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Stress in general, and early life stress in particular, has been associated with the
development of anxiety and mood disorders. The molecular, biological and
psychological links between stress exposure and the pathogenesis of anxiety and
mood disorders have been extensively studied, resulting in the search of novel
psychopharmacological strategies aimed at targets of the hypothalamic-pituitary-
adrenal (HPA) axis. Hyperactivity of the HPA axis has been observed in certain
subgroups of patients with anxiety and mood disorders. In addition, the effects of
different anti-anxiety agents on various components of the HPA axis has been
investigated, including benzodiazepines, tricyclic antidepressants (TCAs), and selective
serotonin reuptake inhibitors (SSRIs). For example, benzodiazepines, including
clonazepam and alprazolam, have been demonstrated to reduce the activity of
corticotrophin releasing factor (CRF) neurons in the hypothalamus. TCAs and SSRIs are
also effective anti-anxiety agents and these may act, in part, by modulating the HPA axis.
In this regard, the SSRI escitalopram inhibits CRF release in the central nucleus of the
amygdala, while increasing glucocorticoid receptor (GRs) density in the hippocampus and
hypothalamus. The molecular effects of these anti-anxiety agents in the regulation of the
HPA axis, taken together with their clinical efficacy, may provide further understanding
about the role of the HPA axis in the pathophysiology of mood and anxiety disorders,
paving the way for the development of novel therapeutic strategies.
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INTRODUCTION

Stress, and more specifically, early life stress, has been associated with the origin and development of
depression and anxiety disorders (1–6). In this regard, it has been shown that chronic exposure to
environmental stressors is followed by a set of adaptive responses, mediated by the activation of
different neural structures involved in emotional and cognitive processing in the central nervous
system (CNS), and the subsequent activation of the autonomic nervous system (ANS) and the
hypothalamic-pituitary-adrenal axis (HPA) (7, 8). Environmental stressors are perceived and
transmitted through sensory pathways to different structures in the CNS, including the thalamus
and limbic areas, such as the amygdala and the hippocampus, and cortical areas, mostly located
g May 2020 | Volume 11 | Article 4431
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in the prefrontal cortex (PFC). Direct projections from
the thalamus to the amygdala may provide primitive
representations of stimuli, which in turn are potentiated by
noradrenergic stimulation from the locus coeruleus (LC) to
initiate a primary stress response. Indirect projections may also
reach the amygdala from sensory and associative cortices, and
transitional cortices, associated to the hippocampus (9). Hence,
the hippocampus projects forward to the lateral nucleus of the
amygdala, as well as the hypothalamic paraventricular nucleus
(PVN), where it plays an inhibitory role (10, 11). The lateral
nucleus of the amygdala projects to the basal, accessory basal,
and central nuclei of the amygdala (CeA) (12). Therefore, the
CeA projects to the lateral nucleus of the hypothalamus, which
activates the sympathetic branch of the ANS (13), the dorsal
motor nucleus of the vagus, which activates the para-sympathetic
branch, and the PVN, therefore leading to the activation of the
HPA axis (13, 14). Hence, the HPA axis may be activated
through direct projections from the CeA, which project to the
PVN (7), where the corticotropin releasing hormone (CRH, also
termed corticotrophinreleasing factor, CRF) is synthesized and
released into the hypophyseal portal blood to reach the anterior
pituitary. CRH stimulates the transcription of the pro-opio-
melanocortin (POMC) gene, a common precursor for
adrenocorticotropic hormone (ACTH) and related peptides.
ACTH is released into the bloodstream to reach the adrenal
cortex, where it stimulates the biosynthesis and release of
glucocorticoids, mainly cortisol (illustrated in Figure 1). These
steroid hormones exert their effects through binding to
mineralocorticoid receptors (MRs or type I) and glucocorticoid
receptors (GRs or type II), constituting a hormone-receptor
complex, which in turn may interact with specific DNA
sequences located in the promoter region of target genes,
termed glucocorticoid response element (GRE) (15),
stimulating or inhibiting the expression of target genes. This
has been described for the down-regulation of the POMC (16)
and CRH genes (17), whereby cortisol is able to regulate its own
synthesis and release through the negative feedback mechanisms
that regulate HPA axis activity. In addition, cortisol may also
down-regulate the HPA axis by binding to hippocampal GRs,
which in turn inhibit the PVN, as well as exerting tonic
inhibition through binding to hippocampal MRs (18, 19).
During chronic stress these negative-feedback loops may be
abolished, resulting in persistent activation of the HPA axis
(15). Therefore, physiological rhythms characterized by wide
diurnal variations, with morning zeniths and evening nadirs, are
altered during chronic stress, which in turn may be translated
into sustained increase in cortisol levels (1). In addition, chronic
stress may also lead to decreased expression of brain derived
neurotrophic factor (BDNF) in the hippocampus, which in turn
may reduce its capability to inhibit the HPA axis (20, 21).These
persistent alterations in the regulation of the HPA axis, such as
the observed during chronic stress, has been associated with
the origin and development of mood and anxiety disorders,
where hyperactivity of the HPA axis, and the consequent
hypercortisolism, represents one of the most consistent
biological findings (6, 22, 23).
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THE ROLE OF THE HPA AXIS

