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Background: Attention-Deficit/Hyperactivity Disorder (ADHD) is a childhood-onset
disorder that can persist into adult life. Most genetic studies have focused on
investigating biological mechanisms of ADHD during childhood. However, little is known
about whether genetic variants associated with ADHD influence structural brain changes
throughout adulthood.

Methods: Participant of the study were drawn from a population-based sample of 3,220
healthy individuals drawn from the Rotterdam Study, with at least two magnetic
resonance imaging (MRI)-scans (8,468 scans) obtained every 3–4 years. We investigate
associations of genetic single nucleotide polymorphisms (SNPs) that have previously been
identified in genome-wide association studies for ADHD, and trajectories of global and
subcortical brain structures in an adult population (aged 50 years and older), acquired
through MRI. We also evaluated the existence of age-dependent effects of these genetic
variants on trajectories of brain structures. These analyses were reproduced among
individuals 70 years of age or older to further explore aging-dependent mechanisms. We
additionally tested baseline associations using the first MRI-scan of the 3,220 individuals.

Results: We observed significant age-dependent effects on the rs212178 in trajectories
of ventricular size (lateral ventricles, P= 4E-05; inferior lateral ventricles, P=3.8E-03; third
ventricle, P=2.5E-03; fourth ventricle, P=5.5E-03). Specifically, carriers of the G allele,
which was reported as protective for ADHD, had a smaller increase of ventricular size
compared with homozygotes for the A allele in elder stages. Post hoc analysis on the
subset of individuals older than 70 years of age reinforced these results (lateral ventricles,
P=7.3E-05). In addition, the rs4916723, and the rs281324 displayed nominal significant
age-dependent effects in trajectories of the amygdala volume (P=1.4E-03), and caudate
volume (P=1.8E-03), respectively.
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Conclusions: To the best of our knowledge, this is the first study suggesting the
involvement of protective genetic variants for ADHD on prevention of brain atrophy
during adulthood.
Keywords: adulthood, aging, brain atrophy, brain trajectories, neurogenetics, rs212178, ventricle size
INTRODUCTION

Attention-Deficit/Hyperactivity Disorder (ADHD) is a childhood
neurodevelopmental disorder with an estimated worldwide
prevalence of 5.2% (1–3). Although it is most common in
children, recent work suggests that for some individuals, ADHD
first emerges in adulthood (4), and one-sixth of individuals with a
childhood diagnosis continue tomeet clinical criteria for ADHD in
adulthood (5–7).

It is challenging to characterize the determinants of the
persistence and/or occurrence of ADHD through adulthood
because the normal aging process mimics some classic ADHD
symptoms. However, it is well established that genetic factors
explain a large part of the individual differences in the
vulnerability for ADHD (75%–90% in children, 30%–50% in
adults) (8–10).

Knowing which genetic variants are associated with ADHD
set the interest to understand how they could act on the brain to
bring about ADHD. For instance, given that structural magnetic
resonance imaging (MRI) markers maybe even better suited as
intermediate phenotypes than ADHD symptoms, and these
measures generally show strong test-retest reliability (11–13),
an increasing number of studies have attempted to examine
whether genetic variants for ADHD could have distinct effects on
the brain, thereby elucidating the causal pathway to disease
(14–17).

Furthermore, it has been suggested that the genetic basis of
the disorder may vary depending on the age (18). In line with
these results, recent findings showed that genetic factors
implicated in ADHD during childhood (cADHD) play
different roles in adult ADHD (aADHD), which in turn, may
lead to a different genetic influences across the development of
these symptoms (19–22). Indeed, family genetic studies in
clinical samples hinted that there may be a higher familial
liability for aADHD compared with cADHD (23), which
supports that aADHD symptoms may have stronger genetic
liability. Therefore, examining the genetic basis of aADHD
symptoms can offer reliable etiological information.

Moreover, whilst longitudinal studies are essential in
characterizing differences on neuroanatomical trajectories
attributed to genetic variants (20), most of ADHD studies have
focused exclusively on cross-sectional associations (24–26). Also,
the lack of age-proper clinical measures has constrained progress
in the field.

