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In recent decades, very few new psychiatric drugs have entered the market. Thus,
improvement in the use of antidepressant and antipsychotic therapy has to focus mainly
on enhanced and more personalized treatment with the currently available drugs. One
important aspect of such individualization is emphasizing interindividual differences in
genes relevant to treatment, an area that can be termed neuropsychopharmacogenomics.
Here, we review previous efforts to identify such critical genetic variants and summarize the
results obtained to date. We conclude that most clinically relevant genetic variation is
connected to phase I drug metabolism, in particular to genetic polymorphism of CYP2C19
and CYP2D6. To further improve individualized pharmacotherapy, there is a need to take
both common and rare relevant mutations into consideration; we discuss the present and
future possibilities of using whole genome sequencing to identify patient-specific genetic
variation relevant to treatment in psychiatry. Translation of pharmacogenomic knowledge
into clinical practice can be considered for specific drugs, but this requires education of
clinicians, instructive guidelines, as well as full attention to polypharmacy and other clinically
relevant factors. Recent large patient studies (n > 1,000) have replicated previous findings
and produced robust evidence warranting the clinical utility of relevant genetic biomarkers.
To further judge the clinical and financial benefits of preemptive genotyping in psychiatry,
large prospective randomized trials are needed to quantify the value of genetic-based
patient stratification in neuropsychopharmacotherapy and to demonstrate the cost-
effectiveness of such interventions.
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INTRODUCTION

Despite intensive effort in neuroscience research, very few new
psychopharmacological agents have entered the market during
recent decades. Antidepressants in general aim to increase
monoaminergic neurotransmission by blocking monoamine
reuptake, while antipsychotics mostly aim to reduce
mesolimbic dopaminergic neurotransmission by blocking
receptors including D2 and 5-HT2A receptors (1). However,
these effects are neither necessary nor sufficient for a favorable
treatment response and the effectiveness of therapy is therefore
suboptimal. Current selection of an appropriate antipsychotic or
antidepressant drug to a great extent still relies on psychiatrists’
clinical experience as well as on a potentially long trial and error
approach, with potential serious adverse reactions such as
su ic ida l ideat ion and behaviors . Moreover , whi le
antidepressants and antipsychotics are superior compared to
placebo (2, 3), their efficacy is not impressive keeping in mind
the effect size of superiority over placebo (4). Since molecular
targets for psychiatric drugs are not yet fully elucidated, many of
the currently available drugs will likely remain the cornerstone of
pharmacotherapy in psychiatry for the foreseeable future. It is
therefore of paramount value to maximize their effectiveness
prospectively by treatment personalization.

In general, differences between individuals in drug treatment
response can be caused by environmental, physiological, and
psychological factors, as well as by comorbidities and genetic
variability (5, 6). With respect to the genetic component, one can
estimate that roughly one quarter of the total variability in drug
response is genetic in origin (7). To facilitate the transfer of
genetic information to physicians, regulatory agencies
incorporate pharmacogenomic drug labels into the summaries
of product information (SmPC); here they specify which of the
genetic variation information is important to consider with
regard to drug prescription. Such drug labels include
mandatory guidelines, recommendations and information
about how pharmacogenomic variation should be taken into
account regarding the indication or dosage - data that are
expected to be beneficial for individualization of drug therapy
(6). In addition two different organizations, CPIC (Clinical
Pharmacogenetics Implementation Consortium) and DPWG
(Dutch Pharmacogenetics Working Group) publish similar
guidance based on their own expertise and judgment. It was
published recently however, that the concordance among
pharmacogenomic drug labels between FDA, EMA, DPGW,
and CPIC is low and of drugs considered by all agencies; for
only 18% of them is the information similar across the four
agencies (8). For pharmacogenomic drug labels provided by the
FDA and the EMA (or the Dutch or the German MPAs), the
concordance is low (8, 9), in contrast to the high concordance
between the FDA and the EMA regarding the approval of new
drugs (10). Furthermore, the use of such labels in a clinical
setting is relatively limited apart from in oncology (11).

There is substantial interindividual variability in the response
and efficacy of CNS active drugs and it has become evident that
genes encoding pharmacokinetic-related biomolecules have
significant impact (https://cpicpgx.org/guidelines/). In
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particular, functional polymorphisms in genes encoding the
drug metabolizing enzymes CYP2C19 and CYP2D6 are quite
frequent among all populations (12) and these variants are
associated with altered drug exposure sufficiently to support
the clinical utility of CYP2C19 and CYP2D6 genotyping (13–
15). In contrast, receptors that are currently used as drug targets
for psychiatric drugs are evolutionary conserved to a higher
extent than genes encoding drug metabolism and the
actionability of pharmacodynamic-related genotyping is
currently still questionable (16). However, when the functional
interpretation of common or rare variants in such genes becomes
available, it is clear that such pharmacogenomic information can
be used to improve pharmacotherapy individualization (17).