Hyperactivity of the HPA axis is associated with increased
synthesis and release of CRH from hypothalamic neurons in
the PVN in response to stress. CRH-containing neurons have
been also observed in other neural structures, such as the CeA
(24, 25), which in turn activates the HPA axis through
stimulatory projections to the PVN. In addition, reciprocal
connections have been also observed between these CRH
neurons and aminergic nuclei, including the LC and the raphe
nuclei (RN) (4), therefore providing additional pathways for
reciprocal interaction between the noradrenergic and the
serotonergic systems, respectively, with the HPA axis during
the stress response (4, 26) (illustrated in Figure 1). Thus, CRH
neuronal circuits interact with the serotonergic and the
noradrenergic systems, which are critically involved in mood
and anxiety disorders (3). Moreover, CRH has been also
FIGURE 1 | Graphic representation of the hypothalamic-pituitary-adrenal
(HPA) axis. The hypothalamic paraventricular nucleus (PVN) releases
corticotropin releasing hormone (CRH) to the hypophyseal portal blood, to
reach the pituitary (P), where adrenocorticotropic hormone (ACTH) is
synthesized and released to systemic blood to reach the adrenal cortex (AC),
where in turn cortisol is synthesized and released to the main bloodstream.
The HPA is regulated by stimulatory projections from the amygdala and
inhibitory projections from the hippocampus. In addition, the PVN receives
noradrenergic projections from the locus coeruleus (LC) and serotonergic
projections from the raphe nuclei (RN). Stimulatory and inhibitory feedback
loops are also represented, where cortisol is able to regulate its own
synthesis and release by inhibiting ACTH and CRH synthesis in the pituitary
and PVN respectively, and stimulating the hippocampus, which in turn may
inhibit the PVN. Under repeated uncontrollable stress these feedback
mechanisms result abolished, with the consequent hypercortisolism,
alongside with increased reactivity of the amygdala and decreased activity of
the hippocampus. Successful treatment is translated into recovery of these
feedback mechanisms, with the consequent normalization of cortisol,
decreased amygdala reactivity, increased hippocampal function, and
normalization of noradrenergic and serotonergic systems.
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associated with anxiety and encoding of emotional memories (3,
22) thus highlighting the critical role of the CRH system in the
stress response and its role as an important factor in the long-
lasting effects of stress, particularly regarding early life stressful
experiences. In this regard, it has been shown that the impact of
traumatic events during childhood represents a critical factor of
vulnerability in the origin and development of mood and anxiety
disorders later in life (4, 27, 28). The link between early adverse
experiences, such as abuse, neglect or loss, and the development
of mood and anxiety disorders has been shown to occur as a
consequence of stressful conditions during different periods of
life (29). Various studies focused on alterations in different
limbic structures and the HPA axis. In this regard, it has been
shown that exposure to early stressful events may lead to
decreased availability and reduced efficacy of hippocampal GRs
(27), which in turn may lead to glucocorticoid resistance and
increased reactivity of the HPA axis in response to stressful
situations later in life. Moreover, it has been shown that
increased concentrations of cortisol along with decreased GRs
induced by early stressful events were associated with decreased
hippocampal function and volume in adulthood (30). Therefore,
the impact of early adverse events may lead to long lasting changes,
including hyper-reactivity of neural and neuroendocrine responses
to stress, reflected in increased CRH, glucocorticoid resistance and
reduced volume of the hippocampus (27, 31), all of which may
contribute to shape potential responses to further stressful
experiences later in life.
THE ROLE OF THE SEROTONERGIC
SYSTEM

