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Background: Epidemiological research has reported that attention-deficit hyperactivity

disorder (ADHD), anxiety, bipolar disorder (BD), schizophrenia (SCZ), and unipolar

depression (UD) are multimorbid conditions that are typically accompanied by

cognitive advantages or deficits, suggesting that common biological mechanisms

may underlie these phenotypes. Genome-wide association studies (GWAS) have

identified single-nucleotide polymorphisms (SNPs) associated with psychiatric disorders

and cognitive functioning. However, the mechanisms by which these SNPs

contribute to multimorbidities amongst psychiatric and cognitive phenotypes remains

largely unknown.

Objective: To identify shared regulatory mechanisms amongst multimorbid psychiatric

disorders and cognitive functioning.

Methods: We integrated data on 3D genome organization, expression quantitative trait

loci (eQTLs), and pathway analyses to identify shared and specific regulatory impacts

of 2,893 GWAS SNPs (p < 1 × 10−6) associated with ADHD, anxiety, BD, SCZ, UD,

and cognitive functioning on genes and biological pathways. Drug-gene interaction

analysis was performed to identify potential pharmacological impacts on these genes

and pathways.

Results: The analysis revealed 33 genes and 62 pathways that were commonly affected

by tissue-specific gene regulatory interactions associated with all six phenotypes despite

there being no common SNPs in our original dataset. The analysis of brain-specific

regulatory connections revealed similar patterns at eQTL and eGene levels, but no

pathways shared by all six phenotypes. Instead, pairwise overlaps and individualized

pathways were identified for psychiatric and cognitive phenotypes in brain tissues.

Conclusions: This study offers insight into the shared genes and

biological pathways that are affected by tissue-specific regulatory impacts

resulting from psychiatric- and cognition-associated genetic variants.

These results provide limited support for the “p-factor” hypothesis

for psychiatric disorders and potential mechanisms that explain drug
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side-effects. Our results highlight key biological pathways for development of therapies

that target single or multiple psychiatric and cognitive phenotypes.

Keywords: attention deficit hyperactivity disorder, anxiety, bipolar disorder, schizophrenia, unipolar depression,

cognitive functioning, multimorbidity, p-factor

INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD), anxiety,
bipolar disorder (BD), schizophrenia (SCZ), and unipolar
depression (UD) are highly prevalent psychiatric disorders (1).
Epidemiological research has reported that ADHD (2), anxiety
(2, 3), BD (2), SCZ (4), and UD (5) are highly heritable (6) and
represent multimorbid conditions that can be accompanied
by cognitive advantages or deficits (7). Consistent with this,
multiple genetic studies of psychiatric disorders and cognitive
functioning have revealed a surprising degree of genetic
overlap amongst these phenotypes, with the highest genetic
correlations observed between SCZ and BP (rg = 0.70), ADHD
and UD (rg = 0.44), BP and UD (rg = 0.36), SCZ and UD
(rg = 0.34) (8–10). Collectively, this suggests the possible
existence of common biological mechanisms underlying these
phenotypes. Recent studies have proposed the term p-factor
to represent common features of psychiatric disorders and
an individual’s overall liability to psychopathology (11, 12).
Epidemiological evidence on the persistence, co-occurrence,
sequential psychiatric multimorbidities, and genomic research
tends to support the p-factor hypothesis. However, how the
genetic architectures of psychiatric phenotypes contribute
to the psychiatric multimorbidity (i.e., the “p-factor”) and
the relationship with cognitive functioning is incompletely
understood (11, 12). Furthermore, assuming that common drug
targets may trigger similar therapeutic effects that induce similar
signaling pathways and, thus, similar side effects, understanding
the p-factor will be useful for prognosing therapeutic approaches
and predicting drug side-effects.

Genome-wide association studies (GWAS) have identified
thousands of single nucleotide polymorphisms (SNPs) that are
associated with psychiatric and cognitive phenotypes (6). The
majority of these genetic variants are non-coding and are likely
to be expression quantitative trait loci (eQTLs) associated with
the regulation of gene expression (13, 14). However, identifying
the functional impacts of these eQTL SNPs is a significant
hurdle (15).

Tissue-specific regulatory regions harbor substantial genetic
risk for complex phenotypes (16–18). As such, decoding tissue-
specific regulatory networks is an important step toward
understanding the molecular mechanisms underlying psychiatric
and cognitive phenotypes and identifying novel pathway-based
therapeutic strategies.

