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Despite growing evidence of aberrant neuronal complexity in Alzheimer’s disease (AD), it
remains unclear how this variation arises. Neural oscillations reportedly comprise different
functions depending on their own properties. Therefore, in this study, we investigated
details of the complexity of neural oscillations by decomposing the oscillations into
frequency, amplitude, and phase for AD patients. We applied resting-state
magnetoencephalography (MEG) to 17 AD patients and 21 healthy control subjects.
We first decomposed the source time series of the MEG signal into five intrinsic mode
functions using ensemble empirical mode decomposition. We then analyzed the temporal
complexities of these time series using multiscale entropy. Results demonstrated that AD
patients had lower complexity on short time scales and higher complexity on long time
scales in the alpha band in temporal regions of the brain. We evaluated the alpha band
complexity further by decomposing it into amplitude and phase using Hilbert spectral
analysis. Consequently, we found lower amplitude complexity and higher phase
complexity in AD patients. Correlation analyses between spectral complexity and
decomposed complexities revealed scale-dependency. Specifically, amplitude
complexity was positively correlated with spectral complexity on short time scales,
whereas phase complexity was positively correlated with spectral complexity on long
time scales. Regarding the relevance of cognitive function to the complexity measures, the
phase complexity on the long time scale was found to be correlated significantly with the
Mini-Mental State Examination score. Additionally, we examined the diagnostic utility of
the complexity characteristics using machine learning (ML) methods. We prepared a
feature pool using multiple sparse autoencoders (SAEs), chose some discriminating
features, and applied them to a support vector machine (SVM). Compared to the
simple SVM and the SVM after feature selection (FS + SVM), the SVM with multiple
SAEs (SAE + FS + SVM) had improved diagnostic accuracy. Through this study, we 1)
advanced the understanding of neuronal complexity in AD patients using decomposed
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temporal complexity analysis and 2) demonstrated the effectiveness of combining ML
methods with information about signal complexity for the diagnosis of AD.
Keywords: alpha oscillation, Alzheimer’s disease (AD), amplitude complexity, ensemble empirical mode decomposition
(EEMD), magnetoencephalography (MEG), multiscale entropy (MSE), phase complexity, sparse autoencoder (SAE)
INTRODUCTION

Alzheimer’s disease (AD), the most common type of dementia,
presents clinical symptoms such as memory loss, word-finding
difficulties, and visual/spatial problems. The neuropathological
features of AD include neuronal loss, neurofibrillary
entanglement, and senile plaques, which progress insidiously
for decades before the onset of readily apparent symptoms; then
they spread widely throughout the brain (1–3). These
histopathological changes are thought to be observed as
disruptions of local neural connections in early AD (4, 5).
Gradually, the changes proceed to impair the long-distance
brain network (6, 7). Although numerous efforts have been
directed at developing objective diagnostic methods, AD
diagnosis is still based mainly on clinical symptoms.

A possible biomarker for use in AD diagnosis is alteration of
oscillatory brain activity. The most widely known oscillatory
changes in AD patients are spectral changes, which include
slowing of the peak frequency and increase in slow oscillations
(8), even in the preclinical phase (9, 10). The recent advent of the
use of complex network analysis in electroencephalography
(EEG) and magnetoencephalography (MEG) studies has
revealed abnormal neural oscillations of AD (8, 11, 12). One
possible diagnostic measure of AD is the temporal complexity of
neural oscillations. Particularly, sample entropy (SampEn) and
multiscale entropy (MSE), a measure of SampEn at various time
scales, have been well studied (13–16). Fundamentally, MSE is
computed for broadband oscillations because the neural
complexity of each time scale corresponds to their relevant
frequency range (15). However, oscillatory components of each
frequency range respectively reflect different neural functions
(17, 18). Additionally, it is difficult to ignore the possibility that
each neural function (i.e., each oscillatory component) is
influenced on various time scales. Ghanbari et al., from a study
of autism spectrum disorder (ASD), reported significant
differences in spectral MSEs that were not found in the
broadband MSE (19). Furthermore, some reports of the
literature suggest that differences in frequency, amplitude, and
phase are related respectively to the type of neuronal population,
the extent of task involvement, and the excitability of neurons
(20–23). For example, in MEG studies, inter-regional neural
communication in the human brain has been characterized with
both phase–phase synchronization and amplitude–amplitude
synchronization (24–26). Consequently, we decomposed neural
oscillations into frequency, amplitude, and phase and observed
these complexities on various time scales.

For the detailed temporal complexity analyses described
above, we analyzed the resting state MEG data using ensemble
empirical mode decomposition (EEMD), Hilbert spectral
sin.org 2
analysis (HSA), and MSE. The idea of combining EEMD and
HSA is based on the Hilbert–Huang transform, which combines
empirical mode decomposition (EMD) and HSA (27, 28). The
EMD method is a frequency decomposition method that is
regarded as suitable for process ing nonlinear and
nonstationary data. Although EMD is often used to remove
low-frequency artifacts (29, 30), the method is fundamentally an
adaptive time-frequency analysis; it can decompose a time series
into some intrinsic mode functions (IMFs) (27, 28, 31–33). An
improved version of the original EMD method, EEMD, solves
the mode-mixing problem by adding noise (34). Ghanbari et al.
(19) described multiple peaks of spectral MSEs decomposed by a
bandpass filter (BPF), which might be attributable to the loss of
nonlinearity driven by linear frequency decomposition method.
To investigate the spectral MSE profiles with intact nonlinearity,
we applied the EEMD method instead of other frequency
decomposition methods. The spectral time series obtained by
EEMD is decomposed further into the amplitude and phase by
HSA. In addition, to eliminate the discontinuities in the phase
time series, the cosine of the phase is used in the calculation of
the phase complexity. Finally, the spectral, amplitude, and phase
complexities are evaluated at different time scales using MSE.

