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Background: Binge Drinking (BD), a highly prevalent drinking pattern among youth, has
been linked with anomalies in inhibitory control. However, it is still not well characterized
whether the neural mechanisms involved in this process are compromised in binge
drinkers (BDs). Furthermore, recent findings suggest that exerting inhibitory control to
alcohol-related stimuli requires an increased effort in BDs, relative to controls, but the brain
regions subserving these effects have also been scarcely investigated. Here we explored
the impact of BD on the pattern of neural activity mediating response inhibition and its
modulation by the motivational salience of stimuli (alcohol-related content).

Methods: Sixty-seven (36 females) first-year university students, classified as BDs (n =
32) or controls (n = 35), underwent fMRI as they performed an alcohol-cued Go/NoGo
task in which pictures of alcoholic or non-alcoholic beverages were presented as Go or
NoGo stimuli.

Results: During successful inhibition trials, BDs relative to controls showed greater
activity in the bilateral inferior frontal gyrus (IFG), extending to the anterior insula, a brain
region usually involved in response inhibition tasks, despite the lack of behavioral
differences between groups. Moreover, BDs displayed increased activity in this region
restricted to the right hemisphere when inhibiting a prepotent response to alcohol-related
stimuli.

Conclusions: The increased neural activity in the IFG/insula during response inhibition in
BDs, in the absence of behavioral impairments, could reflect a compensatory mechanism.
The findings suggest that response inhibition-related activity in the right IFG/insula is
modulated by the motivational salience of stimuli and highlight the role of this brain region
in suppressing responses to substance-associated cues.
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INTRODUCTION

Alcohol is by far the most used drug among youth in Western
countries, as informed in epidemiological reports by the ESPAD
(European School Survey Project on Alcohol and Other Drugs) (1)
and the SAMSHA (Substance Abuse and Mental Health Services
Administration) (2). The actual consumption rate of this
substance entails significant health and economic costs (3, 4)
and is one of the main causes of death among young people and
adolescents (4). In this regard, multiple studies have indicated
that the age of onset of drinking may be a determining factor in
the development of future alcohol use disorders (AUD), illicit
drug dependence and different problem drinking patterns (5–9).
For example, Hingson et al. (8) informed that an early drinking
onset significantly increases the probability to engage in binge
drinking (BD). This pattern of consumption, characterized by
the intake of large amounts of alcohol in a short period of time
(leading to a blood alcohol concentration of at least 0.08 g/dl)
[National Institute on Alcohol Abuse and Alcoholism (NIAAA),
(10)], has been linked to neural and neuropsychological
anomalies (11–13) and it could be considered as an initial step
for developing alcohol use disorders (7, 14, 15). Moreover,
evidence from animal (16) and human (17) studies about the
vulnerability of the adolescent brain to the neurotoxic effects of
alcohol highlights the impact of alcohol consumption on brain
development. Of particular concern is the upsurge in alcohol
consumption that takes place once the legally allowed age is
exceeded (i.e. 18–21 years in most countries) but brain
maturation is still under development (18, 19). In this regard,
previous studies have demonstrated that brain regions known to
support cognitive control, such as the prefrontal cortex, mature
late (20, 21) and are particularly vulnerable to the neurotoxic
effects of alcohol consumption (22, 23). University students have
been specifically identified as a population of interest, mainly due
to the escalation in alcohol drinking and increased rates of BD
during transition to university (24, 25), placing them in a
vulnerable position to develop future AUD (15).

Neuroscientific models of addictive behaviors have proposed
that impairments of two related processes—response inhibition
and salience attribution—may underlie the development of
substance use disorders (26–29). In line with dual-process
models, evidence of an imbalance between impaired response
inhibition and an increased impact of the motivational
properties of drug-related stimuli has been reported in alcohol-
dependent patients [for a review, see (30)]; however, less is
known about this potential imbalance in young binge drinkers
(BDs) [for a theoretical framework, see (31)].

Response inhibition, usually defined as the ability to withhold or
suppress a prepotent response (32), is considered a key mechanism
to adjust behavior to meet environmental demands. Different meta-
analyses have revealed the involvement of a predominantly right-
lateralized fronto-parietal network, including the inferior parietal
lobule (IPL), inferior frontal gyrus (IFG), middle frontal gyrus
(MFG) and anterior insula, in successful inhibition of responses
(33–38), and have underlined the importance of the right inferior
frontal cortex (36, 37, 39).
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An extensive body of work in alcohol dependence has shown
alterations in inhibitory control at behavioral and neural levels
[for a review, see (40); for a meta-analysis, see (41)]. Studies
centered on young BDs have also provided evidence for the
hazardous effects of this pattern of consumption on inhibitory
control processes [for a review, see (42)], although its impact on
the neural network subserving response inhibition is still not well
characterized. In this regard, neuroimaging studies have reported
an increased neural activity in BDs compared to controls during
successful response inhibition trials [(43); see also (44)], as well
as the recruitment of different brain regions during failed
inhibitions (45), even in the absence of behavioral differences
between the groups.