The three-dimensional (3D) organization of the genome
includes cell-type and tissue-specific spatial interactions between
regulatory regions (marked by eQTL SNPs) and the genes that
they control (hereafter eGenes) (19). These spatial interactions
include cis- (<1Mb between regulatory region and target
eGene) and trans-acting (>1Mb) intra- and interchromosomal

connections. Recent studies have demonstrated the potential of
integrating phenotype-associated SNPs, genome structure, and
eQTLs for the identification of functional regulatory interactions
in SCZ (20, 21). However, if or how genetic variation impacts
on the regulation of shared or specific biological pathways
to contribute to the development of psychiatric and cognitive
multimorbidities remains unknown.

In this study, we integrated data on 3D genome organization
and eQTLs to identify the tissue-specific spatial regulatory
impacts of SNPs associated with cognitive functioning and five
psychiatric disorders (i.e., ADHD, anxiety, BD, UD, SCZ). We
hypothesized that this approach would enhance the discovery
of shared characteristics (i.e., eGenes and biological pathways)
among psychiatric and cognitive phenotypes, thereby potentially
disclosing the mechanism for the p-factor that contributes to the
observed multimorbidities.

MATERIALS AND METHODS

Ethical Approvals for Data Access
Data access approval was obtained from dbGaP (https://www.
ncbi.nlm.nih.gov/gap/) for Hi-C data sets for HeLa (project
#18446: “Finessing predictors of cognitive development (part
2)”), cortical plate and germinal zone neurons (project #16489:
“Finessing predictors of cognitive development”).

Identification of Psychiatric and
Cognition-Associated SNPs
Single-nucleotide polymorphisms (SNPs) associated (suggestive
p < 1 × 10−6 cut-off was used) with ADHD, anxiety,
BD, UD, SCZ, and cognitive functioning were downloaded
from the GWAS Catalog (www.ebi.ac.uk/gwas/; 07/12/2018
and 14/07/2018; Supplementary Spreadsheet 1). Nine cognitive
traits (i.e., intelligence, information processing speed, cognition,
reading ability, reasoning, mathematical ability, infant expressive
language ability, language performance, and speech perception)
were combined to create the “cognitive functioning” category.
Genomic positions and annotations of SNPs were obtained
for the human genome build hg19 release 75 (GRCh37). To
obtain genomic region information for SNPs, functional SNP
annotation was performed using wANNOVAR (22, 23) (http://
wannovar.wglab.org/).

Hi-C Data Processing
Three-dimensional (3D) chromatin interactions in the nucleus
can bring genes and distant regulatory elements into close spatial
proximity and, thus, significantly influence gene expression
regulation. Chromosome Conformation Capture (3C)-based
technologies, such as Hi-C, capture these chromatin interactions
in a genome-wide fashion and enable the investigation of the

Frontiers in Psychiatry | www.frontiersin.org 2 October 2020 | Volume 11 | Article 560751

https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
www.ebi.ac.uk/gwas/
http://wannovar.wglab.org/
http://wannovar.wglab.org/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Golovina et al. Identifying Psychiatric and Cognitive Commonalities

relationship between genome organization and genome activity.
In order to study spatial tissue-specific regulatory interactions,
we analyzed 28 cell type and tissue-specific Hi-C chromatin
interaction libraries, including high-resolution data (24) and
brain specific datasets (19, 25, 26) (Supplementary Table 1).
Hi-C interaction data were downloaded from GEO (https://
www.ncbi.nlm.nih.gov/geo/). Raw data were analyzed according
to Rao et al. (24) [Juicer (27), version 1.5, https://github.
com/aidenlab/juicer] to generate Hi-C libraries. This analysis
pipeline included BWA alignment of paired-end reads onto
the hg19 reference genome (BWA, version 0.7.15), merging
paired-end read alignments, and removing chimeric, unmapped
and duplicated reads. The remaining read pairs we refer to as
“contacts.” Only Hi-C libraries that contain >90% alignable
unique read pairs, and>50% unique contacts (<40% duplication
rate) within the total sequenced read pairs were included in
the analysis. Files containing cleaned Hi-C contacts locations
(i.e., ∗_merged_nodups.txt files) were processed to obtain Hi-
C chromatin interaction libraries in the following format: read
name, str1, chr1, pos1, frag1 mapq1, str2, chr2, pos2, frag2,
mapq2 (str = strand, chr = chromosome, pos = position, frag
= restriction site fragment, mapq = mapping quality score, 1
and 2 correspond to read ends in a pair). Reads where both
ends had a mapq ≥ 30 were included in the final library. Hi-C
chromatin interactions represent all captured pairs of interacting
restriction fragments in the genome (Supplementary Figure 1).
As such, restriction fragments were used to identify regulatory
interactions between SNPs and genes.

