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We ranked third in the Predictive Analytics Competition (PAC) 2019 challenge by

achieving a mean absolute error (MAE) of 3.33 years in predicting age from T1-weighted

MRI brain images. Our approach combined seven algorithms that allow generating

predictions when the number of features exceeds the number of observations, in

particular, two versions of best linear unbiased predictor (BLUP), support vector machine

(SVM), two shallow convolutional neural networks (CNNs), and the famous ResNet

and Inception V1. Ensemble learning was derived from estimating weights via linear

regression in a hold-out subset of the training sample. We further evaluated and identified

factors that could influence prediction accuracy: choice of algorithm, ensemble learning,

and features used as input/MRI image processing. Our prediction error was correlated

with age, and absolute error was greater for older participants, suggesting to increase

the training sample for this subgroup. Our results may be used to guide researchers to

build age predictors on healthy individuals, which can be used in research and in the

clinics as non-specific predictors of disease status.

Keywords: brain age, MRI, machine learning, deep learning, statistical learning, ensemble learning

INTRODUCTION

Chronological age is an important risk factor for many conditions such as neurological disorders
(e.g., Alzheimer’s and Parkinson’s), chronic (including cardiovascular) disorders, cancer, or stroke,
to name a few. However, it is an imperfect predictor of disease risk or of healthy individuals’
functional capability (1). A growing field of research has been focusing on identifying biological
correlates of age (e.g., from telomere length, methylation site, brain structure, and function) to
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derive measures of biological age (2–6). Promises of biological
age rely on the assumption that it would capture specific
physiological or biological aspects of aging, which may allow
predicting mortality and could supersede chronological age in
predicting diseases or functional state (5, 7). In particular, brain
age estimation from MRI images is a rapidly expanding field of
research with several hundred publications to date (4).

Predicted age difference (PAD; defined as the difference
between predicted age and chronological age) has been associated
with mortality and functional measures (6). In addition, brain
age (and PAD) trained on healthy participants may be applied
to case–control samples where they have been shown to be
non-specific predictors of disease status: Alzheimer’s disease and
conversion (8–10), schizophrenia (11), alcohol dependence (12),
cognitive impairment (13), or functional abilities (6, 14). The
interested reader may refer to Le et al. (15) and Smith et al.
(16) for further discussion on PAD analyses and possible pitfalls.
Overall, these results indicate that brain age is associated with
disorders, mortality, and function beyond what can be explained
by chronological age. In addition, brain age (and PAD) has
been shown to be heritable (17, 18), and recent genome-wide
association studies (GWASs) have started shedding light on some
of themolecular mechanisms responsible for brain aging (19, 20).
Lastly, combining brain age and methylation age (21) resulted
in an increased prediction of the mortality risk, suggesting that
brain age and the epigenetic clock capture different mechanisms
of aging (6).

However, the wide range of algorithms that may be used
to train brain age predictors, as well as the numerous MRI
modalities and processing options [see (4), for a review], raise
the question of the robustness of the associations with PAD. In
addition, brain age scores are often described by their predictive
ability (in predicting chronological age), though comparison
of performance across publications is uneasy (4) due to the
numerous competing statistics [e.g., mean absolute error (MAE),
root mean square error, and Pearson’s correlation] and the
different datasets used for evaluation.

The Predictive Analytics Competition (PAC) 2019 challenge
offers a unique opportunity to benchmark algorithms, techniques
(e.g., data augmentation), and image processing options by
offering a common framework to all research groups. In
short, the test set was not accessible to the participants to
avoid overfitting and data leakage, and prediction accuracy was
assessed using MAE, while a secondary challenge aimed at also
minimizing bias (defined as the association between PAD and
chronological age).With the use of the data proposed for the PAC
challenge, a previous publication reported a MAE of about 4–5
years (6, 22), in line with the best results reported in the literature
at the time (4).

It is important to note that beyond the (methodologically
useful) benchmarking of prediction allowed by the PAC
challenge, minimizing the prediction error may sound
counterintuitive when trying to identify correlates of PAD
[see (23), for a real data example]. At the extreme, a perfect
age predictor would not provide any additional information
than chronological age, even though we do not know whether
such a perfect predictor is theoretically possible. On the

other hand, minimizing the error bias can guarantee that the
age prediction error (PAD, interpreted as accelerated brain
aging) is independent of chronological age and, thus, that
associations with brain age are not attributable to chronological
age differences (15).

Here, we sought to evaluate the performance of different
predictive algorithms [convolutional neural networks (CNNs),
support vector machine (SVM), and best linear unbiased
predictor (BLUP)], as well as their combined predictive accuracy.
In addition, we conducted post hoc analyses to investigate the
effect of (i)MRI processing; (ii) number ofmodels combined; and
(iii) site, sex, and age on the brain age prediction accuracy. As a
by-product of the BLUP analysis, we also discuss the theoretical
maximum prediction that may be achieved from the T1-weighted
(T1w) processed images.