Regarding the enhanced salience attribution to drug-related
stimuli in alcohol-dependent patients, a recent meta-analysis has
revealed increased neural activity in brain regions implicated in
incentive salience, reward processing and habit circuitry (e.g. dorsal
striatum, prefrontal areas, anterior cingulate cortex and insula) (46).
This study has also indicated the presence of differences between
heavy and light drinkers in the activity of parietal and temporal
regions (46). Regarding non-clinical BDs, fMRI studies that assessed
alcohol cue reactivity and implicit positive associations towards
alcohol cues reported similar results, showing greater neural activity
in BDs in comparison with light drinkers in several incentive
salience- and reward-related areas including, but not limited to,
the anterior cingulate cortex, insula and dorsal striatum (47, 48).
Furthermore, greater neural activity to alcohol-related pictures in
some of these regions predicted increases in drinking and more
alcohol- related problems in a group of college students who
transitioned to heavy drinking during a year follow-up period (49).

In line with the findings mentioned above and the principles
of dual-process models, one could expect to find greater response
inhibition impairments to alcohol-associated stimuli in both
individuals with AUD and BDs. Studies with alcohol-
dependent patients offer behavioral and neuroimaging evidence
that supports this hypothesis. A recent systematic review
indicates that patients with AUD tend to show increased
recruitment of the inhibitory control neural network
(comprising dorsolateral and ventrolateral prefrontal cortex)
and the salience network (anterior cingulate, insula and IPL)
during alcohol-related processing while showing decreased
engagement of relevant brain networks during non-drug-
related processing (29). This potential imbalance has been,
however, scarcely investigated in BDs, with the few published
studies reporting, at a behavioral level, both the presence (50)
and absence (51–55) of differences in the percentage of false
alarms to alcohol-related stimuli, and with, to our knowledge,
only one neuroimaging study trying to disentangle the subjacent
neural mechanisms of these effects (56). In this work, Ames et al.
(56), using a Go/NoGo task that required the inhibition of a
prepotent response to alcohol images (NoGo stimuli), reported
an increased neural activity in BDs, compared to controls, in
regions involved in cognitive control (i.e. dorsolateral prefrontal
cortex, anterior cingulate and anterior insula) during successful
inhibition trials, in the absence of behavioral differences in the
proportion of inhibitory errors. However, this study only
June 2020 | Volume 11 | Article 535
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included alcohol images as NoGo stimuli, and it is thus not
possible to determine if the observed neural response pattern was
specifically related to successful inhibition of response to alcohol-
related stimuli or to a more general response inhibition process.

Here, we performed event-related functional magnetic
resonance imaging (fMRI) in first-year university students
during an alcohol-cued Go/NoGo task with a twofold aim: (1)
to investigate the association between BD and potential anomalies
in inhibitory control, and (2) to examine whether response
inhibition processes are affected by the motivational salience of
stimuli (i.e. alcohol- or non-alcohol-related content). Based on
previous findings (43), we hypothesized, first, that BDs, compared
to controls, would show an increased activation during successful
inhibition trials (independently of the type of stimulus) in brain
areas commonly identified as involved in response inhibition, such
as the IFG, anterior insula, MFG or the IPL (33, 35), in the absence
of behavioral differences between groups. Second, in line with
previous studies (56) we expected the pattern of neural activity
mediating response inhibition to be modulated by the stimulus
motivational value, reflected in increased engagement, in BDs
relative to controls, of the response inhibition neural network
when withholding a response to alcohol-related stimuli. At a
behavioral level, based on previous findings (51–56) we did not
expect to find any significant differences between groups in the
proportion of inhibitory errors.
MATERIALS AND METHODS

Participants
Eighty-five first-year university students (18-19 years old) were
selected to participate in the neuroimaging assessment within the
framework of a broader research on consequences of BD among
university students (for ERPs results, see 54). Initially, 2,998 first-
year students from the University of Santiago de Compostela
(Spain) completed a classroom questionnaire assessing alcohol
and other substance consumption, as well as sociodemographic
information. This questionnaire included the adapted version of the
Alcohol Use Disorders Identification Test (AUDIT) (57, 58), the
short version of the Nicotine Dependence Syndrome Scale (NDSS-
S) (59, 60) and the Cannabis Abuse Screening Test (CAST) (61, 62).
In order to identify the most suitable participants among the initial
2,998 questionnaires, the following preselection criteria were applied
to the classroom questionnaire: i) provision of contact information
(phone number and/or email); ii) 18–19 years old; and iii) non-
consumption of illegal drugs (except cannabis). From the initial
2,998 questionnaires, a total of 516 subjects were identified to meet
these criteria and showed interest in participating in the study.
These participants completed a semi-structured interview in which
quantity and frequency of alcohol use over the past 180 days were
assessed via the Timeline Follow-Back calendar (TLFB) (63).
Additionally, those subjects who reported cannabis consumption
at some time throughout their lives during the classroom
questionnaire completed the Cannabis TLFB to assess
their cannabis consumption over the past 90 days. Participants
were also interviewed about personal and family history of
Frontiers in Psychiatry | www.frontiersin.org 3
psychopathological disorders and completed the Spanish version
of the Symptom Checklist-90-Revised (SCL-90-R) (64) to ensure
they met inclusion/exclusion criteria. Exclusionary criteria included
the following: chronic medical conditions that could affect
neurocognitive functioning (diabetes, hypothyroidism, liver
diseases, etc.), history of neurological disorders or brain injury,
personal history of DSM-IV-TR Axis I and/or II diagnosed
disorders, a score above 90th percentile in the Global Severity
Index (GSI) or in two or more symptoms dimensions of the SCL-
90-R, family history of major psychopathological disorders in first-
degree relatives (clinically diagnosed by a professional), family
history of alcoholism or substance use disorders (at least two first-
degree relatives or three or more first- or second-degree relatives),
AUDIT scores > 20, use of psychoactive medications, use of illegal
drugs (except occasional consumption of cannabis) in the last 6
months, non-corrected sensory deficits and MRI contraindications.
All participants gave written consent and received monetary
compensation for their participation.