Identification of Spatial Regulatory
Interactions Using CoDeS3D
CoDeS3D (28) (https://github.com/Genome3d/codes3d-v1) was
used to identify spatial regulatory interactions between genes
and phenotype-associated SNPs (Supplementary Figure 1).
Briefly, the reference genome (hg19) was digested using
the restriction enzyme that was used in the Hi-C library
preparation (i.e., Mbol or HindIII). The restriction fragments
containing phenotype-associated SNPs were identified. Next, the
algorithm captured the restriction fragments interacting with
the SNP-containing fragments in each of 28 Hi-C chromatin
interaction libraries. Only interactions between SNP-containing
fragments and restriction fragments overlapping a gene
(defined using GENCODE transcript model version 19) were
further analyzed (hereafter SNP-gene pairs). Next, the GTEx
database (https://gtexportal.org/, GTEx multi-tissue dataset v7,
Supplementary Table 2) was queried to identify only those
spatial SNP-gene pairs, where expression levels of the gene (i.e.,
eGene) were associated with a SNP (i.e., eQTL SNP) in one or
more of 48 tissues. Lastly, significant eQTL SNP-eGene-tissue
interactions were identified using the Benjamini-Hochberg
FDR control algorithm (29) to adjust eQTL p-values (FDR
< 0.05). The FDR correction was performed across all tissue
types. Significant eQTL-eGene interactions were defined as
brain-specific if: (1) the spatial interaction was present in one or
more brain-specific Hi-C dataset; and (2) the eQTL occurred in
brain and spinal cord tissues.

Bootstrapping Analysis
We performed bootstrapping (N = 10,000 iterations) with
two reference eGene sets to test if the observed spatial eGene
associations and overlaps were non-random. Reference set 1
contained the list of all genes in the genome (GENCODE
transcript model version 19). Reference set 2 included the genes
that were identified as interacting with the phenotype associated
SNP containing fragments within the Hi-C libraries, to account
for any potential bias in Hi-C gene coverage (i.e., the output of
the find_genes module). Each bootstrapping iteration generated
samples containing an equivalent number of randomly selected
eGenes, as identified for each of the phenotypes being tested.
The number of shared eGenes amongst phenotypes was counted
for each bootstrap iteration. After 10,000 iterations we counted
those instances where the number of shared eGenes in the
bootstrapped overlap (eGenes_bootstrapped) is greater than or
equal to the number of shared eGenes in the observed overlap
(eGenes_observed). The p-value was calculated as the sum of these
instances divided by the total number of iterations N,

p value =

∑
(eGenesbootstrapped ≥ eGenesobserved)

N
(1)

For bootstrapping, if the p < 0.01 we reject the null hypothesis
(i.e., the assumption that the observed eGene overlap is due to
chance) and accept the alternative hypothesis that the observed
relationship is non-random.

Functional Enrichment Analysis
Functional gene enrichment analysis was performed using the
g:GOSt tool from g:Profiler (30) (https://biit.cs.ut.ee/gprofiler/).
The g:GOSt tool maps genes to known functional annotations
and identifies the most impacted and statistically significant
enriched annotations. eGene enrichment was tested within the
biological process, molecular function, and cellular component
gene ontology terms. All known human genes were chosen as the
statistical domain scope. The significance of the overrepresented
GO terms was corrected using the SCS algorithm (30) (adjusted
p < 0.05).

Pathway Analysis
eGenes were analyzed using iPathwayGuide (https://www.
advaitabio.com/ipathwayguide, 09/13/2019) to identify enriched
biological pathways. iPathwaysGuide uses the KEGG pathways
database (31) and considers the role, position and relationships
of each gene within a pathway to significantly reduce the number
of false positives and identify truly impacted pathways. The FDR
algorithm (29) was applied to correct p-values for multiple testing
and determine significance at the pathway level (FDR < 0.05).