MATERIALS

Participants From Training Sample
The 2,640 PAC participants were 35.8 years old on average (SD=

16.2, range 17–90, Figure 1), imaged across 17 sites; 53% of the
participants were females. The smallest site contributed 10 MRIs;
the largest 576 (21.8% of the sample). Details about the samples
gathered may be found in Cole et al. (17).

METHODS

Image Features
Gray Matter and White Matter Maps
Images were non-linearly registered to the MNI152 space and
segmented according to the tissue probability (gray matter, white
matter, or cerebrospinal fluid) using SPM12 (University College
London, London, UK) and DARTEL (24). A map was produced
for each tissue and smoothed using a 4-mm kernel. Gray and
white matter maps were distributed by the PAC team; see Cole
et al. (17) for details about preprocessing options.

Surface-Based Processing of Gray Matter
We manually corrected the orientation of the raw images
from site 14, where the axes had been swapped on the raw
images. We processed the raw T1w images using FreeSurfer 6.0
to extract vertex-wise measurements of cortical thickness and
surface area (fsaverage mesh, no smoothing) (25). In addition,
we used the ENIGMA-shape protocol (http://enigma.ini.usc.
edu/protocols/imaging-protocols/) to further extract a vertex-
wise characterization of seven subcortical nuclei thickness and
surface (26, 27). Our processing resulted in∼650,000 gray matter
measurements per individual; and we previously showed that
compared with other surface-based processing, these options
maximized the association with age in the UK Biobank (28).

Processing failed for 89 participants (3.4%) from the training
sample and 21 (3.2%) from the PAC test set. Most of those
individuals belonged to site 8 (76/89 in the training set and 20/21
in the test set) and failed because of white matter segmentation
error (topology defects) that we attributed to the lower image
quality (after visual inspection of the MRIs).
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FIGURE 1 | Age distribution of the Predictive Analytics Competition (PAC) 2019 training sample.

Machine Learning Models
Overview
We constructed several age predictors, either based on the 3D
maps of gray and/or white matter (deep learning models: six-
layer CNN, ResNet, and Inception V1) or based on vertex-
wise measurements from the surface-based processing (models
BLUP and SVM). All algorithms used can derive predictions
from a complex image (e.g., high-resolution 3D) or a large
number of image-derivedmeasurements (e.g., more features than
participants), though only the deep learning approaches leverage
the spatial proximity between vertices.

Note that FreeSurfer failed for a handful of participants (see
Surface-Based Processing of Gray Matter), making BLUP or SVM
prediction impossible. To avoid missing values in age prediction,
we attributed to those subjects the site- and sex-specific mean age
estimated from the training set.

Model 1: Best Linear Unbiased Predictor
BLUP scores (29–31) are routinely used in genomics and
animal breeding (32, 33) and more recently in neuroscience
(28) where the number of features (e.g., single-nucleotide
polymorphisms, methylation probes, and vertex measurements)
greatly exceeds the number of participants. BLUP scores have
the desirable properties of minimizing the mean square error
within the class of linear unbiased predictors (30, 31), leading to
greater prediction accuracy in genetics (34). In addition, BLUP
calculation is computationally efficient, as it does not require
hyperparameter estimation. Instead, BLUP uses the estimated
variance–covariance matrix between the features (here vertices)
to derive the joint marginal associations between the trait and
each vertex (30, 31). We used the OSCA software (35) to estimate
the BLUP scores. The model used in BLUP calculation also
allows estimating the total (linear) association between a trait and
features (coined morphometricity), which represents the upper
bound of the (linear) prediction accuracy that may be achieved
from the data (28, 36).

We scaled the scores using the mean and SD calculated from
each site of the discovery sample (BLUP-mean). In addition, and

to better account for the non-normal distribution of age in the
PAC sample, we also applied a quantile-based scaling by which we
forced the predicted age distribution to match that of the training
sample (BLUP-quantiles).

Model 2: Support Vector Regression
We used SVM (37) with a radial basis function kernel. SVM is
a popular machine learning algorithm that was first introduced
to address binary classification tasks (38) and then extended to
regression tasks. The regression version has yielded successful
applications in numerous fields, including time series prediction
(39), energy forecasting (40, 41), recognition (42), and medicine
(43). We used the implementation provided in the Python
package scikit-learn (44).

Model 3: Six-Layer Convolutional Neural Networks
The success of CNNs in computer vision has led to numerous
applications in medical imaging and more recently in age
prediction from neuroimaging data (17, 45–49).

We chose a custom architecture with five convolutional blocks
followed by a flattening layer and a fully connected layer. Each
convolutional block was sequentially made of a convolutional
layer, a batch normalization layer, a ReLU activation, and a
max pooling layer. This architecture is a simplified version of
the architecture of (17) and is displayed in Figure 2. Details
on the hyperparameters of the architecture are presented in
Supplementary Table 1.

