA1 (188) 
and CA3 (222, 223). It was reported that ablation of NMDARs 
specifically from the CA1 hippocampal subfield impaired 
associative spatial memory in the water maze (188). However, the 
first Cre-Driver line (T29-1, CamKIIα-Cre) used in this study to 
target CA1 excitatory cells was later found to express across the 

vast majority of excitatory cells of the hippocampus, neocortex, 
and peri- and enthorhinal cortex (224, 225). It was subsequently 
demonstrated that NMDARs in CA1 and/or dentate gyrus are 
necessary for making correct choices related to ambiguous cues 
associated with overlapping or competing memories, rather than 
mediating associative spatial memory formation or recall as such 
(226). NMDARs in CA3 are likewise not essential for associative 
spatial memory formation, but have been claimed to support 
memory recall with incomplete cues as well as performance on a 
delayed match-to-place (serial reversal) memory task (222, 223).

A later re-assessment of a mouse line with NMDAR ablation 
in cortical excitatory cells (Grin1ΔCamKIIα mice) across a wide 
range of schizophrenia-related behaviors and endophenotypes 
demonstrated that this line shows impairments across the 
major symptom domains related to schizophrenia (see Table 2), 
including robust deficits in alternation-based spatial working 
memory, nest building, social interaction, and novelty-induced 
hyperlocomotion (228). Grin1ΔCamKIIα mice also displayed 
electrophysiological endophenotypes relevant to schizophrenia 
(235–237), including an elevated power of baseline gamma, theta, 
and beta oscillations and decrease of stimulus-evoked oscillations 
in these frequency bands (228). Interestingly, pyramidal cells were 
also more excitable in response to current injections. In contrast 
to the phenotype induced by pharmacological or PV-specific 
NMDAR hypofunction, in mice with NMDAR hypofunction in 
excitatory cells the expression of PV and Gad67 was not altered 
in the neocortex or hippocampus (228). This demonstrates that 
several behavioral and electrophysiological endophenotypes 
seen in schizophrenia could be caused by NMDAR hypofunction 
in excitatory pyramidal cells alone and do not require reduced 
Gad67 expression in PV cells. Notably, the level of cortical 
Gad67 expression also varies strongly among patients with 
schizophrenia (148), suggesting that its reduction might not be 
a necessary element of disease development.

In a similar approach, following ablation of GluN2B from 
excitatory cells across the forebrain (Grin2BΔCamKIIα mice), a 

TABLE 2 | Continued

Publication Tsien 1996
McHugh 

1996

Tatard-
Leitman 

2015*

Nakazawa 
2002, 2003;
Finlay 2015

Bannerman 
2012

Rompala 
2013

Finlay 
2015;
vieira 
2015

Brigman 
2010, 2013

v. Engelhardt 
2008

m
is

c.

Open field: anxiety – – – – → – –

Motor impulsivity, 5CSSRT – – ↑ – – → –

Perseveration, 5CSSRT – – ↑ – – → –

Electrophysiology Larger & less 
specif. CA1 
place fields

↓ evoked power
↑ baseline 

power

Smaller/absent 
CA1 place fields 

w. partial cue

↓ cellular LTP

Qualifications of results: () indicative result, not properly measured or nor clear result. $ Deficit very mild, only seen across multiple test (repeated-measures), not within any individual 
test or protocol. & A deficit occurs in spatial reference memory in the MWM if the starting point is further away from the correct goal (platform) than from the incorrect goal (distracting 
beacon in beacon-version or opposing quadrant in standard version), there are also deficits in the Y-maze and radial-maze; i.e. deficits are seen in all cases were multiple and partially 
undefined spatial cues are used, rendering the reference-frame ambiguous. # Note that this result may be confounded by more fundamental aberrations in spatial processing. 
£ Impairment only seen with longer delays or large memory load (five objects instead of two). * This mouse line also shows increased baseline power and decreased evoked power in 
the theta, beta, and gamma range, and also reduced expression of CCK (in neocortex), 5HT-2A (in hippocampus), dopamine D2 receptor (D2R) (in neocortex), and GRIK2 (both), while 
cortical expression of GAD67, PV, somatostatin (SST), D1R, GluA1/2/3/4, and 5HT-1A/2B/2C is unchanged (228).
5CSRTT, 5-choice-serial-reaction-time task; assoc., associative; FC, fear-conditioning; LMA, locomotor-activity; MWM, Morris water maze, ref., reference; RM, radial-arm maze; 
Sacch., saccharine-based assessment of sweet preference; T, T-maze; Y, Y-maze; T.Sc. touch-screen–based operant assay used for testing.
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broad range of profound memory deficits were found, including 
chance-level performance in novel-object recognition and 
alternation-based spatial working memory, but also in spatial 
long-term memory tasks, and in visual discrimination learning 
(234). In contrast, when GluN2B-ablation was restricted to 
CA1 and dentate gyrus excitatory cells, basic spatial associative 
learning was left intact, although deficits in spatial reversal 
learning and (to a lesser extent) alternation-based working 
memory remained (234).