As for the gene analysis, bootstrapping (N = 10,000 iterations)
was performed to determine the significance of the observed
pathway overlaps. Here the KEGG pathways database (31) (n =

536; iPathwaysGuide, 22/01/2020) was used as the reference set.

Correlation Analysis
A Pearson’s correlation analysis was performed to measure the
association between GTEx tissue sample size and the number of
cis- and trans-acting eQTL-eGenes interactions.
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Drug-eGene Interaction Analysis
The Drug Gene Interaction database (32) (DGIdb, v3.0.2—
sha1 ec916b2, http://www.dgidb.org/) consolidates and organizes
known drug-gene interactions and gene druggability information
from 30 databases and clinical trials. The collapsed resources
include: DrugBank, PharmGKB, ChEMBL, FDA Biomarkers,
Guide To Pharmacology, Jax-Clinical Knowledgebase, TDG
Clinical Trials, CIViC, and CancerCommons. DGIdb supports
over 40,000 genes and 10,000 drugs that are involved in over
15,000 drug-gene interactions. We queried DGIdb to identify
drugs (their effects and mechanisms of action) that target the
eGene products.

RESULTS

SNPs Associated With Psychiatric and
Cognitive Phenotypes Regulate Distant
Genes
We hypothesized that multimorbidity is driven by genetic
variants (e.g., SNPs, structural variants, indels) that regulate
tissue-specific expression of genes that co-occur within specific
biological pathways and thus affect the phenotype (Figure 1).
CoDeS3D (28) was used to integrate genome structure
and eQTL data to identify tissue-specific spatial eQTLs
for SNPs (n = 2,893) associated (p < 1 × 10−6) with
cognitive functioning, ADHD, anxiety, BD, UD, and SCZ. We
identified a total of 45,269 significant tissue-specific eQTL-
eGene pairs (FDR < 0.05) from 48 different human tissues
(Figure 2, Supplementary Spreadsheet 2). In total, 2,088 SNPs
were identified as eQTLs (Figure 2). Approximately 60%
of the SNPs associated with each phenotype were eQTLs
(Supplementary Figure 2A). The majority of the 2,088 eQTLs
we identified were located within introns and intergenic regions
(Supplementary Figure 2B). The patterns of cis- and trans-
acting regulatory interactions formed by eQTLs within introns
and intergenic regions were similar across all phenotypes
(Supplementary Figures 3A,B).

SNPs and eQTLs Are Mostly Unique to
Individual Phenotypes
Previous studies have described a limited number of SNPs
associated with combined phenotypes [i.e., SCZ+cognition (7),
BD+cognition (7) and BD+SCZ (33)]. Therefore, we intersected
the SNP and spatial eQTL sets associated with ADHD, anxiety,
BD, UD, SCZ, and cognitive functioning to identify shared
genetic variation between these phenotypes. We found that the
total numbers of shared SNPs across phenotype combinations
are similar to those for shared eQTLs (Figures 3A,B). No
SNPs, or eQTLs were common to all phenotypes (Figures 3A,B,
respectively). However, there were limited eQTL overlaps
amongst the psychiatric disorders and between psychiatric
disorders and cognition (Figure 3B). We did not observe any
overlapping eQTLs for ADHD and cognitive phenotypes. The
limited SNP and eQTL overlaps we observed supports the
hypothesis that regulatory impacts on genes and pathways can
make a contribution to multimorbidity.

Psychiatric and Cognitive Phenotypes
Share Common eGenes
Multimorbidities among psychiatric disorders and cognition
could result from the regulatory effects of shared or phenotype-
specific eQTLs on shared gene targets. Shared eGenes (n = 33)
were identified for eQTLs associated with all six phenotypes
(Figure 3C). SCZ and UD shared the greatest number of
eGenes (n = 374). ADHD and cognition have 58 shared eGenes
despite having no shared eQTLs (Figures 3B,C). Bootstrapping
simulations (n = 10,000) confirmed that the overlaps were
significant (p < 0.001; Supplementary Figure 4A). The
expression levels of the 33 eGenes (Supplementary Table 3) that
were shared across all phenotypes are associated with eQTLs
that are located within three loci (chr3:52256696-53455568,
chr6:25177507-32914725, and chr10:103816827-105039240;
Supplementary Figure 5).