Many findings to date in the field of pharmacogenomics in
psychiatry have lacked consensus and yielded a lot of
controversy. We herein review the most important studies in
the field and summarize the current situation, outline future
directions, and discuss possible implementation of genetic
biomarkers in psychiatry with a particular focus on the
CYP2C19 and CYP2D6 genes.
Biomarkers Based on Genes Coding Drug
Metabolizing Enzymes
In phase I, drugs are usually transformed by oxidation,
demethylation, reduction, or hydrolysis to more soluble
compounds, which facilitates their subsequent elimination
from the body. A major phase I enzyme family is the
cytochrome P450s (CYPs), whose activity usually leads to the
reduction of drug potency. The human liver possesses a wide
spectrum of CYP isoforms; the most abundant isoforms
(CYP1A2, CYP2C9, and CYP3A4/5) (18) account for more
than half of total CYP content in the human liver and they
participate in metabolism of roughly one third of psychiatric
drugs (19). Importantly, certain drugs are known to induce or
inhibit these enzymes and consequently, polypharmacy can
affect the exposure of many psychiatric drugs (https://drug-
interactions.medicine.iu.edu/MainTable.aspx). In addition, one
recently published and adequately powered study suggests that
the CYP1A2 SNP rs2472297 may predict clozapine exposure (20)
and potentially affect clozapine treatment. However, at this
point, CYP2C19 and CYP2D6 enzymes seem to be more
important for pharmacogenetics in psychiatry, since they
contribute significantly to the phase I metabolism of more than
two thirds of all currently available psychiatric drugs (19). Whilst
CYP2C19 and CYP2D6 are much less abundantly expressed in
the human liver than the other CYPs mentioned above, they
seem to have a very high affinity for the molecular structures on
which most of the currently available psychiatric drugs are based.
However, unlike the major form of hepatic CYP3A P450 isoform
CYP3A4 (21), the CYP2D6 and CYP2C19 genes are highly
polymorphic, and this genetic variation is associated with
profound changes in enzymatic capacity (Tables 1 and 2).
Owing to this genetic variability with demonstrated clinical
r e l e v an c e , a l l c u r r en t l y c ommer c i a l l y a v a i l a b l e
pharmacogenetic-based decision-support tools in psychiatry
encompass the common variants in the CYP2C19 and CYP2D6
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genes (13). However, in order to appropriately personalize
treatment based on CYP2C19/CYP2D6 genotype in psychiatry,
prescribers need to know (i) how and in what depth
Frontiers in Psychiatry | www.frontiersin.org 3
CYP2C19/CYP2D6 genotyping should be performed, (ii) the
relationship between genotypic variation and the relevant
linked phenotypes, and (iii) how to appropriately use this
information to improve pharmacotherapy. While admirable
progress in this regard has been made to date, certain research
and clinical application gaps still remain to be addressed.
CYP2C19 and CYP2D6 Functional
Variant Genotyping
Functional CYP2C19 and CYP2D6 genetic variants include: (1)
variants or Null alleles that encode nonfunctional proteins; (2)
variants that cause a decrease in enzyme capacity or transcription
levels compared to normal alleles, but not complete lack of
enzyme; and (3) variants that result in an increase in enzyme
capacity or transcription levels (12). Moreover, the CYP2D6 gene
belongs to one of the most complicated and polymorphic loci in
the whole of the human genome (23). Deletion of the entire gene
(CYP2D6*5) and duplication/multiplication of the gene (e.g.,
CYP2D6Wtx2/N) occur frequently worldwide (12). For all
genetic variants, a distinction between common (MAF > 1%)
and rare (MAF < 1%) variants can be made. The frequencies of
common CYP2C19 and CYP2D6 functional variant alleles
worldwide, as previously described by (12), are listed in Table 1.

Currently, CYP2C19, CYP2D6 and other CYP genotyping
assays mostly cover only common variants, which is
understandable from an economic point of view; however,
there is an abundance of rare CYP2C19 and CYP2D6 variant
alleles (24) (https://www.pharmvar.org/gene/CYP2D6). Thus, a
substantial fraction of genetically caused variation in drug
metabolism cannot be resolved unless extensive sequencing
efforts are carried out in a psychiatric setting. The examination
of big datasets from, for example, the EXAC consortium, reveals
that among all mutations seen based on whole exome sequencing
of > 67,000 individuals, rare mutations account for over 90% of
the number of unique SNVs and 50% of the SNVs identified are
seen in only one individual (24). The total contribution of rare
SNVs to interindividual variation in drug response is difficult to
estimate but one quarter of the total variation appears to be a
realistic figure (25). This means that in clinical practice, a
substantial amount of the true functional genetic variation of
drug metabolizing enzymes is not detected by using the
commercially available genotyping tools. The importance of
rare, often de novo, variants contribution for explaining
interindividual variation in drug pharmacokinetics is also
supported by results from twin studies where the differences in
pharmacokinetics of e.g. torsemide and metoprolol were found
to be much less between monozygotic as compared to dizygotic
twins (26); only 30%–40% of the inheritable part of this variation
was attributable to genetic variants known at that time. For more
than half of the genes encoding drug metabolizing enzymes
(other than CYP2C19 and CYP2D6) and drug transporters, rare
variants account for the entire genetic variability (24). Therefore,
the only robust manner to determine the true genetic variation of
patients in a comprehensive manner, would appear to be the use
of sequencing techniques, which is not realistic in most of clinical
facilities. However, it is likely that a transition to more use of
TABLE 2 | world-wide frequencies of common variant CYP2C19 and CYP2D6
alleles.