The current study aimed to examine the associations between
genome-wide significant SNPs reported in the latest genome-
wide association (GWAS) meta-analysis for ADHD (27), and
trajectories of global and brain subcortical structures in a sample
of non-diagnosed individuals, to provide a more precise
g 2
understanding of how genetic markers associated with ADHD
shape brain structural variations, and how age-dependent genetic
effects influence regional brain changes throughout adulthood.
Moreover, due to the polygenic architecture of ADHD, where
common risk alleles have small effect sizes, we also inspected
associations between a composite genetic risk score (GRS) and
brain structural trajectories.
MATERIALS AND METHODS

Study Population
The study sample was drawn from the Rotterdam Study, an
ongoing population-based cohort study in Netherlands, which
currently consists of 14,926 individuals aged 45 years or more at
baseline (28). At study entry, and every 3–4 years, participants
visited the dedicated research center for extensive investigations.
Simultaneously, electronic data linkage with general
practitioners recorded incident events or diagnoses. A total of
5,430 individuals were scanned through magnetic resonance
imaging (MRI) and were eligible for this study. Individuals
with only a single MRI scan, incomplete MRI-acquisitions,
scans with artifacts and dementia or stroke were excluded. The
Rotterdam Study has been approved by the Medical Ethics
Committee of the Erasmus MC and by the Ministry of Health,
Welfare and Sport of Netherlands, implementing the Wet
Bevolkingsonderzoek: ERGO (Population Studies Act:
Rotterdam Study). All participants provided written informed
consent to participate in the study and to obtain information
from their treating physicians. Data on ADHD diagnosis or
symptomatology was not collected because of the study’s focus
on late-onset diseases.

Image Acquisition, Processing,
and Selection
Magnetic Resonance Imaging scanning was done on a 1.5-T MRI
scanner (Sigma Excite II; General Electric Healthcare,
Milwaukee, WI, USA). Brain MRI scans included a high-
resolution 3D T1-weighted fast radio frequency spoiled
gradient-recalled acquisition in steady-state with an inversion
recovery prepulse (FASTSPGR-IR) sequence (29). Sequence
parameters were TR = 700 ms, TE = 14 ms, matrix side of
192 × 256 and flip angle = 70 with a voxel size of 1 × 1 × 1 mm.
All participants were imaged on the same scanner with fixed
protocol and imaging parameters. A total of 12,174 brain MR-
scans have been obtained in over 5,430 individuals, as of July
2015. The T1-weighted MRI scans were used to calculate global
and subcortical structures and thickness of the cerebral cortex
using a standard model-based automated procedure on
June 2020 | Volume 11 | Article 574
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Freesurfer (30) (version 5.1) image analysis suite. Quality control
included the removal of outliers, as well as unusual brain volume
values. We additionally excluded individuals with dementia and/
or stroke. The brain measures included in the analyses were:
cerebral white matter, cerebral grey matter, total intracranial
volume, lateral ventricles, inferior lateral ventricles, cerebellum
white matter, cerebellum cortex, thalamus, corpus callosum,
caudate, putamen, pallidum, hippocampus, amygdala,
accumbens area, third ventricle, fourth ventricle, and
cerebrospinal fluid. The value of the brain measures used as
the outcomes of the study was calculated as the average of the
regional value of each hemisphere (mm3). From the total sample
of individuals included in the study (N=5,430), a total of 3,220
have at least two scan measurements, 1,887 have at least three
scan measurements, and 141 have four scan measurements.
Further details of the MRI protocol, can be found in (29).

Genotyping Acquisition and Genetic
Variant Selection
The Illumina 550K, 550K duo, and 610K arrays were used for
genotyping samples with a call rate below 97.5%, gender
mismatch, excess autosomal heterozygosity (>0.336), duplicates
or family relations and ethnic outliers were excluded. Genetic
variants were filtered by Hardy-Weinberg equilibrium (P<10-6),
allele frequency (excluding minor allele frequency (MAF < 0.001)
and SNP call rate with a minimum of 98%. Genotypes were
imputed using MACH/minimac software to the 1000 Genomes
phase I version three-reference panel (all populations). From the
imputed data (HRC version 1.1), we selected eight SNPs
associated with ADHD at a genome-wide threshold of
significance (P<10-8) [Table SM1] (27). Four genetic variants
were not included because were not available in the HRC
imputations, nor were there are any variants in linkage
disequilibrium, likely because the original ADHD GWAS used
a custom genotyping array for psychiatric disorders.
Furthermore, we constructed a genetic risk score (GRS) by
multiplying the number of risk alleles by their reported odds
ratio (after natural logarithm transformation) for the disease and
summing this weighted allele score of each variant up into a
disease risk score for ADHD.