It has been shown that deficient or altered serotonergic
neurotransmission in the CNS plays a critical role in the origin
and development of anxiety and depressive symptoms (26). The
serotonergic system has its main sources in the RN, which
project to diverse neural structures (illustrated in Figure 2).
Serotonergic projections to the forebrain originate mainly in the
dorsal (DRN) and medial RN (MRN) (32). The DRN-forebrain
tract innervates various structures, many of them associated with
anxiety-related and adaptive responses to stress (33–35),
including the CeA (36), the bed nucleus of the stria terminalis
(BNST) (37), the PVN, the nucleus accumbens (NAc), and
certain areas of the PFC, particularly the medial PFC (MPFC)
(38). In addition, the DRN also innervates structures related to
regulation of fight-or-flight behavioral responses, such as the
periaqueductal grey (PAG) (39, 40) and the striatum, which have
been shown to be involved in passive coping behavior (41). Both
neural structures, the PAG and the striatum, have also been
associated with the state of anticipatory anxiety that plays a
critical adaptive role in situations of danger, contributing to
inform the amygdala about the current impact of negative
experiences and the consequent emotional reactions (11). The
MRN-forebrain tract projects to complementary neural
structures, including the hippocampus and the hypothalamus
(34, 42), and has been associated with tolerance to persistent
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aversive stimuli (43), such as those perceived during chronic
stress, and adaptive control on negative emotional experiences
(11). Thererfore, dysfunction of this system, particularly
involving MRN-hippocampal projections, has been associated
with decreased tolerance to aversive stimuli, learned helplessness,
and subsequent depression (34). Serotonergic neurons in the RN
have also been shown to interact with the noradrenergic and
dopaminergic systems (44).