Volunteers were classified as binge drinkers (BDs) if they
reported one BD episode at least once a month for the last six
months, or as controls (CN) if they did not reach the alcohol
consumption threshold for being considered BDs. Binge episodes
were defined as the consumption of ≥ 50 g (female) or ≥ 70 g
(male) of alcohol in one drinking occasion (i.e. an equivalent
measure of the 4/5 standard drinks criteria reported in the
NIAAA’s definition of BD) (10). Participants were instructed
to abstain from consuming alcohol 24 h prior to the scan session.

Of the 85 subjects who met the inclusion criteria and
completed the neuroimaging assessment, five participants were
excluded from the analysis due to technical problems during
image acquisition, seven participants were excluded due to
excessive head movement during scanning (more than 3 mm/
degrees of movement in any of the six directions), five were
excluded for outlier behavioral data (more than 3 SD above or
below the group mean) and, lastly, one was excluded due to the
presence of an artefact in the functional images. Hence, the final
sample included 67 right-handed participants, with 32 BDs (20
females) and 35 CN (16 females) (see Table 1 for complete
demographic and alcohol use data).

Behavioral Task
During fMRI, participants completed a Go/NoGo task with pictures
of alcoholic or non-alcoholic beverages as stimuli (see Figure 1 for
TABLE 1 | Demographic and substance use characteristics of the final sample
(mean ± SD).

Controls BDs

n (females) 35 (16) 32 (20)
Age 18.08 ± 0.28 18.22 ± 0.42
Caucasian (%) 100 100
Age of drinking onset*** 16.29 ± 1.04 15.22 ± 1.24
Total AUDIT score *** 1.94 ± 2.52 10.28 ± 4.06
Number of BD episodes, past 6 months *** 0.91 ± 1.75 22.91 ± 12.26
Average # drinks per drinking occasion *** 1.96 ± 1.53 6.78 ± 1.98
June
 2020 | Volume 1
***p ≤.001,
AUDIT, Alcohol Use Disorders Identification Test; BD episode: consumption of ≥ 5
(female) or ≥ 7 (male) Spanish standard drinks (10 g of alcohol) in 1 occasion.
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illustration). The picture set was designed to include drinks
representative of Spanish consumption habits, comprising active
pictures that display beverages being served, opened or consumed,
following similar criteria to the Amsterdam Beverage Picture Set
(ABPS) (65). Forty-eight pictures displaying different alcoholic
beverages (beer, wine, and spirits) were used as alcohol-related
stimuli, whereas 48 pictures displaying water, juice, dairy and soft
drinks were used as non-alcoholic stimuli. All pictures had the same
background and were scanned at a similar resolution and
image size.

Stimuli were presented using the software Presentation (version
16.3, Neurobehavioral Systems Inc., Albany, CA; http://www.
neurobs.com/) and were delivered through MRI-compatible video
goggles (VisualSystem, NordicNeuroLab, Bergen, Norway), with a
resolution of 800 x 600 pixels. The task included two blocks of 168
images each (126 Go trials and 42 NoGo trials). Each picture
stimulus was presented on a light gray background for 300ms at the
center of the screen followed by a long and variable inter-stimulus
interval (ISI) lasting 2–12 s, during which only a fixation cross was
displayed. The durations for the ISIs were drawn from a logarithmic
distribution that was skewed toward the shorter intervals (50% 2–
4 s, 33% 4–8 s, 17% 8–12 s) (66). At the beginning of each block,
participants were instructed to respond to one type of stimulus
(Alcohol or Non-Alcohol), pressing a button with their right index
finger on an MRI-compatible response grip (NordicNeuroLab,
Bergen, Norway), as quickly as possible without making errors
(Go trials), and to withhold their response to the other stimulus type
(NoGo trials). Trial type (Go vs. NoGo) was randomized within
each block and the order of blocks (Go Alcohol vs. Go Non-
Alcohol) was counterbalanced across subjects.

Participants received a practice session of the task before they
entered the scanner. Once in the scanner, and prior to each
block, participants were informed, through a 3-s instructions
screen, about the type of stimulus to which they must respond
(i.e. Go Alcohol or Go Non-Alcohol trials).