This study was conducted to test the usefulness of amplitude
complexity and phase complexity for diagnosing AD. Although
earlier reports have described that observing complexity on
various time scales is useful for the diagnosis of AD, the
appropriate interpretation of the time scales remains unclear.
For example, some earlier studies have examined different
aspects of entropy such as maximum entropy and its time
scale (19, 35) and the slope of MSE profile (13, 36). Others
have claimed diagnostic significance differing across entropies of
various time scales (15, 16). For this study, we prepared a feature
pool using an unsupervised neural network (NN) to avoid loss of
information that is useful but difficult to interpret. We therefore
selected useful features for diagnosis from the obtained features,
and diagnosed AD using a support vector machine (SVM). In
many clinical studies such as this one, the small sample size poses
difficulties that hinder machine learning (ML), especially NN.
For this study, we first specifically examined the similarity of the
MSE profiles in various brain regions. We then augmented the
number of samples used for ML by regarding each estimated
region as an individual sample. However, because the MSE
profiles in all brain regions do not classify healthy controls
(HC) and AD similarly, we first summarized the MSE profiles
using a sparse autoencoder (SAE), which is an unsupervised ML
method. As reported from an earlier study (37), we used multiple
SAEs because they provide a good feature pool. The multiple
SAEs learned the MSE profiles in all brain regions to summarize
the distribution of sample entropy (SampEn) properly at each
September 2020 | Volume 11 | Article 531801

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Furutani et al. Decomposed Complexities in Alzheimer’s Disease
time scale. In addition, because these features were not obtained
by supervised training, useful features for diagnoses were selected
from these features statistically using Fisher’s score, which is a
common feature selection (FS) method using linear discriminant
analysis. Using features obtained in this manner, HCs and AD
patients were classified using SVM. Its usefulness for the
diagnosis was evaluated by five-fold double cross-validation
(CV). Furthermore, various parameters in the ML architecture
were optimized using Optuna, a hyperparameter search software
using the Bayesian optimization algorithm (38). Finally,
we compared the diagnostic accuracy of this ML architecture
(SAE + FS + SVM) with the common supervised ML methods:
simple SVM and the FS + SVM.

In summary, our aims were threefold: 1) decomposing
neuronal complexity to examine which component is
correlated with the aberrant complexity; 2) examining
characteristics of the decomposed complexity in AD patients
and their relevance to the cognitive function; and 3) examining
the utility of ML to improve the diagnostic accuracy further. To
this end, we calculated the spectral, amplitude, and phase MSEs
using the EEMD, HSA, and MSE method. Then we diagnosed
these MSE profiles using SAE, FS, and SVM.
METHODS

Subjects
The clinical group consisted of 17 subjects (10 men, 7 women),
aged 71.7 ± 6.5 years (range 60–80), who were recruited from
Kanazawa University Hospital (Table 1). The patients fulfilled
the National Institute of Neurological and Communicative
Diseases and Stroke/Alzheimer’s disease and Related Disorders
Association (NINCDS-ADRDA) work group criteria for probable
AD (39). Neurological, serological, and magnetic resonance
imaging (MRI) tests were performed on these patients to
eliminate any other medical condition that might cause
dementia. No patient was receiving medications acting upon
the central nervous system except donepezil hydrochloride
(Dz). Ten patients had taken Dz. The patients were assessed
using the Japanese version of the Mini-Mental State Examination
(MMSE) (40) and theWechsler Memory Scale-Revised (WMS-R)
Frontiers in Psychiatry | www.frontiersin.org 3
(41). The MMSE scores of the clinical group were 22.2 ± 3.7
(range 14–28). The healthy control (HC) group consisted of 21
elderly subjects (13 men, 8 women) aged 68.1 ± 7.3 years (range
55–78); their MMSE scores were 28.7 ± 1.0 (Table 1). They had
no subjective cognitive impairment. Their WMS-R subscores
were not below 1.5 standard deviation of normal range. No HC
subject had any personal or family history of psychiatric or
neurological disease. All were functioning normally and
independently in their daily lives. None was taking central
nervous-system-affecting medications. All subjects were right-
handed. The Ethics Committee of Kanazawa University Hospital
approved the methods. All procedures were performed in
accordance with the Declaration of Helsinki. All subjects
agreed to participate in the study with full knowledge of the
experimental characteristics of the research. After a complete
explanation of the study, written informed consent was obtained
from each subject.

Measurements
Magnetic fields were measured using a whole-head MEG system
for adults at the Laboratory of Yokogawa Electric Corp. in Japan.
This system (MEGvision PQA160C; Yokogawa Electric Corp.,
Japan) included monitoring of 160 channels. The magnetic fields
were sampled at 10,000 Hz per channel (bandpass 0.16–2,000
Hz). Resting-state MEG data were recorded for 120 s for each
subject with eyes open. In addition, T1-weighted MRI images
were acquired (Sigma Excite HD 1.5 T; GE Yokogawa). All
subjects had pointed spherical lipid markers placed at the five
MEG fiduciary points to enable superposition of the MEG
coordinate system onto the MRI. The MRI consisted of 166
sequential slices of 1.2 mm, with a resolution of 512 × 512 points
in a field of view of 261 × 261 mm. Individual cortex envelopes
were extracted using software for cortical surface-based analysis
(15,000 voxels, FreeSurfer 5.1) (42, 43).