Allele Europeans Africans East-
Asians

South-
Asians

Americans

CYP2C19*2 18.3 18.1 31.0 34.0 10.1
CYP2C19*3 rare rare 6.7 rare rare
CYP2C19*17 22.4 23.5 1.5 13.6 12.0
CYP2D6xN
Amplification

2.3 9.3 2 1.5 1

CYP2D6*3 4.1 rare rare rare rare
CYP2D6*4 15.5 11.9 rare 11.6 15.7
CYP2D6*5
Deletion

3 4 6.5 2 3

CYP2D6*6 2.2 rare rare rare rare
CYP2D6*9 1.6 rare rare rare 1.3
CYP2D6*10 rare 3.2 58.7 6.5 rare
CYP2D6*17 rare 19.7 rare rare 1
CYP2D6*29 rare 9.2 rare rare rare
CYP2D6*41 3.0 3.0 3.0 13.5 3.5
Frequencies are shown in percentages; the table is adapted from Zhou et al., 2017. Only
variants with minor allelic frequencies (MAF) > 1% in any of the populations are listed in this
table. The MAF < 1% variants are annotated as “rare,” the 1% < MAF < 5% variants were
represented with the MAF in percentages, and the variants with MAF > 5% are
represented with MAF in percentages and bolded.
TABLE 1 | Relation between genotype and phenotype among diploid genotypes
of CYP2C19 and CYP2D6.

CYP2C19

Genotype Functional
Diplotype

Categorization Enzymatic
capacity

CYP2C19Null/Null PM/PM Poor 0%
CYP2C19Null/Wt PM/NM Intermediate 50%
CYP2C19Null/*17 PM/UM Intermediate 60%
CYP2C19Wt/Wt NM/NM Normal 100%
CYP2C19Wt/*17 NM/UM Ultrarapid 110%
CYP2C19*17/*17 UM/UM Ultrarapid 120%

CYP2D6

Genotype Functional
Diplotype

Categorization Enzymatic
capacity

CYP2D6Null/Null PM/PM Poor 0%
CYP2D6Null/*41 PM/IM Intermediate 5%
CYP2D6Null/*9-
10

PM/IM Intermediate 15%

CYP2D6*41/*9-10 IM/IM Intermediate OR
Normal

20%

CYP2D6*9-10/*9-
10

IM/IM Intermediate OR
Normal

30%

CYP2D6Wt/Null NM/PM Intermediate OR
Normal

50%

CYP2D6Wt/*41 NM/IM Normal 55%
CYP2D6Wt/*9-10 NM/IM Normal 65%
CYP2D6Wt/Wt NM/NM Normal 100%
CYP2D6WtX3 UM/UM Ultrarapid 150%
NM, normal metabolizer; PM, poor metabolizer; IM, intermediate metabolizer;
UM, ultrarapid metabolizer. The definition of the IM phenotype for CYP2D6 is different
between sources. Enzymatic capacities are based on in vivo data from the recent three
large-scale clinical studies (14, 15, 22). Enzymatic capacities may be substrate
dependent.
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these will appear in the coming years and that this will yield more
optimal tools to assist treatment personalization in psychiatry.

Sequencing-based analyses present various challenges. Firstly,
many pharmacogenes represent complex loci, including several
genes and/or pseudogenes with very similar sequences.
Conventional NGS analyses with short overlapping reads are
unable to determine the genotype in such cases, as sequence
similarities with neighboring genes/pseudogenes renders
alignment of short sequences to the gene(s) in question very
difficult or impossible. Long read sequencing or synthetic long
read methods have to be employed for such loci (27). Secondly,
NGS based sequencing is not able to make a firm assignment of
the functionality of mutations identified, with respect to loss of
function mutations and true synonymous mutations. However,
relatively accurate algorithms to predict the functionality of
mutations have been developed and trained on DME genes
(28); the analysis workflow using such sequencing-based
techniques is depicted in Figure 1. In the future, the
application of such a broad personalized approach for analyses
of genetic variation could make pharmacogenomic predictions
much more attainable for individual patients.