Functional assignments for phenotype-associated SNPs are
typically made to the closest gene to the phenotype-associated
variant (9, 21, 34–36). Our analysis of eQTL-eGenes spatial
connections showed that 5–7% are explained by associations
with the closest gene (Supplementary Spreadsheet 2). For
example, ADHD, BD, UD, and SCZ (34) -associated rs2535629,
which is located within an intron of ITIH3, is an eQTL for
ITIH4 in the brain, adipose tissues, and the cardiovascular
system. However, rs2535629 is also associated with spatial
regulatory interactions with another 12 eGenes (ITIH3, PPM1M,
GNL3, RAF1, MUSTN1, NEK4, NT5DC2, PBRM1, RBMS3,
SFMBT1, TMEM110, WDR82; Supplementary Table 4). Thus,
incorporating data on spatial genome organization enables the
identification of local and distal eQTL-gene connections that can
potentially contribute to multimorbid phenotypes.

Psychiatric and Cognitive Phenotypes
Share Common Biological Pathways
The pleiotropic effects of eQTLs and co-occurrence of the
affected eGenes within biological processes and pathways could
contribute to the underlying multimorbid conditions (Figure 1).
Gene ontology (GO) analysis of the 33 shared eGenes identified
significant enrichment (adjusted p < 0.05) in gene expression,
transcription, metabolic, biosynthetic, and regulatory processes
(Supplementary Figure 6). Notably, ontological analyses of
eGenes specific for each phenotype revealed associations
with neurodevelopment (e.g., “nervous system development”),
immune system processes (e.g., “immune response”), responses
to environmental stimuli, and signal transduction that were
common to all phenotypes (Supplementary Spreadsheet 3).

Pathway analysis using eGenes (shared and specific for
each phenotype) identified 61 biological pathways that
are shared by all phenotypes (Figure 3D). These shared
pathways are associated with human diseases, signal
transduction, neurodevelopment, learning, and immunity
(Supplementary Spreadsheet 4, Supplementary Table 5).
Bootstrapping (n = 10,000) confirmed that the observed overlap
was highly significant (p < 0.001; Supplementary Figure 7)
and not an artifact of the presence of shared eGenes
within these pathways (Supplementary Figure 8).
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FIGURE 1 | Genetic model of multimorbidity and the SNP-phenotype relationship. Phenotype-specific genetic variants alter tissue-specific gene expression by

changing regulatory connections within the 3D dimensional organization of the genome. The gene products, whose expression is altered, interact within biological

pathways. Multimorbidity results when affected gene products co-occur within pathways. The co-occurrence of affected gene products within shared pathways

changes the way pathways respond to environmental signals and thus affects cellular activities at tissue and system levels. Orange—genetic variants, genes, and

pathways specific to phenotype A. Green—genetic variants, genes, and pathways specific to phenotype B. Gray—genetic variants, genes, and pathways shared

between phenotypes A and B. White—genes that are not specific to either phenotype A or phenotype B.

Notably, despite a high prevalence of comorbidity and
substantial genetic correlation between anxiety and
UD, only 6 pathways were shared between these two
conditions (37–39).

The neurotrophin signaling pathway is important
in developmental neurobiology (40). This pathway
contained eGenes associated with eQTLs from all
phenotypes (Figure 4). Most of the eGenes within the
neurotrophin signaling pathway were regulated by
trans-acting eQTLs (Figure 4). Dysregulation in the
neurotrophin signaling cascade can impact downstream
pathways, e.g., axon guidance and long-term potentiation
pathways, which also contained co-occurring eGenes
associated with cognition and psychiatric phenotypes
(Supplementary Figures 9, 10).

We also identified 12 biological pathways that were impacted

by eGenes that were specific to individual psychiatric and

cognitive phenotypes (Figure 3D, Supplementary Table 5).