Analyses of Physiological Functions
Data analyses of the MEG data presented in this section were
performed using software (MATLAB; the MathWorks Inc.,
Natick, MA and Brainstorm (44); http://neuroimage.usc.edu/
brainstorm). The magnetic field data were resampled at
400 Hz with 150 Hz low-pass and 60 and 120 Hz notch filters,
TABLE 1 | Data of the healthy controls (HC) and Alzheimer’s disease (AD) participants.

HC (N = 21) AD patients (N = 17) Statistical analysis (HC vs. AD)

Dz (N = 10) T or c P

Age (years) 68.1 ± 7.3 71.7 ± 6.5 71.3 ± 6.7 1.57 0.125
Gender, (% male) 13 (61.9) 10 (58.8) 5 (50.0) 0.04 0.847
Education (years) 12.3 ± 3.1 11.6 ± 2.6 11.4 ± 2.4 −0.74 0.466
MMSE 28.7 ± 1.0 22.2 ± 3.7 22.2 ± 4.5 −7.77 <0.001
WMS-R General 102 ± 11 65 ± 13 64 ± 13 9.44 <0.001

Concentration 105 ± 12 87 ± 17 87 ± 17 3.85 <0.001
Verbal 101 ± 11 69 ± 12 66 ± 12 8.60 <0.001
Visual 102 ± 12 67 ± 15 68 ± 16 8.13 <0.001
Delayed recall 99 ± 12 60 ± 12 61 ± 14 9.85 <0.001

Duration of illness (years) 1.7 ± 1.1 1.7 ± 1.2
Septe
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segmented for 10 s (artifact-containing segments were excluded)
and cleaned using the Signal-Space Projection (SSP) algorithm,
removing signals corresponding to blinks and heartbeats. The
magnetic time series were transformed into source time series of
148 regions of the Destrieux brain atlas (prefrontal, 16 regions;
frontal, 20 regions; central, 18 regions; parietal, 16 regions; occipital,
22 regions; temporal, 42 regions; limbic, 14 regions) (45, 46) using a
weighted minimum norm estimation (wMNE) algorithm (47–49)
and the scout function of Brainstorm. The source time series were
decomposed into five IMFs using EEMD and were then averaged
across all 10-s segments. We implemented the EEMD by adding
white noise at amplitude of 0.2 standard deviations of the original
source time series and calculated an average of 200 ensembles as the
IMF (Figure 1). Figure 1B portrays the relative power spectral
densities of the decomposed time series. As an adaptive method,
EEMD differs from many other frequency decomposition methods.
Although its nature is an advantage of EEMD, the frequency of
IMFs varies according to the sampling rate and low pass filtering
(LPF) of the time series. Given the conditions of this study (400 Hz
sampling frequency; 150 Hz LPF), the peak frequencies of IMFs 1–5
are approximately >100 Hz, 40 Hz, 20 Hz, 10 Hz, and 4 Hz, so we
analyzed IMFs 2–5 for the remainder of the analyses and
respectively called them the gamma, beta, alpha, and theta bands.
The time series were further decomposed into amplitude and phase
time series using the HSA and processed using the MSE method.
Actually, the MSE method is a temporal complexity analysis
Frontiers in Psychiatry | www.frontiersin.org 4
method of measuring SampEn on various time scales.
Considering a time series = {x1, x2,…,xN}, SampEn can be
computed as (15, 36, 50)

SampEn r,m,Nð Þ = − ln
Am rð Þ
Bm rð Þ ,

where Am(r) = {number of pairs (i,j) with jxm+1(i) − xm+1(j)j <
r � SD, i = 1,…,N −m(i ≠ j)�/{number of all probable pairs}, and
Bm(r) = {number of pairs (i,j) with jxm(i) − xm(j)j < r � SD, i =
1,…,N −m(i ≠ j)�/{number of all probable pairs}. Therein, xm(i) is
a vector of length m, such that xm(i) = fxi, xi+1, xi+2,…, xi+m−1g, r
represents the tolerance for accepting matches, SD denotes the
standard deviation of the time series, and jxm(i) − xm(j)j stands for
the Chebyshev distance between xm(i) and xm(j). We respectively
defined the MSE of each IMF, that of its amplitude, and that of the
cosine of its phase, as the spectral MSE, the amplitudeMSE, and the
phase MSE. We usedm = 2 and r = 0.2 to calculate the MSE values
(15). Considering the frequency of each IMF, 20 appropriate scale
factors (SFs) were determined (gamma—1, 2, 3,…, 20 SF; beta—2,
4, 6, …, 40 SF; alpha—4, 8, 12, …, 80 SF; theta—8, 16, 24, …, 160
SF). As discussed in Introduction, the multiple peaks of spectral
MSE reported by Ghanbari et al. (19) were assumed to be
attributable to the BPF-derived loss of linearity. As expected, the
BPF-based spectral MSEs showed multiple peaks, whereas the
EEMD-based spectral MSEs showed a single peak (Figure 1C).
A B