The model was trained using the concatenation of the 3D
maps of gray matter and white matter on two channels. We used
a MAE loss function, and the model was optimized using Adam
(50) with a learning rate of 0.001, a decay of 10−4, and setting
β1and β2 to 0.9 and 0.999, respectively.

Model 4: Specialized Six-Layer Convolutional Neural

Networks for Younger and Older Subjects
This model is the combination of two CNNs with the architecture
described in the previous section. The first CNN was trained on
the whole dataset, whereas the second one was only trained on
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FIGURE 2 | Flowchart showing the components of the proposed six-layer

convolutional neural network (CNN) architecture. The network consists of five

convolutional blocks followed by a flattening layer and a fully connected layer.

Each convolutional block is made of a convolutional layer, a batch

normalization layer, a ReLU activation, and a max pooling layer.

participants older than 40. The age of older participants was given
by the mean value of the models, whereas the age of younger ones
was given by the first CNN only.

Model 5: ResNet
Inspired from Jonsson et al. (19), this model is a 3D CNN
composed of five residual blocks each followed by a max pooling
layer of kernel size 3 × 3 × 3 and of stride 2 × 2 × 2, followed
by a flattening layer and a fully connected block where additional
covariables are concatenated before the last fully connected layer.
Each residual block is a combination of layers that are repeated
twice. Each layer is composed of a 3D convolutional layer with
a kernel size of 3 × 3 × 3 and stride 1 × 1 × 1, a batch
re-normalization layer, and an exponential linear unit (ELU)
activation function. A skip connection is added before the last
activation function. This architecture is summarized in Figure 3

and Supplementary Tables 3, 4.
We trained the model using the 3D maps of gray matter

density. We used a MAE loss function and performed
optimization using Adam (50) by using the following parameters:
a learning rate of 0.0001, a decay of 10−6, and setting β1and β2 to
0.9 and 0.999, respectively. Our model differed from that of the

original paper (19) in that we used a stochastic initialization as
opposed to He’s initialization strategy (51). In addition, we did
not perform data augmentation.

Model 6: Inception V1
Inspired from the winning architecture for the ILSVRC 2014
competition, this model is a modified version of Google’s
incarnation of the Inception architecture (52). Our model is
able to handle 3D images by using 3D convolution, batch,
normalization and pooling layers. The final softmax layer was
removed leaving a fully connected layer as the last layer, thus
ensuring a regression task instead of a classification task. During
training, auxiliary outputs are used to inject additional gradients
to mitigate the vanishing gradient problem. Those auxiliary
outputs, using fully connected layers for intermediate regression,
tend tomake the backpropagation computationally infeasible due
to the increased number of parameters when going from 2D to
3D. This problem is handled thanks to the regression nature of
the problem, as the output dimension is no longer the number of
classes but a single real number. We detailed the full architecture
in Figure 4 and Supplementary Tables 5–7.

The model was trained using the 3D maps of gray matter
density. A MAE loss function was used, and the model was
optimized using Adam (learning rate of 10−4 and batches of eight
images). We kept the model with the highest validation accuracy
over 300 epochs.

Predictive Analytics Competition 2019
Challenge Experiments
Training and Validation Procedures
We downloaded the training PAC2019 data consisting of 2,640
unique participants, from which we kept a subset of 533
(20%) selected by random sampling to be representative of
the full training sample (in terms of age, sex, and site origin,
Supplementary Table 8). We used those 533 participants to
benchmark the prediction accuracy of each of our models (paired
t-test), as well as to find the optimal weights when combining the
different predicted ages (Figure 5).

On the 2,107 images left in the training set, we performed
a 5-fold cross-validation to estimate the C and gamma
hyperparameters in SVM. For the deep learning algorithms, the
best epoch was determined using an 80:20 train–validation split,
the same for all algorithms. Note that BLUP does not require
hyperparameter estimation and was trained on the 2,107 images
(see Figure 5 for summary).

Model Combination
We estimated the optimal combination of age predictors using
a linear regression of all predictions on self-reported age, in the
sample of 533 participants. The regression coefficients were then
applied in the PAC2019 test sample to weight the different scores
(Figure 5).

To evaluate the improvement in MAE resulting from
ensemble learning, we randomly split the 533 hold-out sample
in halves. We trained the linear model on the first half and
evaluated theMAE on the other half, which provides an unbiased
estimate of the variance of the MAE. Because the 50:50 split was
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FIGURE 3 | Flowchart showing the components of the proposed ResNet architecture. The network is composed of five residual blocks, each followed by a max

pooling layer and a fully connected block. Each residual block is a combination of layers that are repeated twice. Each layer is composed of a 3D convolutional layer, a

batch re-normalization layer, and an exponential linear unit (ELU) activation function. A skip connection is added before the last activation function. The fully connected

block is composed of a fully connected layer, an ELU activation function, a dropout layer, a layer concatenating additional co-variables, and a fully connected layer.

performed at random (with no guarantees that sex, age, and site
distributions were representative), we iterated this process 500
times and report the bootstrap estimate of the standard error
(SE). Similarly, we tested whether the MAE of ensemble learning
was significantly lower than that of the best algorithm.