Phenotypic Classification Based on
CYP2C19 and CYP2D6 Genotype
The cumulative allelic frequency of all CYP2C19 and CYP2D6
alleles that influence enzymatic capacity varies by ethnicity, but it
is always substantial (higher than 50%); therefore, the total
number of affected patients is considerable. Traditional
classification usually divides patients into four groups: (1) poor
metabolizers (PMs) are homozygous carriers of two loss-of-
function alleles and their specific enzymatic capacity is
completely abolished; (2) intermediate metabolizers (IMs)
carry genotypes that are causing substantially reduced, but not
absent, enzyme capacity; (3) normal metabolizers NMs
homozygously carry normal (Wt) alleles and are associated
with normal enzymatic capacity. NMs may also carry other
genotypes as long as the enzymatic capacity is not significantly
different compared with Wt/Wt carriers; (4) ultrarapid
metabolizers (UM) carry genotypes linked to significantly
increased enzymatic capacity compared with Wt/Wt carriers.

While this classification is informative and consistent with
recent data, it is over-simplified, as certain genotypes that are
classified within one category may carry different enzymatic
capacities and the functional categorization of some specific
genotypes is unclear (Table 1). A potential solution is the
establishment of activity scores that may be used to translate
highly complex CYP2D6 or CYP2C19 diplotype data into one
value, which can be used as the estimate for phenotypic alteration
(29). However, the precision of such an activity score index
would require very reliable estimates of how much each variant
allele affects enzymatic capacity and the activity score may also
be substrate dependent. Consequently, such a classification is
very simple for Null alleles since they completely abolish
enzymatic capacity (0% activity score compared with Wt
allele), but quite complicated for the other functional alleles.
According to our data from 2,087 CYP2C19 genotyped patients
Frontiers in Psychiatry | www.frontiersin.org 4
treated with escitalopram, the CYP2C19*17 allele increases the
enzymatic capacity of CYP2C19 by only approximately 20%
compared with CYP2C19Wt (15). Similarly, in our data from
1,003 CYP2D6 genotyped patients treated with venlafaxine, the
CYP2D6*41 allele reduces the enzymatic capacity of CYP2D6 by
approximately 85% compared to CYP2D6Wt, while CYP2D6*9
and CYP2D6*10 alleles reduce CYP2D6 enzymatic capacity by
approximately 70% compared to CYP2D6Wt (22). Table 2
illustrates the metabolizer categorization and activity scores
based on CYP2C19 and CYP2D6 genotypes; however, although
these estimates are quite reasonable, the activity scores may also
be drug- and ethnicity-dependent and more in vivo studies are
needed to improve the trustworthiness of the activity scores.

While associations between functional diplotype category and
expected enzymatic capacity are informative, the clinically
FIGURE 1 | Scheme for NGS-based sequencing for determination of global
genomic variations of importance for preemptive pharmacogenetics advice.
Common variants might also be directly detected by using standard
genotyping techniques and conventional sequencing. The gene of interest
might have its origin in a complex locus like the CYP2D locus and for proper
sequencing e.g. long range PCR methods are necessary. From the (NGS,
common known mutations will be evident but also rare mutations. These can
be classified by subjecting the sequences to specific algorithms that can
classify the mutations according to expected functional impact.
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relevant information is how CYP2C19 and CYP2D6 genotypes
translate into phenotypes such as drug concentration, and
whether genotypes are associated with differential treatment
outcomes. It is expected that the occurrence of CYP2C19 and
CYP2D6 variant alleles will affect the exposure of drugs
metabolized by CYP2C19 and CYP2D6, and conversely, that
drugs which are specifically metabolized by CYP2C19 or
CYP2D6 will be mostly affected in terms of relevant clinical
phenotypes. However, specific associations and the magnitudes
of such effects have to be established and quantified accordingly.

Escitalopram and sertraline are examples of drugs that are
metabolized predominantly by CYP2C19 and as expected, a
profound increase in escitalopram and sertraline exposure is
observed in CYP2C19 PMs (15, 30). Escitalopram treated PMs
are more prone to side effects and treatment dropout (15, 31);
however, they also respond better to escitalopram if treatment is
tolerated (31, 32). The increase in enzymatic capacity caused by
the CYP2C19*17 variant seems to also affect escitalopram
treatment outcome, likely by reducing the exposure (15, 33).
Patients carrying CYP2C19*1/*17 and CYP2C19*17/*17
genotype had a 50% increase in treatment failure rate
compared with NMs (15). Moreover, replicated findings that
CYP2C19 UMs treated with escitalopram exhibit increased
suicidal ideation (34, 35) indicates that distinguishing between
CYP2C19 NMs and UMs is clinically relevant for the
escitalopram treatment.