Statistical Analysis
Longitudinal Models
We used mixed-effects models with random slopes and
intercepts to calculate trajectories of volumetric MRI markers
for each subject. The linear mixed models were fitted using the
“lme” function within the R-package “nlme” (31). This model
was selected based on previous brain trajectory assessment in the
Rotterdam Study sample (32). We tested the longitudinal
association between genome-wide genetic risk variants for
ADHD and brain structures in fully adjusted models. A total
of 3,220 individuals with at least two repeated measures of MRI-
scan were included, resulting in 8,468 observations in total
(Figure 1). Moreover, to account for possible non-linearity in
brain structural trajectories, the age of the individuals at each
measurement was used as the time variable of the model.
Frontiers in Psychiatry | www.frontiersin.org 3
Furthermore, after an exploratory analysis, splines of age with
one knot were used in all models. Fixed effects of the model
included: sex, and total intracranial volume (ICV). In addition,
age-by-genotype interactions for each volume were included in
the mixed-effects model to test whether age moderated genetic
effects on longitudinal brain changes. The age-dependent model
allows obtaining the difference in the change in average regional
volume per additional year of age in spline, and the change in the
slope for each spline, depending on genotypes effects. The
coefficients of the interaction terms quantified the existence of
possible slope differences of the trajectories explained
by genotype.

Baseline Models
We used general linear models to test genetic influences on
baseline differences in brain volumes. We also assessed age-
dependent effects to test whether age moderated genetic effects
on regional brain structures. Age-by-genotype interactions for
each volume were included in the model. We used data
corresponding to the first scan-acquisition of the whole sample
(first observation per subject, N=3,220), as would be the case in a
simple single observation cross-sectional study. As in the
longitudinal models, splines of age with one knot were used in
all models. Fixed effects included sex and ICV.

Post Hoc Analyses
In addition, we performed post hoc analyses to facilitate
interpretation of the results. Among individuals 70 years of age
or older (N=900, 2,084 observations), we tested whether regional
brain volumes and/or longitudinal brain changes were associated
with genetic effects or whether age moderated those
genetic effects.
FIGURE 1 | Flow chart depicting the final sample size of the real application.
Solid lines and boxes represent individuals remaining in the study. Dashed lines
and boxes represent individuals excluded. Reason and number of individuals
excluded is indicated in dashed boxes. Legend: N, size of the sample.
June 2020 | Volume 11 | Article 574
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Multiple Comparison Correction
The weighted effects of baseline and longitudinal models were
corrected for multiple comparisons. Since brain outcomes are
correlated, we calculated the effective number of independent
outcomes, keff, using a permutation procedure, assuming 10,000
permutations. Additionally, we used the Bonferroni method for
multiple testing correction. The threshold of significance was set
following the formula

keff
nSNPs

, were keff represents the p-value
threshold obtained through the permutation procedure, and
nSNPs the number of genetic variants assessed in the models.
The resulting adjusted threshold of significance was set to p < 2E-
04. All statistical analyses were performed using R version 3.3.4.
RESULTS

Descriptives
Descriptive characteristics of the subjects with at least two valid
MRIs and descriptive of the brain volumetry for each scan
acquisition are presented in Table 1. The study included 1,731
women and 1489 men between 50 and 100 years of age at
baseline (65.3 ± 9.3). The distribution in the percentage of
women/men is balanced in all the scan acquisitions, while the
age becomes slightly higher in the last visit, as expected. Figure
S1 shows the pattern of correlation (Pearson correlation
statistics) among all brain structures included in the study.
Further descriptive of brain structures included in the study
can be found at Supplemental Table 2.

Longitudinal Association Results
We observed significant age-dependent effect of the rs212178
(intron variant LINC01572 at chromosome 16) in trajectories of
ventricular size (lateral ventricles, P= 4E-05; third ventricle,
P=2.5E-03; fourth ventricle, P=5.5E-03) (Figures 2B, C and
Supplemental Table 3). Specifically, carriers of the protective
ADHD allele G of rs212178 were associated with a less
pronounced increase in lateral ventricle volumes among
individuals 70 years of age or older (Figure 3B). Pointedly,
among subjects > 70 years of age, we observed significant
differences in trajectories (slope and intercept differences) for
the different genotypes of rs212178 on ventricle size (lateral
ventricles, P=7.3E-05) (Figure 4 and Supplemental Table 4).