Behavioral Analysis
Reaction times (RTs) and the percentage of correct responses to
Go stimuli, as well as the percentage of false alarms (FA) (i.e.
Frontiers in Psychiatry | www.frontiersin.org 4
response to NoGo stimuli), were submitted to 2x2x2 mixed-
model analyses of variance (ANOVAs), with stimulus type
(Alcohol, Non-Alcohol) as the within-subjects factor and
group and gender as the between-subjects factors. Post-hoc
comparisons were performed using the Bonferroni adjustment
for multiple comparisons. All analyses were done with SPSS
(version 21).

fMRI Data Acquisition
Functional images were collected with a 3T Achieva Philips body
scanner (Philips Medical Systems, Best, NL) equipped with a 32-
channel SENSE head coil (located at the University Hospital
Complex of Santiago de Compostela) using a T2*-weighted
echo-planar imaging sequence with the following acquisition
parameters: TR/TE = 3000/30 ms, flip angle = 87°, FOV = 230 ×
230 mm, voxel size = 3 mm3, 45 axial slices. The task was
conducted in one run consisting of about 700 volumes (~35
min). High-resolution anatomical T1-weighted images were also
acquired using a 3D turbo field-echo sequence with the following
parameters: TR/TE = 7.7/3.4 ms, flip angle = 8°, FOV = 240 mm,
voxel size = 0.8 mm3, 200 transverse slices, acquisition
time = 7 min.

Image Processing and Analysis
Imaging data were processed and analyzed using Statistical
Parametric Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/) implemented in Matlab (version 2015b, The
Mathworks, Inc., Natick, MA). First, functional and anatomical
images were reoriented to the anterior commissure. Then,
functional images were corrected for slice timing and realigned
and unwarped to correct for movement artefacts. The anatomical
T1 images were coregistered to the realigned mean functional
image, then images were transformed into standard MNI space
using segmentation-based normalization parameters.
The resulting functional images were spatially smoothed using
a 7-mm FWHM Gaussian kernel. Blood oxygen level-dependent
(BOLD) responses to each condition were modeled using an
event-related design convolved with the canonical hemodynamic
response function (HRF) to create regressors of interest (Go
FIGURE 1 | Schematic representation of the Go/NoGo task. Participants completed a Go/NoGo task with pictures of beverages (with or without alcoholic content)
as stimuli. The task consisted in two blocks of 168 trials (25% NoGo trials). Before each block, participants were instructed to respond to one type of stimuli (Alcohol
or Non-Alcohol) and to withhold their response to the other stimulus type.
June 2020 | Volume 11 | Article 535
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Alcohol, Go Non-Alcohol, NoGo Alcohol, NoGo Non-Alcohol).
Instruction screens and response errors (i.e. failures to respond
on Go trials or FA on NoGo trials) were modeled as effects of no
interest. Additionally, movement parameters from the
realignment step were included in the design matrix as
regressors of no interest.

Individual t-contrasts were generated for each participant and
then entered into a second-level random-effects analysis. Gender
was included as a covariate in the analysis. We examined, first,
the main effect for the response inhibition contrast (NoGo > Go)
across all participants. The statistical threshold was set at p <.05
family-wise error (FWE) corrected for multiple comparisons at
the voxel level across the whole brain.

Secondly, two-sample t-tests were defined to determine the
between-group effects (i.e. BD > CN, BD < CN). Given our a
priori hypotheses regarding differences in brain activity related to
response inhibition (and its modulation by motivational
salience), region of interest (ROI) analyses were conducted
based on areas defined from a meta-analysis of Go/NoGo tasks
involving complex stimulus identification (33) as follows: right
IPL, right IFG, left IFG, right MFG, and right superior frontal
gyrus (SFG) (see Supplementary Table 1 for a list of ROIs
coordinates). Contrasts were initially thresholded at p <.005
uncorrected and a cluster extent of 10 voxels; small volume
correction (SVC) for multiple comparisons was then applied
with a FWE-corrected threshold of p <.05 at cluster level within
10 mm-spheres centered on the reported coordinates after their
transformation from Talairach into MNI space. To investigate
the predicted higher BOLD activity in brain regions involved in
response inhibition in BDs relative to CN, we examined the
contrast NoGo > Go. Next, we examined modulation of NoGo
vs. Go trial activation by the alcohol- vs. non-alcohol-related
stimulus content. Our prediction of greater engagement in BDs
(vs. CN) in areas mediating response inhibition when stimuli
convey motivational salience was tested by a two-sample t-test
comparing NoGo Alcohol > Go Non-Alcohol trials. To ensure
that potential group differences in this contrast were directly
linked to inhibiting responses to alcohol-related stimuli, and not
simply due to general differences in inhibitory control processes,
activation in NoGo Non-Alcohol > Go Alcohol trials was also
explored. Finally, to test whether any observed activation
differences between groups were due to overall differential
reactivity to alcohol cues, we explored the contrast Alcohol >
Non-Alcohol.