However, there are two caveats to these observations: firstly, on 
the one hand, some deficits seen after ablation of Grin1 or Grin2B 
in excitatory cells (Table 2) may be difficult to reconcile with the 
symptom-profile of schizophrenia, including a wide range of 
deficits in basic long-term associative spatial memory tasks, fear 
extinction and cue-discrimination in fear-conditioning, as well 
as enhanced social memory (188, 226, 229, 231). Note, however, 
that these learning abnormalities could reflect abnormal 
credit assignment with inappropriate associations between 
cues resulting from aberrant assignment of salience, which is 
suspected to be a core deficit in schizophrenia (238–240).

Secondly, a study using a different Cre line that expresses 
in a wide range of cortical excitatory cells (although lacking 
expression in deeper layers in some areas of neocortex and in 
all layers of some parts of neocortex, e.g. retrosplenial cortex, 
and in a considerable proportion of hippocampal pyramidal 
cells), found almost no schizophrenia-related deficits (230). 
Therefore, it is probably a rather specific subset of excitatory 
cells, which likely include—but are not limited to—hippocampal 
pyramidal neurons, in which NMDAR hypofunction may lead to 
schizophrenia-related deficits.

THE ROLE OF NMDAR HYPOFUNCTION 
IN THALAMIC NEURONS AND THE 
IMPORTANCE OF GLUN2C
A third potential location of NMDAR hypofunction promoting 
schizophrenia pathogenesis is the thalamus—especially its 
reticular nucleus (RTN), whose neurons are GABAergic, 
PV-positive, and rely largely on GluN2C-containing NMDARs 
for their excitatory drive (78, 114). GluN2C-NMDARs are also 
expressed in the glutamatergic cells of the relay and unspecific 
nuclei of the thalamus (241).

Work by John Lisman’s group supports a model in which 
blockade of GluN2C-containing NMDARs in both the 
excitatory relay cells and the inhibitory PV-positive RTN cells 
of the thalamus might be the key mechanism by which NMDAR 
antagonists like ketamine produce increased delta oscillations. 
Ketamine—at a psychotomimetic dose in humans—strongly 
blocks GluN2C-containing receptors, but affects GluN2A/2B-
containing NMDARs to a lesser degree, since the former are 
about three times more sensitive to this drug compared to the 
latter (114). Additionally, the channel is relatively insensitive 
to Mg2+ ions, allowing it to provide a tonic excitatory drive 
at the resting potential of thalamic neurons (78, 114, 107). 
GluN2C-NMDAR blockade by ketamine would be expected 

to hyperpolarize both cell types, thereby activating T-type 
calcium channels Cav3.3 (slow) in PV-positive RTN cells and 
Cav3.1 channels (fast) in glutamatergic relay cells (242, 243), 
inducing endogenous depolarization-cycles that translate into 
thalamocortical delta oscillations. This hypothesis is supported 
by the finding that prefrontal delta oscillations are induced by 
ketamine and are (abnormally) present in the wake state of 
patients with schizophrenia (85, 114).

We also observed strong prefrontal delta oscillations after 
application of MK-801 in Grin1ΔPV mice (175). A combination 
of reduced activation of inhibitory, PV-positive RTN cells due 
to NMDAR ablation in Grin1ΔPV mice on one hand, and an 
additional blockade of remaining NMDARs in thalamic relay 
cells by MK-801 on the other, could lead to hyperpolarization 
and activation of Cav3.1 channels in relay cells, and hence the 
induction of delta oscillations [as observed in (175)]. Also note 
that Cav3.3 is a schizophrenia risk gene, and the risk-associated 
mutation renders this channel hypofunctional (244), thereby 
potentially producing weaker activation of inhibitory RTN 
cells. Notably, local infusion of MK-801 specifically into the 
mediodorsal nucleus of the thalamus (at high doses) and into the 
RTN (already at low doses) causes increased glutamate release 
in prefrontal cortex in rodents (118, 119, 121). It should also 
be noted that specific nuclei in the human (but not the rodent) 
thalamus also contain PV-positive interneurons and projection 
neurons, and a degeneration of the latter has been described in 
post-mortem tissue from schizophrenia patients (245, 246).