Serotonin (5-hydroxitryptamine, 5HT) released in the
synaptic cleft binds to one or more of several 5HT receptors,
classified as 5HT1A−F, 5HT2A−C; 5HT3, 5HT4, 5HT5, 5HT6, and
5HT7, most of them belonging to a family of G protein-coupled
receptors (GPCRs), with the exception of the 5HT3 receptor,
which is a ligand-gated ion channel (45). The 5HT1A−F receptor
family and the 5HT5 receptor couple with Gi protein, which
inhibits adenylate cyclase (AC) activity, the 5HT4, 5HT6, and
5HT7 receptors couple with Gs protein, which stimulates AC
activation, and the 5HT2A−C receptor family couple with Gq
FIGURE 2 | Graphic representation of 5HT projections from the raphe nuclei
(RN). The dorsal RN (DRN) sends stimulatory projections to the central
nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis
(BNST), which participate in increased fear and anxiety, inhibitory projections
to the periaqueductal grey (PAG) and the striatum, which participate in
passive behavior, inhibitory projections to the medial prefrontal cortex (MPFC),
and stimulatory projections to the nucleus accumbens (NAc), which
participate in the regulation of complex behaviors and expression of
emotions. Conversely, the MPFC sends inhibitory projections to the DRN and
the amygdala, which may be translated into anti-anxiety effect. The medial RN
(MRN) sends stimulatory projections to the hippocampus, which have been
associated to increased tolerance to adverse stimuli and decreased anxiety.
Under repeated uncontrollable stress the amygdala is increasingly stimulated
by the DRN, which results in increased anxiety, the PAG and striatum are
inhibited by the DRN, with the resulting passivity, and the serotonergic
activation from the MRN to the hippocampus results impaired. Increased
reactivity of the amygdala and decreased activation of the hippocampus may
lead to increased activation of the hypothalamic-pituitary-adrenal (HPA) axis.
Successful treatment is translated into recovery of these feedback
mechanisms, with the consequent normalization of cortisol, decreased
amygdala reactivity, increased hippocampal function, and normalization of the
serotonergic systems.
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protein, which stimulates the activity of phospholipase C (PLC)
(46). In addition to the presence of different 5HT receptors, a
critical role in the control of serotonergic neurotransmission is
exerted by the serotonin transporter (5HTT), which acts to
reuptake the remaining 5HT into the presynaptic terminal,
therefore regulating the concentrations of the neurotransmitter
in the synaptic cleft. The 5HTT represents the main target of
various antidepressants, including the tricyclics (TCs) and the
selective serotonin reuptake inhibitors (SSRIs). Blockade of the
5HTT by these drugs result in increased concentrations of 5HT
in the synaptic cleft, leading in turn to increased activation of
5HT receptors (47). The efficacy of these antidepressants is
associated with adaptive changes produced by its continuous
administration, including desensitization or down regulation of
somatodendritic 5HT1A auto-receptors in the RN (48) and up-
regulation of post-synaptic 5HT1A (49), and desensitization of
5HT2A receptors (50), mostly in the MRN-hippocampal tract. It
has been shown that post-synaptic 5HT1A receptors down-
regulate or desensitize in different limbic structures by
glucocorticoids or exposure to chronic stress (51–53). Cortisol
may inhibit 5HT neurotransmission tonically through binding to
MRs, while increased levels of cortisol, such as during chronically
stressful conditions, bind predominantly to GRs, therefore
interacting with GREs and inhibiting the expression of the
5HT1A gene (51). In addition, it has been shown that cortisol
may exert a stimulatory effect on 5HT uptake in vitro, which has
been attributed to an increased expression of the 5HTT gene by
cortisol (54), further supporting the notion of reciprocal regulation
between the HPA and 5HT systems, and their potential
interactions in the interface between stress and depression.
EFFECTS OF TCAs AND SSRIs IN THE
REGULATION OF THE HPA AXIS

A considerable number of patients suffering with chronic anxiety
disorders exhibit hyperactivity of the HPA axis, with the
consequent hypercortisolism. This has been described in
patients with panic disorder (55) or generalized anxiety
disorder (GAD) (56, 57), however, hypercortisolism in patients
with GAD has not been observed in other studies (58, 59).
Regarding posttraumatic stress disorder (PTSD), considerable
evidence has also revealed alterations of the HPA axis (28).
However, patients with PTSD exhibited decreased activity of the
HPA axis, which has been attributed to exaggerated negative
feedback or hypersecretion of CRH with consequent down-
regulation of the anterior pituitary CRF receptors (60).

Successful pharmacological approaches often result in
normalization of the HPA system. This led to further
investigation of the role of the HPA axis in the pathophysiology
of these disorders. Because different anti-anxiety agents, including
tricyclic antidepressants (TCAs), selective serotonin reuptake
inhibitors (SSRIs), and benzodiazepines (BZDs), have been
demonstrated in some studies to normalize the HPA axis,
various lines of research were developed focusing on the
Frontiers in Psychiatry | www.frontiersin.org 4
broader spectrum of mechanisms of action underlying the
therapeutic effects of these agents.

It has been shown that TCAs and SSRIs, in addition to their
well-known pharmacological effects, including blockade of
neurotransmitter uptake and subsequent regulation of different
pre- and post-synaptic receptors, may also induce significant
changes in the HPA axis, associated with their therapeutic effects
(61–69). Some of these, at least in part, have been attributed to
the potential effect of anti-anxiety agents on transcriptional
regulation of different molecules involved in the regulation of
the HPA axis (70–74), including GRs, MRs, and CRH. In this
regard, it has been proposed that altered GR gene regulation,
which may be translated into diminished concentrations of GRs
in different neural structures, more specifically hippocampal or
hypothalamic GRs, may contribute to deficient feedback of the
HPA system (63), which in turn may lead to the consequent
alterations observed in patients suffering with depression or
chronic anxiety disorders.