Additional Pearson’s correlation analyses were performed
between parameter estimates extracted from each ROI showing
significant between-group differences and: i) the age at drinking
Frontiers in Psychiatry | www.frontiersin.org 5
onset; ii) the number of BD episodes in the last 6 months, as a
measure of the intensity of the BD pattern.
RESULTS

Behavioral Performance
There were no significant differences between groups (BDs vs.
CN), neither in the response to Go stimuli (i.e. percentage of hits
or RTs) nor in the number of commission errors (i.e. percentage
of FA) to NoGo stimuli. A significant main effect of stimulus type
for the percentage of hits [F (1, 63) = 28.288, p <.001] revealed
greater accuracy for alcohol-related than for non-alcohol-related
stimuli irrespective of the participant’s consumption pattern.
There was also a significant gender by group interaction for the
percentage of correct responses to Go stimuli [F (1, 63) = 7.59, p =
.008], which was explained by higher accuracy in males of the BD
group (95.57 ± .96) relative to the CN group (92.88 ± .76) (p =
.032), with no significant group differences in females (93.49 ±
.74 vs. 95.36 ± .83; p = .098). Behavioral data are summarized in
Table 2.

fMRI Results
Whole-brain analysis for the whole sample revealed significant
BOLD activations during successful inhibition (NoGo > Go) in
different areas of the right hemisphere including the precentral
gyrus, IPL, IFG, MFG and SFG (see Table 3, Figure 2). These
regions have been identified to be involved in Go/NoGo tasks in
different meta-analysis (33–35). These results validate the ability
of our task to tap into neural mechanisms related to
response inhibition.

ROI analyses revealed significant differences between groups
in BOLD response during successful response inhibition
(NoGo > Go). Specifically, BDs showed greater activity, in
comparison with CN, in the bilateral BA47 (IFG extending to
the anterior insula) during NoGo relative to Go trials (Table 4,
Figure 3). Furthermore, the NoGo Alcohol > Go Non-Alcohol
contrast revealed a significant increased activation in this region
(BA 47), restricted to the right hemisphere, in BDs relative to the
CN group, when inhibiting a prepotent response to alcohol-
related stimuli (Table 4, Figure 3). However, activations in the
NoGo Non-Alcohol > Go Alcohol and Alcohol > Non-Alcohol
contrasts did not reach statistical significance. This pattern of
results suggests the modulation of the right IFG/insula activity to
be specifically associated with suppressing responses to alcohol-
related stimuli. The ROI analysis did not show any significant
regions of increased activity in CN compared with BDs.
TABLE 2 | Behavioral data for Control and BD groups (mean ± SD).

Behavioral Performance Controls Binge Drinkers

Alcohol Non-Alcohol Alcohol Non-Alcohol

Reaction Time (Go trials, ms) 632 ± 107 642 ± 100 632 ± 92 616 ± 86
% Correct responses (Go trials) 96.98 ± 3.26 91.04 ± 5.88 96.53 ± 4.84 92.01 ± 6.11
% False alarms (NoGo trials) 6.39 ± 5.80 6.94 ± 6.69 7.07 ± 6.36 7.66 ± 6.27
June 2020 | Volume 1
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Correlation analysis performed in the BD group did not yield
significant relationships (all p >.05) with any of the variables
explored (i.e. age of onset of alcohol consumption, number of BD
episodes in the last 6 months).
DISCUSSION

The main objective of this study was to investigate the link
between BD and inhibitory control differences, with special
consideration to the relationship between response inhibition
and alcohol-related processing. We first analyzed the association
between BD and behavioral performance in an alcohol-cued Go/
NoGo task. We then explored the task-related neural correlates
Frontiers in Psychiatry | www.frontiersin.org 6
for both BDs and controls. Finally, we considered if there were
differences in neural activity in BDs, relative to controls, when
exerting inhibitory control to alcohol-related cues.

Consistent with most of the previous studies using Go/NoGo
tasks in BDs (43, 67–72), we did not find behavioral differences
related to BD in the examined response inhibition indices (i.e. FA)
(irrespective of stimulus content). Furthermore, when alcohol cues
were analyzed separately from non-alcohol cues, no significant
differences in performance between BDs and CN were found. This
finding is in line with a recent ERPs study from our group (54) and
with previous studies reporting no differences in the number of FA
(51–53, 55, 56), although some others have found an alcohol-cue-
specific impairment of response inhibition (50).

In line with our hypothesis, the present neuroimaging results
revealed an increased BOLD response in the bilateral IFG
extending to the anterior insula (BA 47), in BDs compared to
controls during successful inhibition trials, a region usually
involved in response inhibition tasks (39, 73–75). As proposed
by Aron and Poldrack (73), the inferior frontal cortex (IFC)
modulates the interaction between the pre-supplementary motor
area and the subthalamic nucleus (STN) within the neural
network of response inhibition. Specifically, IFC sends
excitatory impulses to the STN via the “hyperdirect” pathway
and the STN sends excitatory output to the globus pallidus,
which results in thalamus inhibition (76, 77). Looking at the
characteristics of this neural circuitry, the increased activity in
the IFG in the BD group could be interpreted as a greater
recruitment of neural resources to successfully inhibit a
response. Therefore, the differences observed in this region
could be interpreted as part of a compensatory mechanism to
attenuate the impact of abnormal brain activity on performance,
in line with previous fMRI studies showing that BD is associated
with increased neural activation, in the absence of behavioral
impairments, during successful inhibition (43, 56).
FIGURE 2 | Whole-brain task activation during correct inhibition (NoGo > Go)
for the whole sample (p <.05, FWE corrected). Color bar represents t-values.
A list of all significant activations for this contrast can be found in Table 3.
TABLE 4 | Regions showing significant group differences (BD > CN) in BOLD response to successful inhibition.