Drug-Gene Interactions Identify
Pharmaceutical Impacts on Multimorbidity
Drugs to prevent, stabilize, or slow the progression of psychiatric
and cognitive conditions often have side effects consistent
with known multimorbidities (41). Between 15–21% of the
eGenes we identified encode proteins that are targeted by
existing drugs (Supplementary Spreadsheet 5). Four eGenes
(i.e.,AS3MT, FLOT1,HLA-A, and PBRM1) are affected by eQTLs
from all tested phenotypes and are current therapeutic targets for
psychiatric disorders (Supplementary Figure 11). For example,
everolimus targets PBRM1 (polybromo 1 protein, subunit of
chromatin remodeling complex) that can be important in neural
development (42). Notably, everolimus improves memory and
learning but simultaneously aggravates depression and anxiety
in mice (43). Therefore, we contend that these observations
provide insights into potential mechanisms for drug side-effects
associated with multimorbidities among psychiatric disorders
and cognition.
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FIGURE 2 | Pipeline used to study the multimorbidities between psychiatric and cognitive phenotypes. SNPs associated with ADHD, anxiety, BD, SCZ, UD, and

cognitive functioning were obtained from the GWAS Catalog and analyzed using CoDeS3D (Supplementary Figure 1) to identify the genes associated with

significant spatial eQTLs. Phenotype-specific lists of eQTLs are presented in Supplementary Spreadsheet 2. Pathway analysis was used to identify pathways

containing co-occurring eGenes for the different phenotypes (Supplementary Table 5). Drug-eGene interaction analysis was performed to identify druggable genes

(Supplementary Spreadsheet 5).

Spatial Regulatory eQTL Effects Are
Tissue-Specific
Brain structural changes are commonly considered
to be relevant to the development of psychiatric and
cognitive phenotypes. However, these phenotypes are
also associated with physiological changes at the level
of the whole body [e.g., with impaired functioning of
endocrine (44), immune (45, 46), and cardiometabolic
(47) systems]. Therefore, the tissue-specificity of
phenotype-associated spatial regulatory impacts may
provide important insights into psychiatric and cognitive
multimorbidities. The cis- and trans-acting eQTLs we
identified were widely distribution across human tissues
(Supplementary Figure 12). The numbers of cis and
intra-chromosomal spatial eQTL SNP-eGene regulatory
interactions correlated with the GTEx tissue sample
size (Supplementary Figure 13). By contrast, inter-
chromosomal eQTLs were not correlated with tissue
sample size (Supplementary Figure 13). We detected
greater numbers of cis (<1Mb) and intra-chromosomal
(≥1Mb) eQTL-eGene interactions in thyroid and brain

cerebellum tissues, than were predicted by the correlation curve
(Supplementary Spreadsheet 6, Supplementary Figure 13).
This is consistent with reported roles for the thyroid in the
development of cognitive functions and psychiatric disorders
(44, 48).

Brain-Specific Regulatory Associations Are
Mostly Unique to Individual Phenotypes
ADHD, anxiety, BD, UD, SCZ, and cognitive functioning are
widely regarded as brain-specific phenotypes. Therefore, we
identified brain-specific eQTL-eGene regulatory interactions
that are supported by spatial connections within brain-
specific Hi-C datasets (Supplementary Spreadsheet 7). The
brain-specific eQTLs and eGenes we identified were mostly
unique to the individual psychiatric and cognitive phenotypes
(Figures 5A,B). Consistent with our earlier findings across all
tissues, we observed many shared pathways across different
phenotype combinations. However, we observed more
pairwise combinations and individualized pathways for the

Frontiers in Psychiatry | www.frontiersin.org 6 October 2020 | Volume 11 | Article 560751

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Golovina et al. Identifying Psychiatric and Cognitive Commonalities

FIGURE 3 | Shared biological pathways link psychiatric disorders and cognition. Psychiatric disorders and cognitive functions have low levels of genetic similarity at

the SNPs (A), eQTLs (B), and eGene (C) levels. A FDR-adjusted p < 0.05 was used to identify eQTLs and eGenes. (D) Psychiatric disorders and cognition share a

(Continued)
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FIGURE 3 | large degree of commonality at the biological pathways level. Biological pathways containing eGenes for each phenotype were identified using

iPathwayGuide (Supplementary Spreadsheet 4). Among the most impacted pathways, 61 were shared between psychiatric disorders and cognition, 66—across all

five psychiatric disorders. Only one pathway (i.e., Pancreatic secretion) was unique to ADHD, three pathways [i.e., Vasopressin-regulated water reabsorption, Ovarian

steroidogenesis, and Dilated cardiomyopathy (DCM)] were specific to anxiety, three were unique to BD (i.e., IL-17 signaling pathway, Antifolate resistance, and

Cytosolic DNA-sensing pathway), 2—to SCZ (i.e., p53 signaling pathway and Prion diseases), 2—to UD (i.e., Rheumatoid arthritis and Malaria) and 1—to cognition

(i.e., Carbohydrate digestion and absorption). The full list of shared and unique pathways is in Supplementary Spreadsheet 5.