Increased GRmRNA expression has been initially observed in
vitro, in cell cultures derived from hypothalamus or amygdala,
upon incubation in the presence of desipramine or amytriptiline
(70, 71). Similar results were also observed in studies in which
chronic treatment with TCAs, but not short-term treatment,
decreases CRH mRNA expression (61, 75, 76). Similar effects
were also observed in vivo with long-term administration of
imipramine. In this regard, it has been shown that long-term
treatment with this TCA inhibited transcriptional regulation of
the CRH gene, with the consequent decrease of CRH mRNA
expression in the hypothalamus (76), which in turn resulted in a
significant reduction in HPA axis activity (73, 76).

Regarding SSRIs, in vitro and in vivo studies demonstrated
that long-term treatment with fluoxetine increased GR mRNA
expression in hippocampal neurons (77, 78). More recently, in
vivo studies demonstrated that long-term treatment with
fluoxetine may also induce functional recovery of hippocampal
GRs following chronic stress (79). Moreover, increased
hippocampal GRs activation, including phosphorylation and
subsequent nuclear translocation, was also observed after long-
term treatment with fluoxetine, even in the absence of altered
glucocorticoid secretion (79). Although these observations
strongly suggest that this mechanism should be involved in the
therapeutic effect of fluoxetine, more recent studies have also
suggested that additional changes in GRs are not necessary for
the behavioral efficacy of the SSRI (80).

It is noteworthy that GRs are expressed in the amygdala,
particularly in the CeA (81), where glucocorticoids have been
shown to stimulate the expression of CRH in this nucleus (82), in
contrast to the inhibitory effect observed in the hypothalamic
PVN (83). Cortisol up-regulation of CRH in the amygdala may
be translated into activation of the whole system, because CRH
projections from the CeA may exert stimulatory effect on the
PVN, hence resulting in increased synthesis and release of CRH
in the hypothalamus, with the consequent hyperactivity of the
HPA axis. In this regard, overactivity of the amygdala represents
another critical finding, frequently associated with depression
and chronic anxiety disorders (84), which has been
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demonstrated in functional imaging studies (85–87). The
amygdala has been shown to play a critical role in the
physiopathology of anxiety and, as we mentioned previously, it
is critically involved in the regulation of the HPA axis, more
specifically, through CRH projections from the CeA, which
stimulate the hypothalamic PVN (88). Because the amygdala
represents one of the main sources of extra-hypothalamic CRH,
hyper-activation of this limbic structure may be reflected in
increased concentration of CRH in cerebrospinal fluid (CSF), as
observed in many patients with depression (89–91), and elevated
CRH transcript in animal models exposed to chronic stress
condi t ions . Moreover , i t was proposed that CRH
overexpression in the CeA would be a main factor in the
origin and development of depression (92). Therefore, a
regulatory effect induced by SSRIs, translated into reduced GR
and CRH gene expression in the CeA, may contribute, at least in
part, to down regulation of the HPA axis, which is often observed
with clinical improvement. In this regard, various studies were
performed with escitalopram, which demonstrated that the SSRI
was effective in the normalization of different physiopathological
parameters related to HPA functioning. According to these
studies, escitalopram was effective in reducing elevated
concentrations of cortisol in patients with generalized anxiety
disorder (GAD), which also was correlated with clinical
improvement (93). In addition, escitalopram reversed the
adverse effects of CRH overexpression in the CeA. In vivo
studies also revealed that escitalopram was effective in reducing
CRH expression in the hippocampus alongside increased GR
expression in the hypothalamus and hippocampus, all associated
with significant decreases in HPA axis reactivity (92). More
recently, in a preclinical laboratory study, escitalopram
inhibited expression of CRH and its receptors in the
hypothalamus (94). The potential effects of TCAs and SSRIs in
the regulation of the HPA axis may provide additional
knowledge to better understand their therapeutic effects,
although further research is necessary in this critical issue.
SIGNALING CASCADES INVOLVED IN THE
REGULATION OF GENE EXPRESSION