Contrast Region (BA) Side P (FWE)* x(mm) y(mm) z(mm) k t

NoGo > Go IFG/Insula (47) Right 0.031 34 34 -6 74 3.64
IFG/Insula (47) Left 0.018 -30 16 -2 114 3.30

NoGo Alcohol > Go Non-Alcohol IFG/Insula (47) Right 0.031 30 20 -6 72 3.57
Ju
ne 2020 | Volum
e 11 | Article
ROI analyses were based on the coordinates informed in the meta-analysis by Criaud and Boulinguez (33).
*Small volume correction (FWE, p <.05).
TABLE 3 | Regions activated at whole-brain analysis in the contrast NoGo > Go for the whole sample.

Region (BA) Side x(mm) y(mm) z(mm) k t

Precentral/Postcentral Gyrus (4/3) Right 40 -14 56 571 7.05
Precentral/Postcentral Gyrus (6) Right 60 -10 38 108 6.74
Superior/Inferior Parietal Lobule (7) Right 32 -54 52 237 6.59
Inferior Frontal Gyrus (47) Right 30 28 -2 49 6.20
Middle Frontal Gyrus (9) Right 42 20 26 45 5.73
Superior Temporal Gyrus (22) Right 56 -38 4 19 5.55
Superior/Middle Frontal Gyrus (9) Right 32 46 34 20 5.51
Superior Occipital Cortex/Precuneus (7) Right 26 -84 28 33 5.47
BA, Brodmann Area.
All results are significant at p <.05 whole-brain voxel-level FWE corrected and cluster size (k) ≥ 10.
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It is worth noting that while BD tends to be associated with
increased neural response, AUD has been associated with
reduced response in fronto-parietal regions (e.g., IFG, MFG,
IPL) (78, 79). Further exploring this relationship, Worhunsky
and colleages (80) have reported two different activity patterns
associated with the escalation of maximum number of drinks
consumed in a single episode (MaxDrinks). First, escalating
drinkers showed a hyper-engagement of fronto-parietal control
mechanisms during successful relative to unsuccessful inhibition
trials compared to constant (low) drinkers. On the other hand,
when the group of escalating drinkers was divided according to
their MaxDrinks scores, a greater MaxDrinks was associated
with reduced engagement of the fronto-parietal network. These
findings thus suggest a transition, in terms of neural activation,
from an initial consumption stage (related to hyperactivation) to
a more problematic drinking (related to reduced engagement of
neural resources).

Consistent with our second hypothesis and the findings
reported by Ames et al. (56), we observed a greater activity in
BDs (vs. controls) during response inhibition to alcohol-related
stimuli. Specifically, BDs showed greater activity in the right IFG/
insula (BA 47) when inhibiting a response to alcohol stimuli
(NoGo Alcohol > Go Non-Alcohol). However, no significant
differences were observed when participants were asked to
inhibit their response to non-alcohol stimuli (NoGo Non-
Alcohol > Go Alcohol). These findings suggest that response
inhibition-related activity in the right IFG/insula seems to be
modulated by the motivational salience of stimuli and highlight
the role of this region in suppressing responses to substance-
Frontiers in Psychiatry | www.frontiersin.org 7
related cues. Also, these results are in agreement with previous
studies, in the general population, showing that response
inhibition could be modulated by the motivational content of
stimuli (81–85). In particular, some of these works using fMRI to
characterize the neural basis of this modulation reported increased
neural activity of the IFG/insula in trials where a response to
reward-related stimuli had to be inhibited (82, 85). It should be
taking into account that the IFG and the anterior insula, besides
being considered key regions for response inhibition, have been
also proposed to be part of the salience network (82, 86, 87) and,
therefore, they may be involved in adjusting cognitive control to
motivational demands of the context (86). In this regard, a meta-
analysis has suggested that the right anterior insula would play an
important role in detection of behaviorally relevant salient events,
whereas the right IFG would be more involved in exerting
inhibitory control (36). Therefore, it is possible that the higher
activity observed in BDs in the right BA 47 is pointing to the
presence of differences associated with the alcohol consumption
pattern in the interaction between cognitive control and salience
detection processes.