Risperidone is an example of a drug that is metabolized
predominantly by CYP2D6, and in a study of 1,288 patients,
approximately 1.4- and 1.6-fold risperidone exposure increase
was observed in IMs and PMs, respectively (14). Since the
therapeutic window for risperidone is quite narrow, this
exposure increase is likely the reason behind the higher
incidence of risperidone-associated adverse drug reactions (36)
and treatment failure (14) observed among PMs compared with
NMs. Furthermore, an increased treatment failure rate is also
observed in Ums (14), indicating that they might be exposed to
insufficient drug levels. Many other antipsychotics, such as
aripiprazole and haloperidol, are metabolized by CYP2D6.
Although aripiprazole metabolism is not as CYP2D6 selective
as that of risperidone, CYP2D6 genotype clearly affects drug
exposure for aripiprazole: a 1.6-fold increased drug exposure is
observed in CYP2D6 PMs in a study of 1,334 patients (14). Since
aripiprazole has a very long half-life (almost a week), the net
clinical effect is significant; hence, halving the aripiprazole dose is
recommended on the FDA drug label for known CYP2D6 PMs
(FDA Aripiprazole).
Translation of CYP2C19 and CYP2D6
Phenotypes Into Clinical
Recommendations
It is not realistic to expect that clinicians are able to follow
scientific literature on a regular basis in addition to their clinical
work, and it is therefore essential to differentiate robust scientific
evidence from the findings that need further validation and to
translate the former into informative treatment guidelines. There
is a research gap in knowledge regarding the cost-effectiveness of
Frontiers in Psychiatry | www.frontiersin.org 5
preemptive genotyping in psychiatry; however, it has previously
been suggested that pharmacogenetic testing in psychiatry might
be cost-effective if the tests became cheaper. Importantly, most of
the models did not consider indirect costs, which are known to
be high for psychiatric patients (37–39). In the EU, the direct and
indirect costs of mental health disorders have been estimated at
€798 billion and are expected to double by 2030 (40). The cost of
genetic testing is dropping each year, rendering its
implementation in daily psychiatric care more and
more possible.

In addition, utilization of the outputs from pharmacogenetic
testing can be very challenging in the complex real-life situations
(41). Patients often suffer from multiple disorders and are
therefore taking combinations of medications, which can
influence the metabolism of the CNS active drugs. This
phenomenon causes the conversion of genetic EMs into
phenotypic UMs, IMs, or PMs (phenoconversion) owing to the
effects of concomitant medications on enzyme inhibition and
induction and this can modify clinical response to drugs. This
has mostly not been taken into account in clinical studies and
there is a therefore a real risk that such studies may have missed
clinically relevant phenomena.

Although the scientific evidence for the above mentioned
CYP2C19 and CYP2D6 genes is strong enough to recommend
clinical application, larger international and nonindustry-funded
implementation studies demonstrating feasibility and cost-
effectiveness in real-world settings are lacking. Real-world
settings include people that use more than one drug, which is
something that the current guidelines do not yet cover. Possible
obstacles in terms of feasibility include the availability of an
efficient system to generate, deliver and implement genotyping in
the clinical prescription of psychiatric medication. At this time,
despite gene-dosing advice for many antidepressants (Tables 3
and 4) and antipsychotics (Table 5) these are all prescribed to
patients with almost no preemptive genotyping or genetic
analyses during treatment, not even when side effects occur or
when the pharmacotherapy is inefficacious.

Pharmacodynamic Pharmacogenetics
Research oriented towards pharmacodynamic-related
biomarkers has to date mainly focused on functional variants
of genes encoding drug targets for currently available
antipsychotics and antidepressants such as SERT (SLC6A4),
NET (SLC6A2), DRD2, HTR1A, and HTR2A. In addition,
genes coding pivotal proteins involved in neuroprotection,
stress-response and immune system activation such as BDNF,
FKPB5, CHRBP, HLA-A, and HLA-B have been considered.
However, despite initial enthusiasm, most of these
polymorphisms have not yet been validated for clinical utility.

One example is a polymorphism in the promoter region of the
serotonin transporter (5-HTTLPR), which is one of the most
studied genetic polymorphisms for response to antidepressants.
The deletion of a 44-bp long region gives rise to a short (S)/long
(L) variant in the promoter region, the short having been
associated with lower levels of SERT expression (42). The long
(L) variant was initially associated with better response to SSRIs
(43). After 28 studies were conducted to either validate or dismiss
March 2020 | Volume 11 | Article 94
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TABLE 3 | Dosing advice of antidepressants based on CYP2C19 and CYP2D6 phenotype according to DPWG and/orCPIC; see (77).