C

FIGURE 1 | Frequency decomposition by ensemble empirical mode decomposition (EEMD). (A) Example of the source time series calculated from
magnetoencephalography (MEG) data decomposed into five intrinsic mode functions (IMFs) using the EEMD (BB, broadband). (B) Example of the relative power
spectral densities of the decomposed time series. (C) Multiscale entropy (MSE) profiles obtained using EEMD and bandpass filter (BPF). Source time series were
decomposed into four frequency bands using EEMD (IMF 2–5) and BPF (gamma, 33–55 Hz; beta, 16–27 Hz; alpha, 8–14 Hz; theta, 4–7 Hz). Examples of spectral
MSE of a healthy control (HC) subject averaged within the temporal regions are shown (gamma—1, 2, 3, …, 20 SF; beta—2, 4, 6, …, 40 SF; alpha—4, 8, 12, …, 80
SF; theta—8, 16, 24, …, 160 SF). The BPF-based spectral MSEs showed multiple peaks, whereas the EEMD-based spectral MSE showed a single peak.
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For analysis of covariance (ANCOVA) (Table 2), the MSE
profiles were averaged into seven brain regions (i.e., prefrontal,
frontal, central, parietal, occipital, temporal, and limbic). When
significant group difference was identified, post hoc analysis
(Figure 3) and correlation analysis with cognitive function
(Table 3 and Figure 5) were applied. At the same time,
correlation analyses conducted among spectral, amplitude, and
phase MSE (Figure 4 and Supplementary Figure 1) and ML
(Table 4 and Figure 6) dealt separately with the 148 regions.

Machine Learning Methods
The data obtained using complexity analyses have 60 dimensions
for each brain region (20 time scales for each of the spectral,
amplitude, and phase MSEs). In other words, data from 60-dim
MSE profiles × 148 brain regions × 38 subjects were obtained. To
examine the diagnostic utility of these multidimensional data
from the neuronal complexities, we extracted features by
unsupervised NN, feature selection, and SVM (SAE + FS +
SVM). First, subjects were divided into five groups by
matching the numbers of HC and AD. Then, data from three
groups were assigned to the training set, data from one group to
the validation set, and data from one group to the test set (Figure
2A). The unsupervised training was performed with
autoencoders using the training and validation datasets (Figure
2B). The autoencoders were sparsified by L1 regularization. Then
multiple SAEs were adopted related to Guo et al. (37). The
multiple SAEs learned the MSE profiles using the MSE of all the
brain regions to summarize the distribution of the SampEn at
each time scale properly. In addition, Fisher’s discriminant
analysis, a common linear discriminant analysis method, was
applied for each feature (Figure 2C). Higher rank features were
selected. Because the regions were not counted as a sample for
the SVM, the number of samples was reduced. Therefore, linear
SVM was used to prevent overfitting (Figure 2D). Along with
this ML architecture (SAE + FS + SVM), two other common ML
methods of supervised learning, simple SVM and FS + SVM,
were applied to compare the diagnostic accuracy.

In preliminary experiments, the number of SAEs and the
number of hidden nodes were tested. Then we adopted 300 SAEs
and 70 hidden nodes. Additionally, the number of features
selected by the Fisher’s score (100–10,000 features) and the L2
penalty function (1.0 × 10−3−1.0) in the SVM were optimized by
Optuna for each CV (38). The diagnostic accuracy of this
Frontiers in Psychiatry | www.frontiersin.org 5
architecture (SAE + FS + SVM) was compared statistically
with that of the simple SVM and SVM with Fisher’s score-
based feature selection (FS + SVM). In both cases, only the
temporal region data were used. In addition, to verify the
diagnostic utility accurately, the five-fold double CV was
repeated 300 times by changing the grouping of the subjects.
SAE and SVMwere implemented respectively with the Keras and
scikit-learn packages in Python.

Statistical Analyses
Statistical analyses were conducted using MATLAB and
Stata software (Stata Corp., Texas). For demographic and
cognitive variables, Student’s t-test was used to compare
continuous variables. Chi-square testing was used to compare
categorical variables. For the spectral MSE, repeated-measures
ANCOVA with the groups (AD vs. HC), Dz use and sex as the
between-subject factor and SF (20 SFs) as within-subject factors
were used to test for differences in the SampEn for each region and
each frequency band. Bonferroni correction was applied for the
regions. The age was treated as covariates. Greenhouse–Geisser
adjustment was applied to the degrees of freedom. Post hoc
independent t-tests were used to compare group differences
separately for each SF and each decomposed MSE (spectral,
amplitude, and phase MSEs). We applied the Benjamini–
Hochberg false discovery rate (FDR) for group comparisons to
control for multiple comparisons (q < 0.1). Additionally, we
examined Pearson’s correlations among spectral, amplitude, and
phase MSEs, and among the cognitive performance (MMSE score
and WMS-R subscores), age, and the SampEn in the temporal
region (not corrected for the multiple comparison). We evaluated
the diagnostic performance by the area under the receiver operating
characteristic (ROC) curve (AUC).
RESULTS

Spectral, Amplitude, and Phase Multiscale
Entropies
We first investigated the broadband and spectral MSE and
performed ANCOVA. As a result, a significant group-by-SF
interaction was found only for the alpha band in the temporal
region (Table 2). However, no significant interaction or main
effect was observed for Dz and sex. Post hoc analysis indicated
TABLE 2 | P values in ANCOVA for multiscale entropy (MSE) analyses between groups [healthy controls (HC) vs. Alzheimer’s disease (AD)] (Bonferroni-corrected for
multiple comparisons across all seven regions).