The current research extends prior results about BD-related
anomalies in inhibitory control mechanisms and provides new
evidence about increased IFG/insula activity, a key region for
inhibitory control, during response inhibition to alcohol-related
stimuli. Some limitations of the present study should be noted.
First, the lack of assessment before participants engaged in BD
prevents us from establishing potential pre-existing differences
between groups that may explain the observed results, as indicated
by previous investigations (43, 88, 89). A future follow-up will
A

B

FIGURE 3 | Group differences (BD > CN) during successful inhibition. (A) Compared to controls, BDs showed a greater BOLD activity in the NoGo vs. Go contrast
in the bilateral inferior frontal gyrus, extending to the anterior insula (BA 47) (p <.05 FWE-small volume corrected). (B) BDs, in comparison with controls, showed a
greater BOLD activity in the NoGo Alcohol vs. Go Non-Alcohol contrast in the right inferior frontal gyrus/anterior insula (BA 47) (p <.05 FWE-small volume corrected).
T-maps are thresholded at p <.005 (uncorrected) and k ≥ 150 for display purposes only.
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allow us to deepen the relationship between BD pattern and neural
anomalies in frontal regions and to explore if these early neural
differences may subtend the transition from recreational to
pathological consumption patterns. Second, in contrast with how
Go/NoGo tasks are typically designed to be performed in
behavioral experiments, the characteristics of the hemodynamic
response led us to employ a relatively slow and unpredictable
stimulus presentation which could reduce the prepotent tendency
to respond. Therefore, this type of approach may be less sensitive
for assessing behavioral differences and it should be taken into
account when explaining the lack of differences between the
groups. Third, similarly to previous studies [e.g. (56, 90)], our
task involves a much more demanding cognitive context than
classic Go/NoGo tasks, with attention, stimulus categorization and
response selection processes being highly intertwined, so research
findings should be interpreted with this limitation in mind. One
final limitation should be noted: neither individual preferences nor
potential differences in familiarity of the employed images were
addressed in the present study.

In summary, our results revealed that young BDs showed
increased frontal activity, relative to controls, during successful
inhibition trials in an alcohol-cued Go/NoGo task, despite a lack
of behavioral differences between groups. These findings provide
new evidence about the role of the IFG, extending to the anterior
insula, as an important region to explore neural differences
associated with BD, as well as suggest a specific involvement of
this region in withholding a prepotent response to stimuli with
alcohol-related content. At a more clinical level, our study
provides subclinical information in a healthy population,
without evidence of behavioral problems, which highlights the
risk of this form of consumption. In addition, this investigation
emphasizes the relevance of assessing the cognitive processes of
interest using specific substance-related cues to better
understand the relationship between those processes and the
alcohol consumption pattern, and provides useful information to
contribute to the development of future prevention strategies as
suggested by studies focused on inhibitory control training and
cognitive bias modification (see 91 for an insightful review of
neuroscience findings and treatment programs).
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11. Carbia C, López-Caneda E, Corral M, Cadaveira F. A systematic review of
neuropsychological studies involving young binge drinkers. Neurosci
Biobehav Rev (2018) 90:332–49. doi: 10.1016/J.NEUBIOREV.2018.04.013

12. Cservenka A, Brumback T. The Burden of Binge and Heavy Drinking on the
Brain: Effects on Adolescent and Young Adult Neural Structure and Function.
Front Psychol (2017) 8:1111. doi: 10.3389/fpsyg.2017.01111

13. Petit G, Maurage P, Kornreich C, Verbanck P, Campanella S. Binge drinking
in adolescents: A review of neurophysiological and neuroimaging research.
Alcohol Alcohol (2014) 49:198–206. doi: 10.1093/alcalc/agt172

14. Crabbe JC, Harris RA, Koob GF. Preclinical studies of alcohol binge
drinking. Ann N Y Acad Sci (2011) 1216:24–40. doi: 10.1111/j.1749-
6632.2010.05895.x

15. Wechsler H, Davenport A, Dowdall G, Moeykens B, Castillo S. Health and
behavioral consequences of binge drinking in college: A national survey of
students at 140 campuses. JAMA (1994) 272:1672–7. doi: 10.1001/
jama.1994.03520210056032

16. Crews F, Braun C, Hoplight B, Switzer IIIR, Knapp D. Binge ethanol
consumption causes differential brain damage in young adolescent rats
compared with adult rats. Alcohol Clin Exp Res (2000) 24:1712–23.
doi: 10.1111/j.1530-0277.2000.tb01973.x

17. Jones SA, Lueras JM, Nagel BJ. Effects of binge drinking on the developing
brain: studies in humans. Alcohol Res. Curr. Rev. (2018) 39:87–96.

18. Fuhrmann D, Knoll LJ, Blakemore S-J. Adolescence as a Sensitive Period of
Brain Development. Trends Cognit Sci (2015) 19:558–66. doi: 10.1016/
J.TICS.2015.07.008

19. Giedd J. The Teen Brain: Insights from Neuroimaging. J Adolesc Heal (2008)
42:335–43. doi: 10.1016/J.JADOHEALTH.2008.01.007

20. Casey BJ, Jones RM, Hare TA. The Adolescent Brain. Ann N Y Acad Sci (2008)
1124:111–26. doi: 10.1196/annals.1440.010

21. Luna B, Padmanabhan A, O’Hearn K. What has fMRI told us about the
development of cognitive control through adolescence? Brain Cognit (2010)
72:101–13. doi: 10.1016/J.BANDC.2009.08.005