In order to understand the molecular mechanisms involved in the
long lasting effects of TCAs and SSRIs, various studies were
performed focusing on their regulatory effects on different
components of the HPA axis. It has been suggested that long
lasting effects of TCAs and SSRIsmay involve up-regulation of the
cAMP-mediated second messenger cascade, which in turn may
lead to transcriptional regulation of different genes (95), including
GR, CRH, and BDNF. Binding of different ligands to their specific
GPCR are, of course, associated to second messenger cascades. In
this regard, stimulation of Gs-coupled receptors may induce the
activation of AC, with the consequent synthesis of cAMP, a
second messenger responsible for the activation of cAMP-
dependent protein kinase (PKA) (96). Therefore, stimulation of
the AC-cAMP-PKA cascade may be translated into the activation
of cAMP response element binding protein (CREB) (96, 97),
Frontiers in Psychiatry | www.frontiersin.org 5
which in turn operates as a transcription factor, mediating the
effects of the cAMP cascade. In order to exert its regulatory effect,
CREB should be activated, which is attained by phosphorylation
at a single serine residue (Ser133) (96, 97). Once phosphorylated,
CREB is able to regulate transcriptional events by binding to an
enhancer element, located in the regulatory region of different
genes, termed cAMP response element (CRE). It has been shown
that phosphorylation of CREB may occur via activation of the
AC-cAMP-PKA cascade and also via the calcium-dependent
protein kinase (PKC) cascade, which allows CREB to act as a
common downstream target of different stimuli, including those
mediated by TCAs and SSRIs (67, 95, 98, 99). Molecular alteration
of the AC-cAMP-PKA cascade has been described in patients
suffering of depression (100), and various studies demonstrated
that chronic treatment with different antidepressants contributed
to repair this cascade at various molecular levels (101), therefore
supporting the critical role played by CREB in the regulation of its
target genes in the molecular mechanisms underlying the
therapeutic effect of these molecules (102, 103). In this regard, it
has been shown that the AC-cAMP-PKA cascade plays a critical
role in the transcriptional regulation of CRH (104–107).
Moreover, it has been shown that transcriptional activation of
CRH depends on cAMP-PKA mediated phosphorylation of
CREB, with the subsequent binding to CRE in the promoter
region of the CRH gene (107). Similarly, there is considerable
evidence for a cAMP-PKA mediated mechanism involved in GR
regulation (108), therefore suggesting potential links between
chronic treatment with TCAs and SSRIs, with the subsequent
repairing effects on the AC-cAMP-PKA-pCREB cascade, and
their regulatory effects on different components of the HPA axis
at the transcriptional level.

Various in vivo studies demonstrated that chronic treatment
with TCAs or SSRIs may up-regulate the expression of CREB in
certain limbic regions (109). In this regard, in vivo studies
revealed that chronic treatment with different antidepressants,
including serotonin- and norepinephrine-selective reuptake
inhibitors, led to increased expression of CREB mRNA in the
hippocampus, particularly in CA1 and CA3 pyramidal cells and
dentate gyrus granule cells (109, 110). In addition, BDNF mRNA
expression was also increased in hippocampus after treatment
with antidepressants (95), which suggests that chronic treatment
with these molecules may lead to up-regulation of CREB, which in
turn may increase the expression of different target genes, such as
the BDNF gene (109), where a CRE has been described in its
promoter region (111, 112). Therefore, up-regulation of CREB,
with the subsequent increased expression of BDNF, may be
critical to counteract the effects of stress on hippocampal
neurons (30, 113). Moreover, it has been shown that BDNF
participates in the regulation of the HPA axis (114, 115), which
represents a potential link between the AC-cAMP-PKAmolecular
cascade, with the consequent activation of CREB and BDNF, with
its regulatory effect on the HPA axis. Although, this molecular
mechanism remains elusive and deserves further research to
better understand the potential links between these molecular
cascades. Because CREB has been associated with neuronal
survival and plasticity in the hippocampus (116) and increased
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expression of CREB in hippocampus has been associated with
therapeutic effects, it may represent a potential target for the
design of novel therapeutic agents (110).