SSRI/SNRI Poor
metabolizer

CYP2C19 CYP2D6

Intermediate
metabolizer

Normal
metabolizer

Ultrarapid
metabolizer

Poor
metabolizer

Intermediate
metabolizer

Normal
metabolizer

Ultrarapid metabolizer

Citalopram 50% of starting
dose or
alternative

Recommended
starting dose

Recommended
starting dose

Alternative drug Recommended
starting dose

Recommended
starting dose

Recommended
starting dose

Recommended starting
dose

Escitalopram 50% of starting
dose or
alternative

Recommended
starting dose

Recommended
starting dose

Alternative drug Recommended
starting dose

Recommended
starting dose

Recommended
starting dose

Recommended starting
dose

Fluvoxamine Recommended
starting dose

Recommended
starting dose

Recommended
starting dose

Recommended
starting dose

25%–50% or
alternative

Recommended
starting dose

Recommended
starting dose

Mirtazapine Recommended
starting dose

Recommended
starting dose

Recommended
starting dose

Recommended
starting dose

Paroxetine Recommended
starting dose

Recommended
starting dose

Recommended
starting dose

Recommended
starting dose

Alternative or
50%

Recommneded
starting dose

Recommended
starting dose

Recommended starting
dose

Sertraline 50% of starting
dose

Recommended
starting dose

Recommended
starting dose

Recommneded
starting dose

Venlafaxine Alternative drug
or adjust

Alternative drug
or adjust

Recommended
starting dose

Likely higher dose e.g.
150% or alternative drug
Frontiers in Ps
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TABLE 4 | Tricyclic antidepressants dosing advice based on CYP2C19 and CYP2D6 phenotype according to DPWG and/or CPIC; see (78).

TCAs CYP2C19 CYP2D6

Poor metabolizer Intermediate
metabolizer

Normal
metabolizer

Ultrarapid
metabolizer

Poor
metabolizer

Intermediate
metabolizer

Normal
metabolizer

Ultrarapid
metabolizer

Amitriptyline Nortriptyline/
desimpramine or
50% dose reduction

Recommended
starting dose

Recommended
starting dose

Nortriptyline/
desimpramine or
50% dose increase

No TCA or 50% Reduce dose by
25%

Recommended
starting dose

No TCA or
higher dose

Clomipramine Nortriptyline/
desimpramine or
50%

Recommended
starting dose

Recommended
starting dose

Nortriptyline/
desimpramine or
50% dose increase

No TCA or 50%
dose reduction

Reduce dose by
25%

Recommended
starting dose

No TCA or
higher dose

Doxepine Nortriptyline/
desimpramine or
50%

Recommended
starting dose

Recommended
starting dose

Nortriptyline/
desimpramine or
50%

Reduce dose by
60%

Reduce dose by
20%

Recommended
starting dose

No TCA or
100% higher
dose

Imipramine Nortriptyline/
desimpramine or
50%

Recommended
starting dose

Recommended
starting dose

Nortriptyline/
desimpramine or
50%

No TCA or 70%
dose reduction

No TCA or 30%
dose reduction

Recommended
starting dose

No TCA or
70% dose
increase

Nortriptyline Recommended
starting dose

Recommended
starting dose

100% No TCA or 60%
dose reduction

No TCA or 40%
dose reduction

Recommended
starting dose

No TCA or
60% dose
increase
| Volume 1
TABLE 5 | Antipsychotic dosing advice based on CYP2D6 phenotype according to DPWG (https://www.pharmgkb.org/gene/PA128/guidelineAnnotation/
PA166104988) according to the recent large-scale study results (14).

CYP2D6

Poor metabolizer Intermediate metabolizer Normal metabolizer Ultrarapid metabolizer

Aripiprazole Reduce maximum dose by 33% (to 20
mg/day)

Reduce maximum dose by 33% (to 20
mg/day)

Recommended
starting dose

Be alert for subtherapeutic drug levels
(TDM) OR
Select alternative drug

Risperidone Reduce maximum dose by 33% (to 4
mg/day)

Reduce maximum dose by 33% (to 4
mg/day)