Broadband Gamma Beta Alpha Theta

Group Group × SF Group Group × SF Group Group × SF Group Group × SF Group Group × SF

Prefrontal 1.0 0.132 1.0 1.0 1.0 1.0 1.0 0.319 1.0 1.0
Frontal 1.0 0.123 1.0 1.0 0.137 1.0 1.0 0.165 1.0 1.0
Central 1.0 0.061 1.0 1.0 0.078 1.0 1.0 0.127 1.0 1.0
Parietal 1.0 0.061 1.0 1.0 0.440 1.0 1.0 0.109 1.0 1.0
Occipital 1.0 0.141 1.0 1.0 1.0 1.0 1.0 0.258 1.0 1.0
Temporal 1.0 0.065 1.0 1.0 0.519 1.0 1.0 0.039 1.0 1.0
Lingual 1.0 0.081 1.0 1.0 0.456 1.0 1.0 0.200 1.0 1.0
September 2020 | Vo
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that the alpha MSE was decreased significantly on short time
scales and increased significantly on long time scales in AD
patients (Figure 3). Furthermore, when the complexity analyses
were performed by dividing the amplitude and phase using the
HSA, results showed that the amplitude complexity decreased on
Frontiers in Psychiatry | www.frontiersin.org 6
short time scales and the phase complexity increased on long
time scales in AD patients, similar to alpha MSE (Figure 3).

Furthermore, we examined correlations among the spectral,
amplitude, and phase SampEn of the alpha band in the temporal
region (Figure 4). On the ultrashort time scales (SF ≤ 12), the
FIGURE 2 | Schema of the machine learning (ML) architecture. (A) First, subjects are divided into five groups. Their data are assigned at a train:validation:test ratio
of 3:1:1. (B) Next, the 60-dim multiscale entropy (MSE) profiles are processed by multiple sparse autoencoders (SAEs) to obtain a feature pool (F1 – Fm × n × 148)
using regions × subjects as the number of samples (feature extraction). (C) Features of higher Fisher’s score of the temporal regions are selected (feature selection).
(D) Finally, healthy controls (HC) and Alzheimer’s disease (AD) are classified by the support vector machine (SVM).
September 2020 | Volume 11 | Article 531801
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spectral, amplitude, and phase complexities were all positively
correlated. The spectral complexities were positively correlated
with the amplitude complexities on short time scales and with
the phase complexities on long time scales. In addition, the
amplitude and phase complexities were inversely correlated in
some SFs, but were almost completely uncorrelated in the others.
It is particularly interesting that these trends were the same when
the regions were extended to the whole brain, but differed at
Frontiers in Psychiatry | www.frontiersin.org 7
different frequencies. Particularly, the amplitude and phase
complexities were uncorrelated at low frequencies, but were
inversely correlated at high frequencies (Supplementary Figure 1).

Relation Between Multiscale Entropy
Values and Cognitive Function
Then, we investigated the relation between the MSE values and
cognitive function (Table 3 and Figure 5). The alpha spectral
FIGURE 3 | Spectral, amplitude, and phase multiscale entropies (MSEs) of the alpha band in the temporal region. Blue and red lines respectively show healthy
controls (HC) and Alzheimer’s disease (AD); blue and red shaded areas respectively show HC > AD and HC < AD; dark and light shaded areas respectively
represent p < 0.01 and p < 0.05. False discovery rate (FDR) q corrections were controlled for 20 scale factors (SFs).
FIGURE 4 | Correlation maps between the spectral, amplitude, and phase SampEn of the alpha band in the temporal region. The spectral complexities were
positively correlated with the amplitude complexities on short time scales and the phase complexities on long time scales. Vertical and horizontal axes show scale
factors (SFs).
TABLE 3 | Correlation between age, cognitive function, and alpha-band multiscale entropy (MSE) in the temporal region (not corrected for multiple comparison).

Age MMSE WMS-R

Concentration Verbal Visual Delayed recall

Spectral—short R −0.27 0.09 −0.13 0.25 0.20 0.14
P 0.099 0.569 0.443 0.137 0.222 0.401

Spectral—long R 0.18 −0.30 −0.15 −0.12 −0.28 −0.24
P 0.292 0.066 0.378 0.485 0.093 0.141

Amplitude—short R −0.36 0.31 −0.03 0.29 0.36 0.29
P 0.028 0.056 0.843 0.082 0.025 0.080

Phase—long R 0.25 −0.42 −0.28 −0.24 −0.41 −0.36
P 0.133 0.009 0.092 0.141 0.010 0.025
September
 2020 | Volume 11
R, Pearson’s correlation coefficient; P, P value of the correlation.
In bold, P < 0.05.
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complexity was found to have no significant correlation with age or
cognitive decline on either a short or long time scale. The amplitude
complexity on the short time scale (SF = 20) showed significant
positive and negative correlation, respectively, with visual memory
subscores on the WMS-R and the age of the subjects. Furthermore,
the phase complexity on the long time scale (SF = 60) was found to
have significant negative correlation with MMSE and visual
memory and with delayed recall subscores in the WMS-R (not
corrected for multiple comparisons).
Frontiers in Psychiatry | www.frontiersin.org 8
Diagnostic Performance in Detecting
Alzheimer’s Disease Using Machine
Learning Methods
Additionally, we used ML methods to test the diagnostic utility of
these complexities (seeMachine Learning Methods for details). We
specifically examined the similarity of the MSE profiles in various
brain regions. First, we augmented the number of samples by
regarding each region as an individual sample. Also, we
performed unsupervised training with multiple SAEs (Figure
FIGURE 5 | Correlation between the multiscale entropy (MSE) values and the Mini-Mental State Examination (MMSE) scores. The MMSE scores showed a mild
positive correlation with the amplitude complexity on the short time scale (SF = 20, r = 0.31, p = 0.056) and a significant negative correlation with the phase
complexity on the long time scale (SF = 60, r = −0.42, p = 0.0092).
FIGURE 6 | Performance of a combination of the complexity characteristics and machine learning (ML) methods for the diagnosis of Alzheimer’s disease (AD). The
area under the receiver operating characteristic curve (AUC) was 0.70 ± 0.05 for the simple support vector machine (SVM), 0.68 ± 0.05 for the feature selection
(FS) + SVM, and 0.77 ± 0.06 for the sparse autoencoder (SAE) + FS + SVM. *p < 0.001.
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2B). The higher rank features in the temporal regions were selected
byFisher’s score (Figure 2C). Thefinal classification ofHCandAD
was performed using linear SVM (Figure 2D). Results show that
our proposed SAE + FS + SVM method performed better than
either the simple SVM or the FS + SVM (Figure 6 and Table 4).
DISCUSSION