FIGURE 4 | Psychiatric and cognitive SNPs mark eQTLs that are associated with gene expression within the neurotrophin signaling pathway. The co-occurrence of

the affected shared or phenotype-specific eGenes and imbalance in gene expression within this pathway may lead to a series of cellular functions and events

associated with psychiatric and cognitive phenotypes and the multimorbidities between them.

psychiatric and cognitive phenotypes in the brain (Figure 5C,
Supplementary Table 6, Supplementary Spreadsheet 8). Whilst
there were no brain-specific pathways that were shared across
all phenotypes, the psychiatric disorders have between 6 and
24 shared pathways with the cognitive phenotypes (eTable
15 in Supplement 2). Again, ADHD was an exception and
did not share any pathways with the cognitive phenotypes
(Figure 5C). Bootstrapping (n = 10,000) confirmed the
significance (p < 0.01) of the observed brain-specific eGene

and pathway overlaps, except for the anxiety+BD+SCZ overlap
(Supplementary Figure 14).

DISCUSSION

There is increasing evidence that psychiatric disorders and
cognitive functioning share an underlying cause, the so-called “p
factor” (11). The existence of the p factor is further supported
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FIGURE 5 | Psychiatric disorders and cognition show no shared pathways among all phenotypes in brain tissues. Psychiatric disorders and cognitive functions have

low levels of genetic similarity at the eQTLs (A) and eGene (B) levels in brain tissues. A FDR-adjusted p < 0.05 was used to identify eQTLs and eGenes. More pairwise

brain-specific pathway overlaps (C) and individualized pathways were identified for psychiatric and cognitive phenotypes.
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by the identification of genetic overlaps between psychiatric
disorders (12). Despite the growing recognition of the p factor
for psychiatric conditions, how the p factor manifests biologically
remains unclear. We hypothesized that the p factor results
from the action of genetic variants associated with psychiatric
and cognitive phenotypes on tissue-specific expression of
genes within shared biological pathways. Consistent with our
hypothesis, we identified relatively little common genetic risk at
the level of SNPs and eQTLs, but extensive biological pathway
overlaps. We identified 61 biological pathways that were shared
amongst the tested psychiatric and cognitive phenotypes.

Even though the relevance of the pathways unique to
individual psychiatric or cognitive phenotypes may not be
immediately obvious (e.g., pancreatic secretion and ADHD),
there is increasing evidence that psychiatric disorders represent
complex multisystem conditions (49–51). Moreover, it is obvious
that the brain is a component within a much larger system and
is subject to both direct and indirect contributions from other
tissues that impact psychiatric and cognitive phenotypes. This is
epitomized by hypo and hyperthyroidism, whereby alterations
to thyroid hormone status are associated with development of
psychiatric conditions (e.g., SCZ, BD, anxiety and depression)
(44, 52). Notably, we observed that the thyroid hormone
signaling pathway was impacted by genetic variants specific to all
six phenotypes.

Infections during pregnancy, at birth and in early childhood
increase the risk of ADHD (53), BD (54), and SCZ (54). We
identified changes to gene regulation within pathways associated
with infectious diseases (e.g., HTLV-I infection, and hepatitis
B) that involved eQTLs for all phenotypes. Phenotype specific
overlaps in immune related pathways were retained in the
brain specific analysis. For example, gene expression within
the natural killer cell mediated cytotoxicity and Th1 and Th2
cell differentiation pathways was affected by genetic variants
associated with ADHD, BD, UD, SCZ, and cognition. We also
identified regulatory changes to genes within signaling and
neurodevelopmental pathways. Collectively, these results are
consistent with changes to gene regulation within signaling,
immune, and neurodevelopmental pathways combining to affect
the pathophysiology and development of ADHD, anxiety, BD,
UD, SCZ, and their association with cognitive functions. Of
course, the convergence of phenotype specific genetic impacts
on shared biological pathways does not explain all the features
of the observed multimorbidities between the tested phenotypes.
Clearly, there remains a role for dysregulation within pathways
unique to individual psychiatric and cognitive phenotypes.
Moreover, it is important to remember that pathways represent
part of many cell-type and tissue-specific networks and thus
can exert their effects on the multimorbidity risk through these
networks. The impacts of cell-type and tissue-specific networks
were not explicitly considered in this study.