Recommended
starting dose

Be alert for subtherapeutic drug levels
(TDM) OR
Select alternative drug

Haloperidol Reduce the dose by 50% OR select
alternative drug

Be alert to ADRs OR select alternative
drug

Recommended
starting dose

Be alert for subtherapeutic drug levels
(TDM) OR
Select alternative drug

Zuclopenthixol Reduce the dose by 50% OR select
alternative drug

Reduce the dose by 25% OR select
alternative drug

Recommended
starting dose

Be alert for subtherapeutic drug levels
(TDM) OR
Select alternative drug
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this finding, a recent systematic review was performed and
according to the meta-analysis therein, this variant did not
conclusively affect SSRI treatment outcome (44). Although it may
nonetheless be possible that it is relevant together with other data
(45), at the present date, it is unlikely that 5-HTTLPR genotyping,
which is present in more than one third of currently available
commercially assays (13) can be utilized as an effective clinical
predictor for drug response. Similarly, rs7997072 (HTR2A) (46),
rs5569 (SLC6A2) (47), and rs1360780 (FKBP5) (48)were suggested
to be predictors of response to SSRIs, SNRIs, and all antidepressants
admixed respectively with reasonable confidence levels and effect
sizes. However, these findings were not replicated in a precise
manner by the GENDEP study (49). For example, for the
HTR2A, different markers (rs2224721 and rs9316233) in the
same region of the gene (intron 2) as rs7997072 were nominally
significantly associated with response to escitalopram in GENDEP
study (49). It is likely that the effect of HTR2A polymorphism
involves complex polygenic gene-environment interactions;
however, these interactions are yet to be elucidated. A further
example is the -141C Ins/Del polymorphism in the DRD2 gene,
which inaGWASwasassociatedwith riskof schizophrenia andwas
suggested to predict response to antipsychotic therapy (50); in
addition, a recent report linked the minor allele with less favorable
response to clozapine (51). However, the level of significance was
only marginal (p value between 0.05 and 0.01), suggesting that the
clinical relevance of this SNP, when considered alone, is limited. Of
note, CYP2C19 and CYP2D6 are both expressed in the human
brain (52, 53), where they can metabolize trace amines to
monoamines and affect psychiatric-relevant phenotypes and
pharmacological treatment outcomes (54, 55). Substantial effort
has been made to elucidate the endogenous role of these two
enzymes in the brain and the impact of variant CYP2C19 and
CYP2D6 alleles. However, it is not yet clear whether their
endogenous role and local drug metabolism can affect treatment
with psychiatric drugs. This topic however, is beyond the scope of
this review; for further reading see (56) and. P-glycoprotein (P-gp)
is a plasma membrane efflux pump encoded by the ABCB1 gene
which acts as a drug transportmechanism, actively exporting drugs
from cerebrospinal fluid to blood. Many psychiatric drugs are
substrates for P-gp and functional polymorphism in ABCB1
might hypothetically change the levels of such drugs at the site of
action; however, although certain variants of ABCB1 have been
associated with alterations in drug disposition and response, the
results have been highly conflicting, with questionable clinical
relevance (57).

Other types of polymorphic loci, such as the HLA locus, can be
used for prediction of drug response and adverse drug reactions.
For example, the HLA-B*1502 allele is connected with an
increased risk of developing Stevens-Johnson syndrome (SJS)
and its related disease, toxic epidermal necrolysis (TEN) during
carbamazepine or oxcarbazepine treatment (58). HLA-B*1502 is
common among East Asians (6.9%, apart from Japanese at <1%
and Korean at <2.5%); Oceanic (5.4%); and South/Central Asian
(4.6%) ethnic groups have relatively high frequencies of HLA-
B*1502 (58). Among carbamazepine treated patients,HLA-B*1502
increases the risk of SJS/TEN hundredfold (OR: 113.4; 95% CI:
Frontiers in Psychiatry | www.frontiersin.org 7
51.2-251.0) (59). While the positive predictive value of HLA-
B*1502 genotype is much less for oxcarbazepine then for
carbamazepine, the negative predictive value for both is nearly
100% in South East Asian populations (60). In a trial of 4,877
patients in Taiwan, HLA-B*1502 genotyping completely
prevented SJS/TEN from occurring, while the estimated
historical incidence of carbamazepine-induced SJS-TEN (0.23%)
would translate into approximately 10 cases among study subjects
(61). As a result of this evidence, the FDA introduced a black-box
warning on the carbamazepine drug label and proscribed
mandatory genotyping for the HLA-B*1502 in patients with
documented Asian origin (https://www.accessdata.fda.gov/
drugsatfda_docs/label/2009/016608s101,018281s048lbl.pdf).
CPIC provides guidelines for HLA-B*1502 and HLA-A*31:01
variants for all carbamazepine and oxcarbazepine-treated
patients, irrespective of region of origin or ethnic group (58).
This example illustrates how drug labelling and clinical guidelines
follow, once the clinical studies are able to provide firm and robust
evidence about the usefulness of preemptive genotyping.

In the present situation, where commercial companies
specialized in the sale of genetic test results for profit have
proliferated, there is an increasing risk of advertisements relatied
to offering nonvalidated pharmacodynamic- andpharmacokinetic-
based genotypes directly to consumers (patients). In fact, for
inadequately informed clinicians, such genetic testing may
actually cause more harm than benefit. One of the examples that
illustrates this possibility is a recently published case report
describing a patient whose family and outpatient care provider
received the information that he was a -141Cdel carrier. Since the
genetic test results implied that the patient was expected to poorly
respond to clozapine, objection was raised when switching the
antipsychotic to clozapine was suggested to the patient. However,
since the symptom level was severe, after consulting with the
hospital medical director, clozapine was nonetheless administered
to the patient and this had a remarkably good and rapid effect (62).
As previouslymentioned, theDRD2 -141C ins/del is very far froma
validated biomarker for clozapine response and is seldom present
on anyof the commercially available assays (13). This case therefore
illustrates the danger of testing using insufficiently validated genetic
markers and provides an example of how such testing can cause a
setback in the clinician-patient relationship.We therefore conclude
thathealthcareproviderswhoorder anddealwithpharmacogenetic
testing should have a moral and legal responsibility to educate
themselves and their patients about pharmacogenetic testing and its
limitations. Furthermore, regulatory and legislative frameworks
should be developed and implemented to guide this process.
DISCUSSION