Earlier studies have explored the hypothesis that not only the
frequency but also the amplitude and phase respectively
correspond to individual functions. Many clinical and
experimental studies have specifically examined this theory
(20–23). Therefore, the key concept of this study is the
decomposition of neural oscillation and their influence to the
temporal complexity results in AD patients. Practically, MSE
analysis captures a wide range of physiological systems. It has
been applied fruitfully in clinical settings. However, far fewer
studies have applied decomposition method to MSE analysis. For
this study, the MEG signal was decomposed using the
combination of the EEMD and HSA; it was then applied to
MSE analysis. Furthermore, we tested the usefulness of these
decomposed complexities in diagnosing AD using ML methods.
Group Difference (AD vs. HC) and
Relevance to Cognitive Function
In this study, the AD patients showed lower amplitude complexity
and higher phase complexity in the alpha band in the temporal
region than the HC subjects did (Table 2 and Figure 3). The
temporal region has been implicated as the primary site of
dysfunction in AD (4, 5, 51). Also, M/EEG studies have shown
spectral changes in the temporal and parietal regions in AD and
MCI patients (10, 12). In addition, broadbandMSE alterations have
been observed in various brain regions, mainly in the temporal and
parietal regions in AD patients (13, 15, 16). In the present study,
significant differences were found only in the temporal region
(Table 2), probably because neuronal disconnection starts in the
temporal region in AD patients. However, it remains unclear why
only the temporal region was identified in this study, unlike earlier
studies. Two explanations can be considered as reasons. First, we
compared the mild patient group with HC (see Limitations). The
temporal regions are altered in the early stages of AD.Many earlier
studies have suggested that structural and functional alterations of
temporal region are useful for diagnosis (11, 12, 52, 53). Second, we
were able to reduce the volume conduction by performing the
source localization method, unlike EEG, which led to better spatial
resolution, although we cannot rule out the possibility that it is
Frontiers in Psychiatry | www.frontiersin.org 9
simply attributable to the lower sensitivity. In any case, the finding
of localized alteration in the temporal region in mild AD is
consistent with findings presented in earlier reports indicating the
temporal region as the primary site of dysfunction in AD.
Furthermore, using the spectral MSE, we were able to identify
alterations only in the alpha band complexity. Earlier reports
described that alpha oscillation is associated with memory
function (54, 55). Recent reports of some studies have described
that enhancement of alpha oscillation by neuromodulation
improves memory performance (56–58). The altered alpha band
complexity observed in the present study might reflect disturbance
of the memory function in AD.

It is noteworthy that the complexity of amplitude and phase
demonstrated opposite findings across short and long time scales
(Figure3). Similarly toour study, earlier studies have found reversal
relations between short and long time scales in broadband MSE in
AD (13–16) and coma patients (59). Those relations were inferred
as dependent on the frequency (15, 35, 60). However, in this study,
the reversal relation, which is dependent on the time scale, was
observed even after frequency decomposition (Figure 3).
Additionally, we found that spectral complexity on short time
scales correlates with amplitude complexity and that spectral
complexity on long time scales correlates with phase complexity
(Figure 4). Therefore, the time scale of the complexity depends not
only on the frequency but also on the components of the amplitude
and phase. Regarding cognitive function, the amplitude and phase
complexity were found to be correlated significantly with cognitive
function in a different manner (Table 3 and Figure 5). Specifically,
the amplitude complexity was found to be correlated with the age
and visual memory subscore in the WMS-R, whereas the phase
complexity correlated with MMSE, visual memory, and delayed
recall subscores. These results suggest a differential role of
amplitude and phase complexity in the neural basis of cognitive
functions in AD. Because the multiscale temporal complexity of
neural oscillations is assumed to reflect the influences from the past
neural processes through feedback loops at multiple hierarchical
levels of cortical processing (15, 61), we infer that the altered
complexity of phase and amplitude in AD are generated
separately by the disconnection of several feedback loops. It is
particularly interesting that Courtiol et al. (35) reported that older
adults selectively showed lower EEG complexity than younger
adults on short time scales. Herein, we speculate that reduced
amplitude complexity with aging on short time scales might be
related to age-related memory dysfunction, whereas elevated phase
complexity might reflect AD-derived cognitive decline. Results of
another study have also suggested that the decline in visualmemory
function might be attributable not only to memory function, but
also to impaired visual processing (62). Considering the fact that no
correlation of spectral MSE with cognitive function was identified,
decomposing the spectral MSE into amplitude and phase might
yield information in addition to that already identified using
conventional spectral MSE.

