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When predicting a certain subject-level variable (e.g., age in years) from measured

biological data (e.g., structural MRI scans), the decoding algorithm does not always

preserve the distribution of the variable to predict. In such a situation, distributional

transformation (DT), i.e., mapping the predicted values to the variable’s distribution in

the training data, might improve decoding accuracy. Here, we tested the potential of

DT within the 2019 Predictive Analytics Competition (PAC) which aimed at predicting

chronological age of adult human subjects from structural MRI data. In a low-dimensional

setting, i.e., with less features than observations, we applied multiple linear regression,

support vector regression and deep neural networks for out-of-sample prediction of

subject age. We found that (i) when the number of features is low, nomethod outperforms

linear regression; and (ii) except when using deep regression, distributional transformation

increases decoding performance, reducing the mean absolute error (MAE) by about half

a year. We conclude that DT can be advantageous when predicting variables that are

non-controlled, but have an underlying distribution in healthy or diseased populations.

Keywords: chronological age, structural MRI, prediction, decoding, machine learning, structural neuroimaging,

distributional transformation, continuous variables

1. INTRODUCTION

In recent years, probabilistic modeling (1) and machine learning (2) have been increasingly applied
to psychiatric populations and problems, leading to the creation of a whole new field of research
called “Computational Psychiatry” (3).

The prediction of human age from biological data holds a large promise for computational
psychiatry, because biologically predicted age may serve as an important biomarker for a number
of human phenotypes (4). For example, brain-predicted age may be an indicator for the memory
decline associated with neurodegenerative disorders such as Alzheimer’s disease [AD; (5)].

The 2019 Predictive Analytics Competition1 (PAC), held before the 25th Annual Meeting of
the Organization for Human Brain Mapping2 (OHBM), addressed this research question by asking
teams to predict chronological age of human subjects from raw or preprocessed structural magnetic
resonance imaging (sMRI) data using a self-chosen machine learning (ML) approach.

1https://www.photon-ai.com/pac2019
2https://github.com/ohbm/OpenScienceRoom2019/issues/10
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Because brain structure changes significantly when becoming
older, age can be predicted from sMRI with considerable
precision (4), usually quantified as mean absolute error (MAE).
Brain-predicted age difference (BPAD), i.e., the difference
between age predicted from sMRI and actual age, can either be
a sign of “accelerated” (BPAD > 0) or “decelerated” (BPAD
< 0) brain aging. Accelerated brain aging has been associated
with lower levels of education and physical exercise (6), less
meditation (7), and an increasedmortality risk, among others (8).

While early attempts at predicting human age from functional
MRI (9) have used decoding algorithms such as support
vector machines (SVM), more recent ML-based decoding
from structural MRI has focused on deep learning (10),
specifically using convolutional neural networks (CNN) to
predict chronological age (4, 8, 11), AD disease state (5) or even
body mass index (12) from anatomical brain data.

With a complex series of linear and non-linear optimizations
involved in those decoding algorithms, it is clear that the
distribution of predicted values of the target variable (e.g.,
chronological age) will not be exactly identical to the distribution
of those values learned from (i.e., the training data). Here, we
introduce distributional transformation (DT), a post-processing
method for ML-based decoding, which allows to circumvent this
problem by matching predictions to the training distribution.

Applied to out-of-sample ML prediction, DT operates by
transforming the distribution of predicted values into the
distribution of learned values of the variable of interest. In this
way, prediction of the target variable (here: chronological age) is
not only achieved by reconstructing it from the test set features
(here: structural MRI), but additionally aided by looking at the
training set samples, such that predictions are more likely to be
in a realistic range for that particular target variable.

In this study, we apply DT to PAC 2019 data, while predicting
chronological age using either multiple linear regression (GLM),
support vector regression (SVR), or deep neural networks
(DNN). In summary, we find that (i) multiple linear regression
outperforms all other methods in a low-dimensional feature
space and (ii) distributional transformation reduces prediction
error for linear regression and SVR, but not DNN regression.