The therapeutic effect of TCAs and SSRIs has long been
associated to up-regulation of 5HT1A hetero-receptors (49, 117–
119), which primarily work via Gi, therefore inhibiting the AC-
cAMP-PKA signaling cascade. Long-lasting effects of TCAs and
SSRIs may involve activation of AC-cAMP-PKA, which in turn
requires stimulation of GPCRs associated to Gs, to activate this
signaling cascade. In order to understand this apparent paradox, it is
important to take into consideration that 5HT1A hetero-receptors
may activate indirect signaling mechanisms. Among these, it has
been shown that activation of 5HT1A, associated to Gi, may exert
inhibitory effects on inhibitory pathways. In this regard, the effect of
hippocampal 5HT1A receptors, particularly in the dentate gyrus, has
been associated to inhibition of GABAergic interneurons (120).
Additional mechanisms have been also proposed, involving other
GPCRs, which may also interact with 5HT1A–mediated signaling
pathways. In this regard, 5HT4 receptors have been described in
different neural structures, including the PFC, amygdala, and
hippocampus (121). It has been shown that 5HT4 receptors are
associated to Gs (122) and therefore are known to stimulate the AC-
cAMP-PKA cascade, with the consequent phosphorylation of
CREB. This, in turn, plays a critical role in the synthesis of BDNF,
with the resulting facilitation of hippocampal neurogenesis (123,
124). In this regard, activation of 5-HT4 receptors have been also
associated with the therapeutic effect of SSRIs (121, 125), therefore
suggesting that potential interactions between 5-HT1A and 5-HT4
receptors may be involved in the mechanism of action of
antidepressants. Additional mechanisms have been also described
involving potential interactions between 5-HT1A and 5-HT7

receptors. In this regard, it has been demonstrated that different
GPCRs may form homodimers and heterodimers, which may differ
in various aspects with the non-associated GPCRs (126). It has been
shown that 5HT1A receptors may form heterodimers with others
GPCRs, such as 5HT7, therefore resulting in different effects in
comparison to the individual receptor by itself (127). In this regard,
5HT7 receptors have been widely described in different neural
structures, including the hippocampus, hypothalamus, PFC, and
amygdala (128, 129). The 5HT7 receptor is coupled to GS, therefore
its activation results in stimulation of the AC-cAMP-PKA cascade
(128). Heterodimerization of 5HT1A and 5HT7 was observed in
vitro (130), where it was shown that co-expression of both GPCRs
decreased the activation of inhibitory Gi, mediated by 5HT1A

receptors, without affecting the activation of stimulatory GS,
mediated by 5HT7 receptors (130). Therefore, heterodimerization
of both GPCRs may lead to important functional changes in
their downstream signaling, with the consequent regulatory
effects (131).
EFFECTS OF BZDS IN THE REGULATION
OF THE HPA AXIS

The HPA axis is also regulated by other neurotransmitters,
including g-aminobutyric acid (GABA), the major inhibitory
Frontiers in Psychiatry | www.frontiersin.org 6
neurotransmitter in the CNS (132). It has been shown to be
closely involved in the regulation of hypothalamic function
(133–135). Inhibitory GABAergic input has been shown to
innervate hypophysiotropic CRH neurons in the medial
parvocellular hypothalamic PVN (136, 137) through direct
input from peri-PVN sources or indirectly from diverse limbic
structures. Direct GABAergic projections may reach the PVN
from adjacent hypothalamic nuclei and the BNST (138) or
indirectly from various cortical and limbic structures, including
the hippocampus, through the ventral subiculum, the amygdala,
and the PFC, particularly the ACC, prelimbic, and infralimbic
areas (137). Local GABAergic projections to the PVN may in
turn be activated or inhibited by glutamatergic or GABAergic
projections from cortical and limbic areas, which are closely
involved in adaptive responses to stress and, therefore in the
regulation of the HPA axis (139). The inhibitory role of the
hippocampus in the regulation of the HPA axis is therefore, in
part, mediated by GABAergic projections from the ventral
subiculum to the PVN, which may allow hippocampal
processing, including information related to previous
experiences and to the current context, exert adaptive influence
on the stress response (137).