Improvement of Diagnostic Performance
Using Unsupervised Machine Learning
We have assessed a method of interpreting multidimensional
information about these complexity characteristics. For this
TABLE 4 | Classification results for healthy controls (HC) and Alzheimer’s
disease (AD) by support vector machine (SVM), feature selection (FS) + SVM, and
sparse autoencoder (SAE) + FS + SVM.

SVM FS + SVM SAE + FS + SVM

Accuracy 0.65 ± 0.05 0.63 ± 0.05 0.69 ± 0.05
Sensitivity 0.72 ± 0.08 0.68 ± 0.09 0.77 ± 0.08
Specificity 0.59 ± 0.09 0.59 ± 0.08 0.62 ± 0.08
AUC 0.70 ± 0.05 0.68 ± 0.05 0.77 ± 0.06
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study, which was designed for AD diagnosis, the proposedmethod
improved the diagnostic performance. In general, when diagnostic
performance is poor, even though individual feature values are
excellent, it can be suspected that 1) information was not well
interpreted or 2) information that was unnecessary for diagnosis
was included. With respect to 1), the appropriate interpretation of
the time scales of MSE remains unclear, as described in
Introduction (13, 15, 16, 19, 35, 36). For the present study, we
tried to solve 1) using NN. Although a large sample size is required
for NN, we took advantage of the similarity of MSE profiles across
all regions to augmented data by regarding each region as an
individual sample. However, we needed to apply unsupervised NN
to learn the MSE profile instead of supervised NN to learn the
diagnosis, because not all regions classify HC and AD similarly.
Using supervised learning without splitting the regions would be
ideal to, but we abandoned those benefits to apply NN for feature
extraction. Then the output was applied to the supervised classifier
(i.e., SVM) to learn the diagnosis as described below. Autoencoders
of several kinds were used as the unsupervised feature learning
methods in earlier studies, demonstrating their utility (63–65). For
instance, Guo et al. (37) reported that a good feature pool is
obtainable using multiple SAEs for the diagnosis of ASD.
However, because unsupervised training does not learn
“diagnosis,” many unnecessary features are expected to be
extracted. Therefore, we evaluated the discriminating power of
each feature using Fisher’s score and chose higher rank features to
solve 2) (66, 67). Finally, because nonlinear kernel SVM classifiers
often encounter overfitting (68), we used linear kernel SVM for
supervised learning at the last part of our ML architecture (Figure
2). In preliminary experiments, the performance was better when
the number of SAEswas larger. Therefore, 300 SAEswere prepared.
In addition, 70 nodes were adopted, because the performance was
betterwhen thenumberofnodes in thehidden layerwas40or70. In
addition to the proposed method combining an unsupervised
nonlinear ML method (SAE + FS + SVM), two more conditions
werepreparedusingonly commonsupervised lineardiscrimination
methods for comparison (simple SVM and FS + SVM). The simple
SVM performs neither 1) nor 2); the FS + SVM performs only 2).
The condition for only 1) was not performed because the feature
dimensions for SVM are too large. As a result of double CV, SAE +
FS+SVMimproved the diagnostic accuracyof the simple SVMand
FS+ SVMsignificantly (Figure 6). TheAUCwas 0.70± 0.05 for the
simple SVM and 0.68 ± 0.05 for the FS + SVM, which was not very
high, probably because of the mild severity of the AD group (see
Limitations).However, SAE+FS+SVMwas found tobe associated
with significant improvement in AUC (0.77 ± 0.06). This result
suggests that the multidimensional information of oscillatory
components (i.e., spectral, amplitude, and phase) and time scales
was interpreted successfully by the SAE and that unnecessary
information was excluded properly by the FS. Consequently, the
SVM-baseddiagnostic accuracywas improvedusing SAEandFS, in
spite of consideration of each region separately and using
unsupervised NN. When similarities are found in subgroups such
as regions, as in thepresent study, unsupervised training and feature
selection can extract the potential multidimensional information
and improve the diagnostic performance. However, ways other
Frontiers in Psychiatry | www.frontiersin.org 10
than splitting the regions should also be explored to increase the
sample size.

Meanings of Spectral, Amplitude, and
Phase Complexity and Their Time Scales
Earlier studies revealed that SampEn on each time scale correlates
with the band power of the respective frequencies (15). However, a
study by Ghanbari et al. (19) and the present study showed that
examining MSE at each frequency band provides meaningful
information to diagnose ASD and AD. In other words, neural
oscillations have a two-dimensional meaning on the frequency ×
time scale. Additionally, we identified the possibility that short time
scales correspondtoamplitude and that long timescales correspond
to phase as candidate meanings for the time scales. These relations
were consistent across all brain regions (Supplementary Figure 1),
but the profiles differ by frequency band. This definite simple
relation of frequency and time scale might result from the
beneficial use of EEMD, which ignores artifacts and which
enables achievement of a single peak of the MSE profile.
Additionally, amplitude and phase complexities apparently have
different physiological meanings (Table 3 and Group Difference
(AD vs.HC) andRelevance toCognitive Function). This observation
might support the hypothesis that a narrow band spectral
complexity corresponding to an independent neural population is
influenced by different neural processes on different time scales.
Furthermore, for another study, we compared the decoding
accuracy of neural decoding by features of two types, band power
and multiscale complexity, for the amplitude and phase of each
frequency.Results show that the latterhad better decoding accuracy
(69). This finding suggests that the MSE might have improved the
decoding performance using information about history. The
finding also supports the hypothesis that different oscillatory
components reflect different neural functions (20–23).