2. METHODS

2.1. Structural MRI Data
Data supplied within the 2019 Predictive Analysis Competition
(PAC) included structural scans from n1 = 2, 640 training set
and n2 = 660 validation set subjects which were all healthy
adults. The analyses reported here exclusively used the pre-
processed gray matter (GM) and white matter (WM) density
images supplied during the competition [for pre-processing
details, see (4)]. Covariates included subjects’ gender and site
of image acquisition; data were acquired at 17 different sites.
Subjects’ age in years was supplied for the training set (2640
values), but not shared and only after the competition released for
the validation set (660 values). The ratio of training to validation
set size is 4:1 (see Table 1).

TABLE 1 | Data dimensions and cross-validation.

Out-of-sample

prediction

k-fold

cross-validation
Number of subjects

Training
Training 2376

Testing 264

Validation Reporting 660

During the competition (second column), the model was developed using 10-fold cross-

validation within the training data, before performance was reported on the withheld data

set. In the context of this paper (first column), age is predicted out-of-sample in the

validation data without cross-validation.

2.2. Feature Extraction
The Automated Anatomical Labeling [AAL; (13)] atlas
parcellates the human brain into 90 cortical and 26 cerebellar
regions. We used the AAL label image (supplied with MRIcroN3

and also available from the TellMe package4) and resliced it
to the first pre-processed GM image in order to match image
dimensions and voxel size. We then extracted average GM
and WM density from all 116 regions from the pre-processed
structural images for each subject.

Acquisition site information was transformed into 17
indicator regressors and subject gender information was
transformed into a+1/−1 regressor. Together with the extracted
GM and WM densities, this constituted design matrices for
training and validation data having p = 2× 116+ 17+ 1 = 250
columns (see Figure 1).

2.3. Decoding Algorithms
Let y1 and y2 be the n1×1 and n2×1 training and validation data
vector and let X1 and X2 be the n1 × p and n2 × p training and
validation design matrix.

2.3.1. Multiple Linear Regression
Multiple linear regression proceeds by estimating regression
coefficients via ordinary least squares (OLS) from the
training data

β̂1 = (XT
1 X1)

−1XT
1 y1 (1)

and generating predictions by multiplying the design matrix with
estimated regression coefficients in the validation data,

ŷ2 = f̂1(X2) = X2β̂1 . (2)

2.3.2. Support Vector Regression
Support vector regression (SVR) was implemented in MATLAB
using fitrsvm. A support vector machine was calibrated
using the training data and then used to predict age in the
validation data:

ĝ1 ← fitrsvm(X1, y1)

ŷ2 = ĝ1(X2)
(3)

3https://people.cas.sc.edu/rorden/mricron/install.html
4https://github.com/JoramSoch/TellMe
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FIGURE 1 | Data vector (left) and design matrix (right) for training set (top) and validation set (bottom). In the design matrices, rows correspond to subjects and

columns correspond to brain regions and covariates. Regressors specifying gray matter (GM) and white matter (WM) densities as well as site covariates are separated

by vertical black lines.

2.3.3. Deep Neural Network Regression
Deep neural network (DNN) regression was implemented
in MATLAB using trainNetwork. Before training, non-
indicator regressors in X1 and X2 were z-scored, i.e., mean-
subtracted and divided by standard deviation:

x∗1j =
x1j − x̄1j

σ̂1j
, x∗2j =

x2j − x̄2j

σ̂2j
, j = 1, . . . , p . (4)

The network consisted of six layers (see Table 2) following a
MathWorks tutorial5 on deep learning for linear regression and
was solved in training using the Adam optimizer. The number
of epochs was set to 100, with a mini batch size of 20, an initial
learning rate of 0.01, and a gradient threshold of 1. Similarly to
SVR, training and prediction proceeded as follows:

ĥ1 ← trainNetwork(X∗1 , y1,layers,options)

ŷ2 = ĥ1(X
∗
2 )

(5)

5https://de.mathworks.com/help/deeplearning/ug/sequence-to-sequence-

regression-using-deep-learning.html, accessible in MATLAB as openExample
(’nnet/SequencetoSequenceRegressionUsingDeepLearning
Example’)

TABLE 2 | Layers of the deep neural network.