Reducing Bias—Predictive Analytics Competition

2019 Challenge 2
We observed that scaling each age score using the median and
mean absolute deviation greatly reduced the bias, as defined
by the Spearman correlation between age and prediction error.
Thus, we transformed each score and combined them using
linear regression as described above (Figure 5).

Additional Experiments
Individual Performance of Each Algorithm
We used a 5-fold cross-validation design on the 2,640 PAC
individuals, to evaluate the stability of the prediction accuracy of
each algorithm. Folds were selected to be representative of the full
sample (Supplementary Table 3). Note that the split performed
for the PAC challenge (see Training and Validation Procedures)
is the first fold of the cross-validation. We used paired t-tests to
compare the performance of the algorithms.

Different Types of Model Combination: Linear

Regression vs. Random Forest
Ensemble methods combine several algorithms into one single
algorithm and are powerful techniques to improve predictive
performance (53). We explored different types of combinations:
(i) mean score for each individual; (ii) median score; (iii) linear
combination with weights estimated from linear regression; and
(iv) scores combination from random forest regression.

For linear regression and random forest, we trained the
ensemble algorithms on a random subset comprising half of
the hold-out sample (N ∼ 265) and calculated the MAE on the
other half. We repeated this process 500 times to get a bootstrap
estimate of the SE of the MAE, as well as to test differences
between ensemble learning and our best single algorithm. The
random forest regression was composed of 100 trees of maximum
depth 15 and was trained so as to minimize the MAE.

Combining Seven (Identical) Convolutional Neural

Networks or the Seven Best Epochs
We wanted to compare the ensemble prediction accuracy
achieved from our seven algorithms with the accuracy that may
be achieved from combining several predictions from the same
CNN architecture as well as from the seven best epochs of a single
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FIGURE 4 | Flowchart showing the components of the proposed Inception architecture. The network is composed of different blocks: a stem network followed by

two inception modules, a max pooling layer, five inception modules (two of them being connected to an auxiliary regression), a max pooling layer, two inception

modules, an average pooling layer, a dropout layer, and a fully connected layer.

CNN. We wanted to answer the question “Is ensemble learning
accuracy driven by the sheer number of scores combined?” and
its correlate “Is it better to combine different algorithms with
different underlying architectures and prediction error type?”We
chose to focus on the Inception V1 CNN, as it minimized the
MAE among the algorithms considered.

Influence of the Type of Brain Features on Prediction

Accuracy
We investigated the impact of the input features by training the
BLUP and SVMmodels on the gray matter maps, in replacement
of the vertex-wise surfaces used previously. We did not train
the deep learning algorithms on surface-based processed images,
as it is difficult to integrate the spatial relationship of the
vertices that compose a 2D surface folded into gyri and sulci. In
addition, we evaluated the impact of replacing BLUP and SVM
by their gray matter maps equivalent in ensemble learning, using
linear combination.

Sex, Age, and Site Bias
We studied the impact of sex, age, and site on the error (and
absolute error) of each algorithm trained the first fold of the
cross-validation design. We used, for each algorithm, a linear
mixed effect model, modeling age of the participants as a fixed

effect and sex and site as random effects. The impact of each
effect was evaluated using a log-likelihood ratio test. We used
Bonferroni correction to account for multiple comparisons.

RESULTS

Predictive Analytics Competition
Challenge Results
For the first challenge of minimizing the MAE, the deep
learning models performed significantly better than BLUP
or SVM (p-value < 3.1E−4, paired t-test) with a MAE
between 3.82 (Inception) and 4.18 years (six-layer CNN,
Table 1), compared with a MAE >4.90 years (BLUP-quantiles,
Table 1). Performance of the deep learning algorithms was
not significantly different from each other when accounting
for multiple testing (p > 0.027). All the models returned
biased predictions with rank correlations between age and
prediction error >0.24 (Table 1). Ensemble prediction yielded
lower MAE estimates (3.46 years, Table 1), which represented a
significant improvement over the Inception performance (mean
improvement 0.36 years, SE = 0.099 [bootstrap], paired t-test
p = 1.3E−4). The performance observed on the independent
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FIGURE 5 | Summary of the Predictive Analytics Competition (PAC) challenge experiments. We present the different data sources, algorithms, and ensemble

approaches used in this analysis. GM, gray matter; WM, white matter.

TABLE 1 | Mean absolute error (standard error) and Spearman correlation coefficient (ρ) between age and prediction error for each model on the validation set.