In addition, rs4916723 (intron variant LINC00461 at
chromosome 5), and rs281324 (intron variant SEMA6D at
chromosome 15) displayed nominal significant age-dependent
effects, which not survive multiple comparison, in trajectories of
amygdala volume (P=1.4E-03) and caudate volume (P=1.8E-
03), respectively.
Frontiers in Psychiatry | www.frontiersin.org 4
No additional significant main effects were found after
multiple comparisons correction (Figures 2A and 3A and
Supplemental Tables 5 and 6). Likewise, no significant effects
were found for GRS.

Baseline Association Results
Figure 5 showed results for the adjusted age-by-SNP interaction
coefficients. None of the results remained significant after
multiple comparison correction. Furthermore, no age-by-GRS
interaction effects were found on either brain structure
of interest.

Post hoc analyses suggested patterns of age-dependent
effects of the rs212178 in ventricle size (lateral ventricles,
P=0.01; and fourth ventricle, P=0.009) on individuals up to
70, sustained also among individuals 70 years of age or older
(lateral ventricles, P=0.03; fourth ventricle, P=0.041: third
ventricle, P=0.008), which reinforce our longitudinal results
[Supplemental Tables 7–10].
DISCUSSION

According to our knowledge, this is the first study to investigate
the effects of genome-wide significant SNPs for ADHD on
longitudinal brain changes and its age-dependent effects in an
adult population. Our main finding suggests that carriers of the
minor allele G of rs212178 (chr16, LINC01572) were associated
with a smaller increase of ventricular volume—indirectly
reflecting lower brain atrophy—during aging, compared with
homozygotes for the A allele. Interestingly, the G allele of
rs212178 has been reported as a protective variant of ADHD
(27) (OR=0.891; P=7.68×10-9), suggesting a relationship
between the protective genetic effect on ADHD and less brain
atrophy across the lifespan. Moreover, nominally significant age-
dependent effects were identified, in which carriers of protective
ADHD variants (C allele carriers of rs4916723 and rs281324)
had smaller increases in the amygdala and caudate volumes.

However, these results should be interpreted considering its
limitations, especially, due to the unavailability of a replication
sample. First, in the present study, only a single variant was
suggested affecting longitudinal changes on ventricle volumes
with a small effect size. We can hypothesize a lack of statistical
power in our analysis, but also the existence of a pleiotropic effect
that could involve multiple different effects of genes to ADHD
(20). Second, there are still many genetic variants contributing to
the heritability of ADHD which remained undiscovered, and
that therefore were not included in the models of the study.
Third, we should be cautious because although ventricular size
can represent accumulation of brain atrophy, it might also
TABLE 1 | Participant characteristics.

N Age (m at each scan ± SD; years) Sex distribution (W/M)(%) TIV (m ± SD; mm3)

scan 2 3,220 65.3(9.3) 1,731/1,489 (53.8%) 1,486,432 (161,510)
scan 3 1,887 64.5(7.3) 989/898 (52.4%) 1,491,226 (158,878)
scan 4 141 74.8(3.9) 59/82 (41.8%) 1,468,570 (174,479)
June 2020 | Vol
Mean (m) and standard deviation (SD) are shown for continous variables. TIV, total intracranial volume; W, women; M, men.
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indirectly reflects a loss of brain tissue in other regions, which
could confuse our results. Fourth, we should take into account
that, in general, brain volume measurements are only a crude
simplification of the complex anatomical brain changes, and
often ignore the fact that longitudinal changes are not uniform
across a brain structure. Finally, the study sample belongs to the
general population; thus, the significant effects identified in this
study do not necessarily imply a causal relationship with the
clinical presentation of ADHD symptoms, but instead may
represent a proxy for the potential causes that underlie their
internal physiopathology.

Nevertheless, the present study identified intraindividual
changes in brain structures using longitudinal data, which
include at least two scanner acquisitions per individual. This
provides a more valid measure of the brain structural change
than extrapolating an estimate of change from separate
individuals across a range of ages using cross-sectional designs.
Frontiers in Psychiatry | www.frontiersin.org 5
Furthermore, compared to the cross-sectional design, the
longitudinal design can provide increased statistical power by
reducing the confounding effect of between-subject variability
and provide unique insights into the temporal dynamics of the
underlying biological process of neurodevelopmental domains
(33). Moreover, we considered the statistical interaction between
genetic variations and age because of the implications for the
shape of the distribution of onset age in risk analyses, which
improves the understanding of the degree and direction of
change over time (34, 35).