MATLAB command Description Parameters

sequenceInputLayer Inputs 1D data into

network

250 features

lstmLayer Long short-term

memory (LSTM) layer;

learns long-range

dependencies between

features

125 hidden units

fullyConnectedLayer Multiplies with weight

matrix and adds bias

50 output units

dropoutLayer Sets elements to zero

with given probability

p = 0.5

fullyConnectedLayer Multiplies with weight

matrix and adds bias

1 output unit

regressionLayer Outputs scalar

prediction from network

−

The network employed for DNN regression consisted of six layers which were designated

for using deep learning on regression problems.

2.4. Distributional Transformation
Because the distribution of predicted age values will not exactly
match the distribution of validation set age and likely also
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deviates from the distribution of training set age, one can
apply an additional distributional transformation (DT) step
after prediction.

DT uses cumulative distribution functions6 (CDFs). Let X
and Y be two random variables. Then, X is distributionally
transformed to Y by replacing each observation of X by that
value of Y which corresponds to the same quantile as the original
value, i.e.,

x̃ = F−1Y

(

FX(x)
)

(6)

where FX is the CDF of X and F−1Y is the inverse CDF of Y . Note
that DT preserves the complete ordering of X, but changes its
CDF to that of Y (see Appendix A).

Here, we apply DT to the predicted ages ŷ2, with the goal
of mapping them to the distribution of the training ages y1
by calculating

ỹ2i = F−11

(

F̂2(ŷ2i)
)

, i = 1, . . . , n2 (7)

where F̂2 is the empirical CDF of ŷ2 and F−11 is the inverse
empirical CDF of y1, obtained in MATLAB using ecdf (see
Appendix B).

After the transformation, the ranks of all predictions ŷ2i are
still the same, but the empirical CDF of ỹ2 matches that of y1. In
other words, we receive something that looks like the training age
values in terms of age distribution, but is still predicted from the
validation brain data.

The rationale behind this is that, if training and validation
set are unbiased, representative and unsystematic samples from
the underlying population, then sampling from the training data
should in itself be a good prediction strategy for the validation
data (14). For example, because it can be suspected that mean
age has been controlled for when dividing into training and
validation data, the age distributions in training and validation
data should be close to each other.

2.5. Performance Assessment
After generating predictions for the validation set, we assessed
decoding accuracy using multiple measures of correlation (see
Table 3) between predicted ages ŷ2 and actual ages y2. During
the PAC 2019, Objective 1 was to minimize the mean absolute
error. Objective 2 was to minimize Spearman’s rank correlation
coefficient between y2 and (y2 − ŷ2), as it is desirable that the
brain-predicted age difference (BPAD) is not correlated with age.
After assessing performance in the validation set, we conducted
several statistical analyses.

2.6. Statistical Analyses
First, we submitted absolute errors (AE) between actual and
predicted age to Wilcoxon signed-rank tests7 in order to test for
significant reduction of the MAE between decoding algorithms
(linear regression, SVR, DNN) and predictionmethods (with and
without DT). This non-parametric test was chosen due to the
presumably non-normal distribution of absolute errors.

6https://statproofbook.github.io/D/cdf
7https://de.mathworks.com/help/stats/signrank.html

TABLE 3 | Measures of prediction performance.

Measure Description

R2 Coefficient of determination (“R-squared”)

R2
adj Adjusted coefficient of determination

r Pearson correlation coefficient

rSC Spearman’s rank correlation coefficient

MAE Mean absolute error (Objective 1)

RMSE Root mean squared error

Obj. 2 Objective 2 from PAC 2019

For PAC 2019 Objectives, see main text.