BLUP-mean BLUP-quantiles SVM 6-layer

CNN

Age spe.

6-layer

CNN

ResNet Inception

V1

Ensemble

prediction

PAC

results

First

challenge

MAE (SE) 5.32 (0.19) 4.90 (0.19) 5.31

(0.18)

4.18 (0.16) 4.01 (0.15) 4.02 (0.15) 3.82 (0.14) 3.46

(0.13)*

3.33

|ρ| 0.32 0.37 0.58 0.25 0.30 0.24 0.41 0.32 0.21

Second

challenge

MAE (SE) 6.15 (0.23) 5.96 (0.23) 6.14

(0.23)

5.27 (0.21) 5.17 (0.20) 5.25 (0.20) 4.97 (0.19) 4.69

(0.19)*

4.83

|ρ| 0.14 0.15 0.15 0.084 0.068 0.11 0.058 0.058 0.021

The standard error [SE = SD/sqrt(N)] reflects the uncertainty around the MAE estimate. A 95% confidence interval may be calculated as MAE ± 1.96*SE, though it (falsely) assumes

normality of the absolute error distribution. We performed ensemble prediction using linear combination of age predictors, with linear weights estimated via linear regression. SE of the

MAE for ensemble prediction were calculated by bootstrap.

*Indicates a significant reduction of MAE via ensemble learning compared with Inception alone (p < 0.05). PAC results were provided by the PAC team and estimated on participants

not available to the authors.

PAC sample (3.33 years, third best prediction) aligned with our
ensemble prediction estimate.

For the second challenge, we rescaled the predictions using the
median and the mean absolute deviation per site. This resulted in
an increased MAE of about 1 year but substantially decreased the

bias (Table 1). Again, ensemble learning resulted in a significant
improvement of the performance over that of Inception (mean
improvement 0.30, SE= 0.13, p= 0.010). We achieved a MAE of
4.83 years in the PAC test sample with a bias of ρ = 0.021 (sixth
best performance from six entries).

Frontiers in Psychiatry | www.frontiersin.org 7 December 2020 | Volume 11 | Article 593336

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Couvy-Duchesne et al. ARAMIS Contribution to PAC2019 Challenge

TABLE 2 | Mean absolute error (standard error) for each model and each fold (first challenge).

Individual algorithms Ensemble learning

BLUP-mean BLUP-quantiles SVM 6-layer CNN Age spe. 6-layer CNN ResNet Inception V1 LM RF Mean Median

Fold 1 5.32 (0.19) 4.90 (0.19) 5.31 (0.18) 4.18 (0.16) 4.01 (0.15) 4.02 (0.15) 3.82 (0.14) 3.46 (0.13)* 3.62 (0.15) 3.74 (0.13) 3.67 (0.14)

Fold 2 5.05 (0.18) 4.79 (0.19) 5.34 (0.18) 4.47 (0.15) 4.12 (0.13) 4.01 (0.14) 3.97 (0.15) 3.53 (0.13)* 3.60 (0.15)* 3.69 (0.13) 3.74 (0.13)

Fold 3 4.90 (0.18) 4.37 (0.16) 4.84 (0.17) 4.41 (0.16) 4.27 (0.15) 3.88 (0.14) 4.00 (0.16) 3.33 (0.13)* 3.46 (0.15)* 3.46 (0.12)* 3.45 (0.13)*

Fold 4 5.07 (0.18) 4.71 (0.18) 5.06 (0.18) 4.55 (0.17) 4.27 (0.16) 4.11 (0.15) 3.85 (0.15) 3.57 (0.13)* 3.72 (0.14) 3.68 (0.14) 3.74 (0.15)

Fold 5 5.22 (0.19) 4.69 (0.18) 5.20 (0.18) 4.02 (0.16) 3.89 (0.15) 3.99 (0.16) 3.75 (0.15) 3.34 (0.13)* 3.51 (0.14) 3.56 (0.13) 3.47 (0.13)

5-fold

combined

MAE

5.11 4.69 5.15 4.33 4.11 4.00 3.88 3.44 3.58 3.62 3.61

Fold 1 corresponds to the train-test split used in the Predictive Analytics Competition (PAC) challenge and presented in Table 1. LM (linear model), RF (random forest), mean, and

median age scores are the four methods considered for ensemble learning. The standard error [SE = SD/sqrt(N)] reflects the uncertainty around the MAE estimate. A 95% confidence

interval may be calculated as MAE ± 1.96 *SE, though it (falsely) assumes normality of the absolute error distribution. For the 5-fold combined MAE, we did not report the SE, as it is

notoriously biased downward (54) due to the overlap of the different training/test samples.

*Indicates a significant reduction of MAE via ensemble learning compared with Inception alone (p < 0.01, assuming five independent tests).