The number of drugs carrying pharmacogenomic labels
continues to increase (6, 63), while in contrast, the chance of
discovering more blockbuster drugs is decreasing. Therefore the
advancement of pharmacotherapy in psychiatry and in general in
the forseeable future will likely be dependent on adequate drug
treatment personalization (64). One example is the treatment of
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cystic fibrosis, where genotyping of the CFTR gene directly
impacts the likelihood for successful treatment using CFTR
modulators (65). Guidelines for pharmacogenomic work
during drug development have been developed and are
instrumental tools for the pharmaceutical industry (https://
www.ema.europa.eu/en/documents/scientific-guideline/
guideline-good-pharmacogenomic-practice-first-version_en.
pdf), particuarly in oncology.

With respect to psychiatry, the HLA markers described above
are relevant for mood stabilizers carbamazepine and
oxcarbamazepine. While genotyping to avoid life-threatening
adverse drug reactions is mandatory for the HLA markers,
pharmacoeconomic analyses provide support for the cost-
effectiveness of other pharmacogenetic-based treatment decisions,
especially in the caseofCYP2D6 (66, 67).Currently, it seems evident
that, out ofmanyproposedmarkers, only genetic variants located in
the CYP2C19 and CYP2D6 genes are of value for optimizing
antipsychotic and antidepressant drug treatment. These genes
were consistently found to influence pharmacotherapy response
in seven randomized controlled trials when genotyping was
performed prospectively (68–74). While genotyping
pharmacodynamic genes such as DRD2 is not at this time
sufficiently supported by research results, it is possible that
machine learning of multivariate data including pharmacokinetic
and pharmacodynamic genes may produce associations of interest.

Variants inpharmacogenesoftenhave lowallele frequencies and
thus for good power, thousands of patients, or meta-analyses in
which variants are grouped together into functional categories, are
required for robust results. While neuropsychopharmacogenomic
clinical trials including a health economic component could
strengthen the evidence for cost savings, in general there is a need
for a larger, nonindustry sponsored prospective trials. For some
gene-drug pairs, somemight argue that the strength of the evidence
is sufficient and that such a clinical trial might be unnecessary and
unethical. For most of the drugs however, the situation is not quite
clear and further large analyses are indicated;moreover, even for the
validated drug-gene pairs, some would argue that clinical evidence
are still incomplete (16). It is also possible that further retrospective
analyses of relevant clinical trials already conducted, especially
where cost-related data are available, could generate informative
health economic data. Certainly, pharmacogenomic analyses
should incorporate comprehensive genomic analysis (sequencing)
and also carefully consider factors that may influence the findings,
such as comedications and pathophysiolgical factors.

Therapeutic drug monitoring (TDM) of drug plasma levels has
been used in psychiatry for a long time, in particular for tricyclic
antidepressants, lithium, and clozapine. TDMcaptures all factors of
interindividual variability in drug metabolism, while genotyping
can offer only a solid prediction of patient metabolic capacity (19);
however, genotyping is possible before drug treatment is initiated,
whereas TDM can only be performed when the drug levels reach
steady-state and when the patient is possibly already exposed to
adverse drug reactions. Therefore, in an ideal constellation, a
psychiatrist would take into consideration all available genetic,
somatic, dietary and environmental parameters to make the best
possible drug and dose selection at initiation of therapy for each
Frontiers in Psychiatry | www.frontiersin.org 8
individualpatient, andonce thedrug levels reachsteady-state,TDM
would be utilized to ascertain whether such an educated decision
was indeed optimal. Since the efficacy rate is only 30%–40% for
antidepressants and antipsychotics (75, 76) despite TDM, there is
clearly room for an improvement in approach.

CONCLUSION

To conclude, there are good pharmacogenetic clinical
recommendations for a wide selection of psychopharmacological
agents based on CYP2C19 and CYP2D6 functional diplotypes. In
addition, recent adequately-powered studies (n > 1,000) have
yielded more clinically useful information and support the
clinical utility of preemptive pharmacogenomics for specific
gene-drug pairs. To extend the knowledge beyond these gene-
drug pairs, further large-scale prospective randomized trials
having a sequencing-based genetic approach and/or reanalyses
of studies with economic data are needed. At this point, there
would appear to be sufficient data to support implementation of
pharmacogenomics in to daily psychiatric practice in patients
experiencing side effects and/or inefficacy (Tables 1–3). Finally, it
is crucial that clinicians are adequately educated in the field of
pharmacogenetics and equipped with adequate guidelines and
decision support tools to interpret genotyping results and translate
them into the clinical setting.
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