NMDAR HYPOFUNCTION IN DOPAMINE 
CELLS, STRIATAL NEURONS, AND SST 
INTERNEURONS
Other candidate cell types which have been implicated in 
schizophrenia and suggested as a locus of NMDAR hypofunction 
are SST-positive interneurons (247) and VTA dopamine neurons 
(78). In contrast to neocortical PV interneurons and pyramidal 
cells (117), both of these cell types contain GluN2D-NMDARs 
(78) which—like GluN2C-containing NMDARs—have a higher 
affinity for ketamine and are largely insensitive to the Mg2+-block 
at resting membrane potential (78); these properties imply that 
NMDAR antagonists would preferentially reduce excitatory 
drive in those cells, as opposed to neurons that contain mainly 
GluN2A/B-NMDARs. Grin1ΔSST mice still need to be evaluated 
comprehensively regarding schizophrenia-related deficits, 
but a first analysis showed that they do not demonstrate the 
elevated accumbal and blunted prefrontal dopamine release after 
amphetamine application and elevated amphetamine-induced 
locomotion seen in Grin1ΔPpp1r2 and Grin1ΔPV mice (40).

A further locus of NMDAR hypofunction might be VTA 
dopamine neurons. These cells are a putative hub of schizophrenia 
pathology and feature a surprising decrease in expression of 
NMDARs in a prominent schizophrenia mouse model with 
striatal D2R overexpression (248). Selective ablation of NMDARs 
from dopamine neurons does not induce core endophenotypes of 
schizophrenia such as deficits of working memory, short-term object 
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memory, sociability, or pre-pulse inhibition, nor elevated novelty- 
or amphetamine-induced locomotor activity (249, 250). However, 
NMDAR knockout from dopamine neurons causes inappropriate 
generalization in fear-learning across cues as well as impaired visual 
discrimination and spatial reference learning (250, 251).

Finally, NMDAR ablation has been experimentally confined 
to medium spiny neurons (MSNs) of the basal ganglia using the 
RGS9-Cre driver line. Mice lacking all NMDARs (i.e. Grin1) in 
MSNs display deficits in motor learning [on the rotarod (187)], 
while mice lacking GluN2B-containing NMDARs in MSNs 
have difficulties with visual discrimination learning (i.e. long-
term associative memory) and its reversal, while simple operant 
learning is intact (232). It is unclear to what extent these deficits 
are relevant to schizophrenia, and the overall behavioral profile 
suggests that striatal MSNs are not a major site of NMDAR 
hypofunction in the pathogenesis of this disease.

Deficits of accurate discrimination between sensory stimuli 
and resulting over-generalization during learning—seen with 
NMDAR ablation in the VTA and the MSNs—might, however, 
point to aberrations of learning processes that could contribute 
to aberrant salience (239) and the formation of inappropriate 
associations and delusions in humans (252).

CONCLUSIONS
In summary, NMDAR hypofunction in multiple specific 
neuron types may contribute to the causation of symptoms 
in schizophrenia. Indeed, given that genetically driven 
schizophrenia will potentially produce NMDAR hypofunction 
across all cells, it may be unrealistic to think that deficits in any 
one cell type may explain the disorder. It is possible that acute 
blockade of NMDARs by NMDAR antagonists such as ketamine 
causes schizophrenia-related symptoms by preferentially 
reducing the activity of neurons that express NMDARs 
containing GluN2D (SST interneurons, dopamine neurons) and 
GluN2C (thalamic relay cells, PV-positive cells of the thalamic 
RTN and cortex, and presynaptic terminals of PV interneurons). 
NMDAR hypofunction in the chronic disease state, in contrast, 
is probably localized somewhat differently, and GluN2A/B-
containing NMDARs likely play a role as well. While there is little 
compelling evidence that NMDAR hypofunction in PV-positive 
interneurons causes schizophrenia directly, it is likely a key risk 
factor for this disease. It renders PV interneurons more prone 
to oxidative stress which may be exacerbated by inflammation, 
environmental stress, or interactions with other risk genes.

The consequences of NMDAR hypofunction in other 
interneurons, such as SST and CCK cells still remain to be 

comprehensively assessed. NMDAR ablation in dopamine 
or striatal MSNs, in contrast, does not seem to induce a 
schizophrenia-related spectrum of deficits, although the observed 
specific aberrations in valuation and over-generalization during 
learning might contribute to positive symptoms. Nevertheless, 
some of the symptoms of schizophrenia—especially in the 
cognitive domain—may be caused by NMDAR hypofunction in 
the thalamus and in specific subsets of cortical pyramidal cells. 
We speculate that treatments that increase NMDAR function, 
reduce oxidative stress, or directly boost the function of PV and 
other interneurons, could conceivably be beneficial in these cases, 
especially if applied in the prodrome or early in schizophrenia 
(253). Given the limited success of previous approaches to 
enhance NMDAR-function rather directly, it is likely that any 
future success will depend on a better understanding of the 
interacting role(s) of NMDARs in different cell types within 
multiple different neural circuits.
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