Nevertheless, it remains unclear whether themanner of tradeoff
betweenamplitudeandphase complexity is always true, oronly true
in certain cases. Three clues point to resolution of this point. First,
the manner of tradeoff differs for each frequency. At high
frequencies, amplitude and phase complexity share a tradeoff
relation, but at low frequencies, inverse correlation was found
only at a few SFs (Supplementary Figure 1). Second, amplitude
and phase complexity are correlated to different profiles of the
subjects. Amplitude complexity is correlatedwith the age and visual
memory subscore in the WMS-R, whereas phase complexity is
correlated with MMSE and visual memory and delayed recall
subscores in the WMS-R, but not with age (Table 3 and Figure
5).Third, earlier studies indicatednomannerof tradeoff inASD(19,
70), schizophrenia (71), and aging (35, 36). Nevertheless, most of
these studies examined broadband complexity. By contrast, the
present study examined decomposed complexity. Regarding these
three points, amplitude and phase complexity are considered not
always to represent a tradeoff. This finding suggests the importance
of separately examining amplitude and phase complexity.

Limitations
As described in Improvement of Diagnostic Performance Using
Unsupervised Machine Learning, the diagnostic performance was
September 2020 | Volume 11 | Article 531801

https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Furutani et al. Decomposed Complexities in Alzheimer’s Disease
not very high compared to that found in earlier studies (13, 15, 16),
probably because the severity of the AD in patients examined for this
studywasmild.Considering the relation betweenMMSEand clinical
dementia rating (CDR) in earlier studies (16, 51, 72–74), the patient
group in this studycanbe regardedasCDR=0.5–1.0, i.e., verymild to
mild cases. The MMSE score in the AD group was 22.2 ± 3.7 in this
study, but it was 13.1 ± 5.9 as reported by Escudero et al. (13) and
15.9 ± 4.5 as reported by Mizuno et al. (15). The duration of illness
was 1.7 ± 1.1 years in this study, but it was reported as 2.7 (0.0–9.2)
years by Mizuno et al. (15). Yang et al. (16) divided AD patients by
severity and found significant differences in various regions in the
moderate to severe group (CDR ≥ 2.0; MMSE, 11.5 ± 4.6; 2.2 ± 2.1
years duration), but no difference was found for the very mild group
(CDR = 0.5; MMSE, 24.2 ± 4.2; 1.2 ± 0.9 years duration) and mild
group (CDR= 1.0;MMSE, 19.0 ± 5.2; 2.3 ± 2.2 years duration) in the
temporal region (16). The present study found significant differences
in MSE values, even though the AD group severity was milder than
that of themild group (CDR = 1.0) reported by Yang et al. (16). This
result rather suggests that the decomposed complexities are useful
features to diagnose mild AD. The diagnostic accuracy of our
proposed method was inferior to that of MMSE (accuracy, 0.88 ±
0.04; sensitivity, 0.96 ± 0.03; specificity, 0.81 ± 0.07; and AUC, 0.98 ±
0.01), probably becauseNINCDS-ADRDA itself includesMMSEas a
criterion. Currently, the diagnosis of AD is based largely on clinical
symptoms (e.g., cognitive decline), even at the pre-dementia stage.
Many of the patients are diagnosed as having AD only when their
symptoms have already advanced. In fact, earlier studies have
suggested that histological changes such as amyloid plaque and tau
protein progress insidiously for decades before the AD diagnosis (1–
3). Therefore, potential clinical benefits of objective biomarkers have
been studied intensively for diagnosing the early stage of AD.
Although the potential utility of complexity analysis for early
diagnosis was not warranted, clinical benefits of our approach were
demonstrated even in the mild stage of this disease. Some earlier
reports have described that local oscillatory changes might be
exhibited in the early stage of AD (9, 10, 75). A structural MRI
report has described a study that revealed local disconnection in the
medial temporal region in MCI and early AD patients (4). Another
report described a study showing correlation between the medial
temporal atrophy and memory impairment (51). These results
suggest that early AD might present only local changes structurally
and functionally. Therefore, examining local changes in temporal
complexitymight bemore useful than either connectivity or network
analysis for diagnosing early AD. Future studies must investigate the
usefulness of complexity analysis for preclinical subjects.

As described in Group Difference (AD vs. HC) and Relevance to
CognitiveFunction, the temporal complexityofneuraloscillations is
assumed to reflect the influences of the history of multiple
hierarchical feedback loops (15, 61). However, feedback loops
consist of multiple neural populations. Particularly, the
complexity on long time scales is assumed to reflect the influence
of long-distance feedback loops. Therefore, we might be able to
observe the effects offeedback loopsmore directly by examining the
complexity of multiple time series, such as neural complexity (76,
77). Additional studies examining multidimensional complexity
will be necessary to confirm these findings.
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Additionally, we used only temporal regions for the
classification of HC and AD to examine time scale information of
complexity specifically. However, information from other regions
might enrich the input and improve classification performance.
CONCLUSION

This study evaluated the amplitude and phase complexity of the
MEG data in AD patients and examined their relevance to
clinical features. Additionally, we tested some ML methods to
improve diagnostic performance. The alpha amplitude and phase
complexities in the temporal region were found to have
significant difference between AD and HC. They showed
significant correlation with cognitive function in a different
manner. Additionally, correlation among spectral, amplitude,
and phase complexity yielded different profiles depending on the
frequency bands. Furthermore, we demonstrated the usefulness
of SAE + FS + SVM for improving diagnostic performance.
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