Additional Experiments
Effect of Train/Test Split
We sought to evaluate whether our conclusions were dependent
on the train/test split used in the previous section by performing
a 5-fold cross-validation experiment. In each fold, we found
nominal significant differences in MAE between BLUP/SVM and
ResNet (paired t-test, p < 5.5E−3) (Table 2). The difference
between BLUP/SVM and Inception V1 was significant in four of
the folds (p < 5.3E−5). Results were a lot more contrasted for
the differences between BLUP/SVM and the six-layer CNNs that
were significant in only 2- or 3-folds. Bias was greater than the
PAC threshold for challenge 2 (0.10) for all scores and folds (ρ
ranging from 0.15 to 0.53, Supplementary Table 9).

Strategies for Model Combination
In each of the 5-folds, the combined age score using linear
regression outperformed the prediction from Inception V1 (p
< 0.0022). Ensemble learning via random trees was significantly
better than Inception V1 alone for folds 2 and 3 only (p= 4.0E−3
and 3.4E−4). To note, the MAE achieved with random forest was
very close to the MAE obtained by taking the average or median
scores for each individual (Table 2). We could not conclude
about a significant difference between linear model combination
and random forest (p > 0.035).

When rescaling scores for the second challenge, we observed
a consistent increase in MAE, for all algorithms and folds
(Supplementary Table 10), though the bias was greatly reduced
and met the PAC challenge criteria (ρ < 0.10) in most
cases (Supplementary Table 11). Ensemble learning with linear
regression significantly improved the MAE in four of the folds
(p < 0.0038) and satisfied the low bias criteria in all cases
(ρ < 0.058, Supplementary Tables 10, 11). On the other hand,
random forest combination greatly reduced the MAE, compared
with linear combination (p< 1E−5), but always exceeded the low
bias threshold (ρ > 0.34, Supplementary Table 11).

Since linear model combination of scores appeared to
minimize MAE and preserve low bias, we plotted the linear
weights attributed to each algorithm, for each fold and bootstrap

iteration (Supplementary Figures 1, 2). We observed highly
variable weighting, dependent on the folds, as well as on the later
splits on which the linear coefficients were estimated. To note,
no algorithm consistently received a null weight that would be
suggestive of no contribution to the ensemble learning.

Ensemble Learning From Seven Inception V1, Seven

Best Epochs, and From All Age Scores
Instead of combining seven different algorithms, we evaluated
the combination (using linear regression) of seven Inception
V1 algorithms, as well as the seven best epochs of a single
Inception V1 optimization. Due to the computing resources
needed to optimize a deep learning algorithm, we only performed
this experiment on the first train/test fold (used in Table 1

for example).
The seven best epochs individually achievedMAE in the range

of 3.68–4.27, while the seven Inception V1 models predicted age
with a MAE between 3.52 and 3.89. Combining seven epochs
resulted in a MAE of 3.71 (SE = 0.13), while combining seven
Inception V1 achieved a MAE of 3.46 (SE = 0.13), which was
comparable with the performance obtained by combining seven
different algorithms (Table 1).

Further combining all scores (seven epochs, seven Inception
V1, and seven original scores) only resulted in a marginal
improvement of the age prediction: MAE = 3.41 (SE = 0.14,
p > 0.05).

Choice of the Type of Features
The lower performance of BLUP/SVM compared with deep
learning algorithms led us to test whether it could be attributed to
the input data, or the algorithms themselves. Thus, we retrained
BLUP and SVM on the same gray matter maps used by all the
deep learning algorithms. We found that for two of the folds,
BLUP-mean and SVM trained on gray matter maps resulted
in improved prediction, compared with the surface trained
equivalents. The improvement of BLUP-quantiles was significant
in three of the 5-folds (Table 3).
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Despite the reduction in MAE, BLUP-mean and SVM trained
on gray matter maps still performed worse than Inception V1 (p
< 0.0033, Table 3), though the difference between Inception V1
and BLUP-quantiles became non-significant in all folds (Table 3).

Including the gray matter map-based BLUP and SVM
predictions did not improve the performance of ensemble
learning over what has been reported above (Tables 2, 3).

Sex, Age, and Site Association With Prediction Error
Age correlated positively with prediction error (calculated as age
– predicted age) for all algorithms in the first train/test split
(Table 4). Thus, predicted age tended to underestimate the age of
older participants and overestimate age of younger individuals.
Such results align with the large rank bias reported in Tables 1, 2.
We did not observe a significant association of prediction error
with sex or site (Table 4).

We found the same pattern of association with absolute
error (p < 1.8E−4 with age), suggesting that older participants
contributed most to the MAE (Table 4).

Morphometricity of Age as Upper Bound of

Prediction Accuracy
From BLUP models, we estimated the total association between
age and the brain features. Morphometricity is expressed in

TABLE 3 | Mean absolute error (standard error) for the best linear unbiased

predictor (BLUP) and support vector machine (SVM) models trained on gray

matter maps for each fold.