We identified drugs that target gene products encoded by
genes impacted by eQTL SNPs associated with each of the
tested psychiatric and cognitive phenotypes. We contend that
the therapeutic targeting of shared genes helps to explain the
psychiatric side effects that are observed for these drugs. This
hypothesis could be tested by categorizing patients who exhibit

treatment associated side-effects according to the presence or
absence of the allele associated with the side-effect relevant
phenotype. However, genes in the shared set can only be used
in patient stratification for personalized treatment if the eQTL
effects occur in the same direction. Arguably, these decisions
will only affect clinical outcomes if the variants are of high
penetrance. However, the validity of these assumptions remains
to be determined.

The development of psychiatric and cognitive phenotypes
depends on a complex, often non-linear, dynamic interplay
between genetic and environmental factors. As such, we are
aware that our study has several limitations. Firstly, increasing
the number of GWAS studies on certain phenotypes (e.g.,
ADHD, anxiety, etc.) will result in the identification of additional
novel SNP loci. Secondly, common SNPs do not explain all of the
estimated heritability in psychiatric and cognitive phenotypes,
suggesting that other factors (e.g., rare variants, indels, structural
variation etc . . . ) also contribute (55). Thirdly, the GTEx eQTL
data used in this study was largely from European individuals
aged 40 years and older (56). Thus, robust predictions of
the regulatory mechanisms of psychopathology and cognitive
functioning across different populations and developmental
stages requires additional data sets. Moreover, the reduced
numbers of brain samples may have made the eQTLs and
thus pathway overlaps more difficult to detect, thus accounting
for the observed reduction in phenotype overlap. Fourthly,
SNPs associated with diverse cognitive functions were combined
into one general “cognitive functioning” phenotype, and do
not represent common factors underlying all cognitive traits
(Supplementary Spreadsheet 1). As such further research is
needed to look more precisely at specific aspects of cognitive
functioning (e.g., mathematical ability, language performance
etc. . . ) and their relationship with psychiatric disorders. Fifthly,
it should be noted that the way we identify eGenes (restriction
fragments do not have to contain the eGene promoter) may
lead to potential eGenes over-identification. Sixthly, we are also
aware that there is a potential bias in the tools, datasets, and
databases used in this study, therefore our findings do not
necessarily represent the full picture. For example, the usage
of Hi-C datasets for HeLa cells may introduce unwanted bias
due to their aberrant karyotype. Moreover, our study of tissue-
specific regulatory interactions was potentially confounded by
the tissue specific expression and Hi-C datasets not being
paired. This is particularly relevant if there is an interaction
with RNA degradation during sample preparation. Tissue-
specific eQTL SNP effects mediating the eGene overlaps may
not be independent and represent side effects of chromatin-
level regulation. Incorporating other tissue-specific multi-omics
data [e.g., from ENCODE consortium (57)] could provide a
more comprehensive and accurate identification of tissue-specific
regulatory changes associated with psychiatric and cognitive
phenotypes. Finally, despite the statistical significance of the
observed enrichment (FDR < 0.05), it can be argued that these
results are unrealistically positive and that a stricter cut-off
(FDR < 0.01) should have been employed to further reduce the
chances of identifying false positives. Despite these limitations,
our analysis provides a starting point for further mechanistic and
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functional investigation. Replication analyses will increase the
robustness of the results and provide a clearer indication of cross-
phenotype overlap and phenotype-specific genetic architecture.

In conclusion, we have described biological pathways for
multimorbidity and identified drug-gene interactions thatmay be
clinically relevant for the treatment and prevention of psychiatric
and cognitive phenotypes. Our results provide support for a shift
from a gene-centric approach to identifying pathways for the
treatment of multimorbid psychiatric and cognitive conditions.
Future applications of the spatial genetic approach we used
to other phenotypes will cross the molecular, cellular, tissue,
and system levels to define personalized disease risk profiles,
therapeutic targets and drug side-effects.
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