Progressive enlargement of the ventricular system is a
common finding in several neurologic and psychiatric
disorders including dementia (36), Parkinson’s disease (37),
multiple sclerosis (38, 39), schizophrenia (40) and it has been
extensively discussed in the context of brain cerebral atrophy
and cognitive impairment (41). Interestingly, ventricular
enlargement has been suggested as a neuroimaging-based
A

B

C

FIGURE 2 | Longitudinal design whole sample. (A) Main genetic results. (B) Age-by-SNP results, spline 1. (C) Age-by-SNP results, spline 2***Pvalue = 0.0002
(Bonferroni correction); **Pvalue = 0.003 (BH correction); *Pvalue = 0.05 (nominal p-value). Color scale represents the normalized effect sizes. Legend: GM, Grey
Matter; WM, White Matter; TBV, Total Brain Volume; BPF, Brain Parenchymal Fraction; CSF, Cerebrospinal Fluid; DC, Diencephalon; GRS, Genetic Risk Score.
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biomarker in normal aging (42, 43), which may herald the
cognitive decline associated with the onset and progression of
Alzheimer’s disease (44–46). In this line, our results also
suggested that age-related changes in G-allele carriers of
rs212178 are important on prevention of brain atrophy
during adulthood.

Although the rs212178 SNP was located within the
LINC01572, fine-mapping results showed that the LD region
was close to the protein coding zinc finger homeobox 3 (ZFHX3)
Frontiers in Psychiatry | www.frontiersin.org 6
gene. Thus, we cannot discard that this SNP may be responsible
for regulation of the ZFHX3 gene. This gene encodes cardio-
enriched transcription factors, and regulates myogenic and
neuronal differentiation (47). In addition, is highly expressed
in human stem cell-derived cardio myoblasts and it has
been reported as a one of the major atrial fibrillation (AF)
susceptibility-conferring genes and an important regulatory
factor which modifies circadian function (48–51). Indeed,
several studies have reported ventricular enlargement
A B

FIGURE 3 | Trajectory differences of ventricle sizes between rs212178 genotypes In red, green and blue, the average trajectory of AA, AG, and GG genotypes,
respectively. The x-axis represents the age at time of the scan (years), the left y-axis represents the value of the ventricle size (mm3): (A) Lateral ventricles (B) Third
ventricle.
A

B

FIGURE 4 | Longitudinal design, subset of individuals older than 70 years. (A) Main results. (B) Age-by-SNP results. ***Pvalue = 0.0002 (Bonferroni correction);
**Pvalue = 0.003 (BH correction); *Pvalue = 0.05 (nominal p-value). Color scale represents the normalized effect sizes. Legend: GM, Grey Matter; WM, White Matter;
TBV, Total Brain Volume; BPF, Brain Parenchymal Fraction; CSF, Cerebrospinal Fluid; DC, Diencephalon; GRS, Genetic Risk Score.
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associated with AF and other related cardiovascular phenotypes
(52–54). This is in agreement with some other studies
consistently suggesting that ventricular dysfunction and AF
reduce cerebral blood flow exerting negative influences on
cognitive function along in the aging process (55, 56). Hence,
our findings might add to the current evidences relating similar
genetic mechanisms of ventricular enlargement, aging, and adult
ADHD through cardio metabolic pathways.

Finally, our results suggested the involvement of protective
genetic ADHD factors and amygdala and caudate volume
trajectories. These associations did not survive multiple testing
correction, and therefore need to be replicated before further
conclusions can be drawn. However, both brain regions have
been well-described in the literature, and several meta-analyses
have elucidated their involvement in ADHD (21, 57–59).
Moreover, smaller caudate and amygdala volumes have been
reported to be associated with cognitive deficits, the inhibition of
attentional domains, and motor function constraints (60–63).
Thus, our results may also suggest the existence of indirect causal
effects on the biological mechanisms underlying the lifespan
trajectories of ADHD symptoms, which may be mediated
through impacts on brain structures.

To sum up, results obtained showed that specific effects of
genetic variants associated with ADHD in adulthood are quite
modest to elucidate longitudinal brain changes, but could suggest
signs of brain atrophy. Such research furthers our understanding
of the extent to which and how brain volume trajectories are
genetically determined. Hence, research in imaging genetic field
may greatly benefit from longitudinal designs, which represent a
potential form to increase the statistical power to detect
significant causal factors affecting structural brain changes.
Frontiers in Psychiatry | www.frontiersin.org 7
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