BLUP-mean BLUP-quantiles SVM Ensemble learning

Fold 1 4.51 (0.16)†* 3.91 (0.14)† 4.64 (0.17)†* 3.39 (0.13)

Fold 2 4.45 (0.16)†* 4.06 (0.15)† 4.75 (0.16)†* 3.46 (0.13)

Fold 3 4.67 (0.17)* 4.02 (0.16) 4.62 (0.17)* 3.26 (0.13)

Fold 4 4.59 (0.16)* 4.16 (0.16)† 4.52 (0.16)* 3.55 (0.14)

Fold 5 4.86 (0.18)* 4.21 (0.17) 4.78 (0.17)* 3.35 (0.14)

5-fold MAE 4.61 4.07 4.66 3.42

The standard error [SE = SD/sqrt(N)] reflects the uncertainty around the mean absolute

error (MAE) estimate. A 95% confidence interval may be calculated as MAE ± 1.96 *SE,

though it (falsely) assumes normality of the absolute error distribution. For the 5-fold

combined MAE, we did not report the SE, as it is notoriously biased downward (54) due

to the overlap of the different training/test samples.
†
Algorithm trained on gray matter maps performs significantly better than the same

algorithm trained on surface-based vertices (p < 0.05/15).

*Algorithm trained on gray matter maps performs significantly worse than Inception V1

(p < 0.05/15). Ensemble learning was performed using linear regression and included

the seven algorithms considered in Tables 1, 2, in addition to the three introduced in

this section.

proportion of the variance (R2) of age; thus, it quantifies
how much of the differences in age in the sample may be
attributed/associated with variation in brain structure. With
surface-based processing (∼650,000 vertices), we estimated the
morphometricity to be R2 = 0.99 (SE = 0.052), while for
volume-based processing (∼480,000 voxels), it reached R2 = 0.97
(SE= 0.015).

DISCUSSION

Here, we describe the ensemble learning of seven different age
predictions from T1w MRI images, which led to a MAE of
3.33 years on an independent dataset, held by the organizers of
the PAC2019. From all worldwide competitors, our prediction
ranked third, though we only narrowly beat teams ranking fourth
(MAE = 3.33) and fifth (MAE = 3.37). To note, the gap was
more consequent with teams who ranked first (MAE = 2.90),
second (MAE = 3.09), or sixth (MAE = 3.55). In absence of
reported SE in the PAC results, we cannot conclude whether the
different prediction accuracies are statistically different from each
other. It is important to keep in mind that ranking of prediction
accuracy may be highly dependent on the metric chosen as well
as on the test data (55). Statistical testing can provide a confident
ranking of algorithms, and inclusion of other datasets is needed
to conclude about the generalizability (and performance) of the
prediction scores on samples with other demographics, MRI
machines, or patient groups for instance.

In this publication, we sought to detail our approach, facilitate
replication, and reuse of our code/results and also to identify
factors influencing the prediction accuracy we achieved. We
present analyses that we performed prior to the challenge closing
(that informed our method), as well as post-hoc analyses in which
we explored new avenues. More precisely, we evaluated the effect
on performance of (i) algorithm choice, (ii) ensemble learning
methods, (iii) feature input/data processing, (iv) number and
type of scores in ensemble learning, and (v) covariates such as
age, sex, and site. Lastly, we detail our approach for the second
PAC challenge (minimize MAE, while controlling bias) though
in much less detail as we came sixth (out of six entries) with a
MAE almost 2 years greater than the winner.

We found that the four deep learning algorithms (ResNet,
Inception V1, and custom six-layer CNN) outperformed (by
almost 1 year of MAE) simpler algorithms (BLUP and SVM) in
most train/test splits considered (Tables 1, 2), with the exception
of BLUP-quantiles trained on gray matter maps. We could not
conclude about a significant difference between the performance

TABLE 4 | p-values for the effect of age, site, and sex on prediction error for the seven models on fold 1.

BLUP-mean BLUP-quantiles SVM 6-layer CNN Age spe. 6-layer CNN ResNet Inception V1

Age 2.9E−10* 5.8E−13* 5.8E−46* 7.3E−10* 2.2E−13* 9.1E−05* 7.7E−20*

Site 3.7E−01 4.4E−02 4.5E−03 2.8E−02 4.3E−02 2.3E−02 5.0E−02

Sex 7.1E−02 1.4E−01 3.6E−02 1.0E+00 8.5E−01 1.0E+00 5.4E−01

*Significant after correction for multiple comparisons (i.e., p < 0.05/21 or p < 2.3E−3).
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of deep learning algorithms, though the size of our test sample
(∼530) limited our statistical power to detect small differences.