At the molecular level, GABAergic effects in the CNS are
mediated by two types of postsynaptic receptors, GABA-A and
GABA-B (140). The GABA-A receptor is a complex, constituted
by diverse sub-units, with specific binding sites for its natural
ligand, GABA, benzodiazepines (BZDs), and barbiturates. Upon
binding of GABA, activation of postsynaptic GABAA receptors
allows the opening of specific chloride (Cl-) ion channels, with
the resulting influx of Cl- and the consequent hyperpolarization
of postsynaptic neurons and inhibition of cell firing. Binding of
BZDs to their specific site on the GABA-A receptors enhances
the binding of GABA to its specific binding-site in the same
receptor, which leads to increased frequency of Cl- channels with
the resulting hyperpolarization and the consequent inhibition of
target neurons (140, 141). Therefore, BZDs represent a family of
anti-anxiety agents, whose mechanism of action has been
associated to their enhancement of GABAergic function in
different areas of the CNS, including their potential role in the
modulation of the HPA axis, particularly in those patients
suffering with depression and anxiety disorders. In this regard,
the effect of alprazolam, a potent BZD agonist, has been studied
in vivo, where it was observed that both GABA and the BZD
exerted inhibitory effect on the HPA axis (141) and, according to
previous studies, this effect was attributed to the effect of BZDs
on GABAergic receptors inhibiting the CRH system (142). The
presence of GABA-A receptors in the hypothalamus further
supports this central mechanism of action. Interestingly,
diazepam, another well known BZD, have been shown to
decrease corticosterone levels in vivo (143) and it has been
shown that BZDs decrease cortisol levels in healthy volunteers
and depressed patients in a dose-dependent manner (141, 142).

This regulatory effect was further studied in vivo with
alprazolam, where it was observed that the BZD was capable of
inhibiting the HPA axis, and this was attributed to the effect of
the BZD on CRH neurons, which may contribute to its
May 2020 | Volume 11 | Article 443
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therapeutic efficacy (144). The potential role for CRH in the
pathophysiology of anxiety disorders was extensively studied
(145), therefore proposing further research on the effects of anti-
anxiety agents on CRH neurotransmission. In this regard, it has
been shown that acute treatment with alprazolam decreased
CRH concentrations in the LC (146). Moreover, the effect of
alprazolam was further studied in vivo, where it was shown to
decrease CRH concentrations in the LC after acute or chronic
administration (147). The LC receives a rich CRH innervation
(148) contains CRH receptors (149) and is critically involved in
the pathophysiology of stress and anxiety disorders (150).
Therefore, the effects of alprazolam on hypothalamic CRH
neurons, are likely both direct and indirect through the LC
(151). More recently, in vivo studies with lorazepam and
clonazepam demonstrated that both BZDs were effective to
reversing anxiety-like behavior, including social-avoidance, and
these effects were correlated with their inhibitory effect on the
HPA axis, mediated by suppression of CRH activity (152).
Moreover, it has been shown that both BZDs were effective to
reducing stress-induced CRH mRNA expression in the
hypothalamus (152).

According to the molecular mechanisms previously described
in the aforementioned section, it has been demonstrated that anti-
anxiety agents, including BZDs, as well as TCAs and SSRIs, may
exert certain effects on the HPA axis. However, although this may
Frontiers in Psychiatry | www.frontiersin.org 7
provide further information to better understand the molecular
mechanisms involved in their therapeutic effects, it has been
shown that these effects only account for a small part of their
therapeutic and pharmacological effects, which may be reflected
in the partial improvement in the hypercortisolism observed in
certain patients suffering depression or anxiety disorders.
CONCLUSION

The role of the HPA axis in the pathophysiology of depression
and chronic anxiety disorders has been extensively studied,
including the particular role played by their different
components, including CRH neurotransmission, cortisol, and
their specific receptors, and the genes coding for each of these
molecules. It remains unclear, however, how important the
effects of anti-anxiety agents on the HPA axis activity are in
mediating their therapeutics benefits and moreover whether
further modulation of CRH and related systems might
augment our currently available agents.
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