22. Jacobus J, Tapert SF. Neurotoxic effects of alcohol in adolescence. Annu Rev
Clin Psychol (2013) 9:703–21. doi: 10.1146/annurev-clinpsy-050212-185610

23. Squeglia L, Gray K. Alcohol and Drug Use and the Developing Brain. Curr
Psychiatry Rep (2016) 18:46. doi: 10.1007/s11920-016-0689-y

24. Carter AC, Brandon KO,GoldmanMS. The college and noncollege experience: A
review of the factors that influence drinking behavior in young adulthood. J Stud
Alcohol Drugs (2010) 71:742–50. doi: 10.15288/jsad.2010.71.742

25. Schulenberg JE, Maggs JL. A developmental perspective on alcohol use and
heavy drinking during adolescence and the transition to young adulthood. J
Stud Alcohol (2002) s14:54–70. doi: 10.15288/jsas.2002.s14.54

26. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction:
neuroimaging findings and clinical implications. Nat Rev Neurosci (2011)
12:652–69. doi: 10.1038/nrn3119

27. Goldstein RZ, Volkow ND. Drug addiction and Its underlying neurobiological
basis: neuroimaging evidence for the involvement of the frontal cortex. Am J
Psychiatry (2002) 159:1642–52. doi: 10.1176/appi.ajp.159.10.1642

28. Wiers RW, Bartholow BD, van den Wildenberg E, Thush C, Engels RCME,
Sher KJ, et al. Automatic and controlled processes and the development of
Frontiers in Psychiatry | www.frontiersin.org 9
addictive behaviors in adolescents: A review and a model. Pharmacol Biochem
Behav (2007) 86:263–83. doi: 10.1016/J.PBB.2006.09.021

29. Zilverstand A, Huang AS, Alia-Klein N, Goldstein RZ. Neuroimaging
impaired response inhibition and salience attribution in human drug
addiction: a systematic review. Neuron (2018) 98:886–903. doi: 10.1016/
j.neuron.2018.03.048

30. Noël X, Bechara A, Brevers D, Verbanck P, Campanella S. Alcoholism and the
Loss of Willpower. J Psychophysiol (2010) 24:240–8. doi: 10.1027/0269-8803/
a000037

31. Lannoy S, Billieux J, Maurage P. Beyond inhibition: A dual-process
perspective to renew the exploration of binge drinking. Front Hum
Neurosci (2014) 8:405. doi: 10.3389/fnhum.2014.00405

32. Stevens MC, Kiehl KA, Pearlson GD, Calhoun VD. Functional neural
networks underlying response inhibition in adolescents and adults. Behav
Brain Res (2007) 181:12–22. doi: 10.1016/j.bbr.2007.03.023

33. Criaud M, Boulinguez P. Have we been asking the right questions when
assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis
and critical review. Neurosci Biobehav Rev (2013) 37:11–23. doi: 10.1016/
j.neubiorev.2012.11.003

34. Simmonds DJ, Pekar JJ, Mostofsky SH. Meta-analysis of Go/No-go tasks
demonstrating that fMRI activation associated with response inhibition is
task-dependent. Neuropsychologia (2008) 46:224–32. doi: 10.1016/
J.NEUROPSYCHOLOGIA.2007.07.015

35. Swick D, Ashley V, Turken U. Are the neural correlates of stopping and not
going identical? Quantitative meta-analysis of two response inhibition tasks.
Neuroimage (2011) 56:1655–65. doi: 10.1016/j.neuroimage.2011.02.070

36. Cai W, Ryali S, Chen T, Li C-SR, Menon V. Dissociable roles of right inferior
frontal cortex and anterior insula in inhibitory control: evidence from intrinsic
and task-related functional parcellation, connectivity, and response profile
analyses across multiple datasets. J Neurosci (2014) 34:14652–67. doi: 10.1523/
JNEUROSCI.3048-14.2014

37. Zhang R, Geng X, Lee TMC. Large-scale functional neural network correlates
of response inhibition: an fMRI meta-analysis. Brain Struct Funct (2017)
222:3973–90. doi: 10.1007/s00429-017-1443-x

38. Levy BJ, Wagner AD. Cognitive control and right ventrolateral prefrontal
cortex: reflexive reorienting, motor inhibition, and action updating. Ann N Y
Acad Sci (2011) 1224:40–62. doi: 10.1111/j.1749-6632.2011.05958.x

39. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal
cortex: one decade on. Trends Cognit Sci (2014) 18:177–85. doi: 10.1016/
j.tics.2013.12.003

40. Luijten M, Machielsen MWJ, Veltman DJ, Hester R, de Haan L, Franken IHA.
Systematic review of ERP and fMRI studies investigating inhibitory control
and error processing in people with substance dependence and behavioural
addictions. J Psychiatry Neurosci (2014) 39:149–69. doi: 10.1503/jpn.130052

41. Smith J, Mattick R, Jamadar S, Iredale J. Deficits in behavioural inhibition in
substance abuse and addiction: A meta-analysis. Drug Alcohol Depend (2014)
145:1–33. doi: 10.1016/J.DRUGALCDEP.2014.08.009
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