Ensemble learning with weights estimated via linear
regression led to a significant reduction of MAE of about 0.4
years (Table 2). Score combination using random forest also
outperformed the algorithm with minimal MAE (Inception V1),
but the result was somewhat dependent on the folds considered.
The difference between linear model and random forest was too
small to conclude about a significant difference (Table 2). The
weights given to each algorithm via linear regression were highly
dependent on the folds and iterations, which might be an artifact
of the large correlations between the scores. Nevertheless, few
weights were consistently set to 0 (across all folds and iterations),
suggesting that all seven algorithms contributed to the ensemble
learning (Supplementary Figures 1, 2). Our results align with
previous publications that highlighted the benefits of ensemble
learning, which combines different models (56) or different
data (57).

BLUP and SVM performed better (∼0.7 years’ progression
in MAE) when trained on gray matter maps (voxel-based
morphometry in gray matter) compared with surface-based
features (vertex-wise measurements of gray matter thickness
and surface area). Despite the improvement, the performance
of BLUP-mean and SVM was still significantly lower than
that of Inception V1. To note, the difference between BLUP-
quantiles and Inception V1 became non-significant. Here, we
compared two competing approaches of processing T1w MRIs,
implemented in two software suites [FreeSurfer (25) and SPM].
Each processing stream allows multiple user-defined options
(e.g., on registration, normalization, and templates) whose
effect on age prediction is not known. Importantly, the image
processing maximizing age prediction may not be the best suited
to predict another phenotype (e.g., disease status). Lastly, the
good performance of BLUP-median on gray matter maps raises
the question of cost-efficiency and updatability of prediction,
considering that deep learning models require about 24 h of
computing on a GPU, while BLUP only takes a few minutes on
a single CPU.

In addition, we found very similar performance of ensemble
prediction from our seven different algorithms compared with
that of seven independently trained Inception V1 scores.
We conclude that using a variety of algorithms may not
offer an advantage over using several (well-performing) ones.
Due to limited computing resources, we did not investigate
whether increasing the number of Inception V1 algorithms
further reduced the MAE, though our age prediction did not
progress when combining the 21 models estimated throughout
the analysis.

Finally, our predictions showed a large age bias:
overestimating age on younger participants and underestimating
it on older participants. We also identified older individuals
as main contributors of the MAE, suggesting much is to be
gained by improving the performance on this sub-population.
Our attempt to re-train part of the network on adults above 40
years of age (age specialized six-layer CNN) was not conclusive
in improving the age prediction accuracy. Other avenues for
research include enriching the training sample in specific age
groups or demographics that show a lower performance. We did

not find error or absolute error to be associated with sex or site,
despite differences in global head size, or site differences in term
of scanners, demographics, and image qualities. An investigation
on a larger dataset may be more powered in detecting subgroups
with larger MAE. To finish on bias, we found that rescaling the
scores using the median and median absolute deviation (per
site) could reduce drastically the bias but resulted in an increase
in MAE (Table 1 and Supplementary Tables 10, 11). Low bias
age predictors avoid subsequent association analyses (e.g., in
case–control samples) to be confounded by age, though it may
be safer to always control for age in PAD analyses (15).

We did not systematically investigate the use of white matter
maps to improve prediction accuracy. Only the six-layer CNN
was trained on both gray matter and white matter maps, and it
did not outperform the other algorithms. In addition, our 80:20
split design allowed for (well-powered) statistical testing and
weighted estimation for ensemble learning; however, it may not
be the optimal split to minimize the MAE. Overall, we estimated
the theoretical upper bound of linear prediction to be R2 =

0.97 (SE = 0.015), though we do not know the corresponding
MAE. In comparison, our best BLUP score (Table 3) achieved
R2 = 0.94, and the ensemble learning model that minimized the
MAE (Table 1) achieved a prediction R2 of 0.96. This suggests
that the prediction accuracy we report here might be close to
the theoretical maximum achievable from linear predictors, even
though this claim is weakened by the fact that prediction R2 is
not a sufficient statistic here as age was not normally distributed
(thus, it might be inflated). Importantly, the high prediction
accuracy we report does not ensure that PAD best discriminates
cases from controls in a clinical sample (23).

More generally, prediction accuracy is not a linear function
of training sample size [see (58)], and we can expect further
significant improvement in age prediction to require much larger
sample sizes. We would also like to point out that reducing
the MAE below 1 year is unlikely, when training algorithms on
rounded age, which was the case here. Finally, PAC participants
were described as healthy individuals, though screening of all
brain related disorders is impossible, which raises the question of
unknown diagnosis for participants with large prediction error.

In conclusion, we achieved a MAE of 3.33 years to predict age
from T1w MRI. We identified several contributors to prediction
accuracy: algorithm choices, image processing options, and
ensemble learning.

URLS

ENIGMA protocol for subcortical processing: http://enigma.ini.
usc.edu/protocols/imaging-protocols/.

OSCA software: http://cnsgenomics.com/software/osca/#
Overview.
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