Second, we calculated the empirical Kullback–Leibler (KL)
divergence8 of the distribution of actual ages from the
distributions of predicted ages. The KL divergence is a non-
negative distance measure for probability distributions; the more
similar two distributions are, the closer it is to zero. Thus,
we expect substantial reductions of the KL divergence after
applying DT.

Third, we ran two-sample Kolmogorov–Smirnov (KS) tests9

between predicted age values and validation set ages, against
the null hypothesis that predicted values and validation ages are
from the same continuous distribution. Consequently, similarly
to the KL divergence, we expect less significant or non-significant
results from the KS test after applying DT.

Finally, for purely illustrative purposes, we investigated the
influence of model parameters for the most successful method
of age prediction (linear regression with DT). To this end,
we concatenated training and validation data (because no out-
of-sample testing was needed for this analysis) and calculated
parameter estimates for regression coefficients and noise variance

β̂ = (XTX)−1XTy

σ̂ 2 =
1

n− p
(y− Xβ̂)T(y− Xβ̂)

(8)

which were then used to calculate standard error and confidence
interval for each estimated model parameter [(15, Chapter 7,
Equation 42; Chapter 8, Equation 9)]

SE(β̂j) =
√

σ̂ 2cTj (X
TX)−1cj

CI1−α(β̂j) =
[

β̂j − SE(β̂j) · z1− α
2
, β̂j + SE(β̂j) · z1− α

2

] (9)

where cj is a contrast vector of only zeros except for a single one
in j-th position (i.e., testing βj against 0), z1−p is the (1 − p)-
quantile from the standard normal distribution (“z-score”) and
the confidence level was set to (1 − α) = 90% (such that
z1− α

2
= 1.645).

The complete data analysis as well as resulting decoding
accuracies can be reproduced using the contents of a GitHub
repository (see Data Availability Statement).

8https://statproofbook.github.io/D/kl
9https://de.mathworks.com/help/stats/kstest2.html
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FIGURE 2 | Predicted vs. actual age for validation set subjects. Solid black lines denote the identity function and dashed black lines are regression lines. Also reported

are correlation coefficients (r) and mean absolute errors (MAE) for each analysis (see Figure 3). GLM, multiple linear regression; SVR, support vector regression; DNN,

deep neural network regression; DT, distributional transformation.

3. RESULTS

3.1. Influence of Decoding Algorithm
Qualitatively, prediction performance can be assessed via
scatterplots of predicted age against actual age in the validation
set (see Figure 2). Quantitatively, the ranking is similar across all
measures of correlation (see Figure 3): multiple linear regression
performs best (r = 0.91, MAE = 5.07 yrs), but only mildly
outperforms deep neural network regression (r = 0.89, MAE
= 5.18 yrs) and strongly outperforms support vector regression
(r = 0.83, MAE = 6.82 yrs). This is true for measures which are
to be maximized (R2, R2

adj
, r, rSC) as well as for measures which

are to be minimized (MAE, RMSE, Obj. 2). Wilcoxon signed-
rank tests indicated significantly lower absolute errors for linear
regression, except when compared to DNN without applying DT
(see Table 4).

3.2. Influence of Distributional
Transformation
When comparing predicted against actual age, one can see that
SVR and DNN predictions deviate quite some amount from
the actual distribution (see Figure 2, top-middle and top-right),
especially by not predicting very high ages [SVR: max(ŷ2) =

71.25 yrs; DNN: max(ŷ2) = 75.68 yrs], whereas linear regression
creates a more homogeneous picture (see Figure 2, top-left), but
also predicts very low ages [min(ŷ2) = 1.06 yrs].

DT improves the decoding accuracy of linear regression
(MAE: 5.07 → 4.58 yrs) and SVR (MAE: 6.82 → 6.11 yrs),
reducing their MAE by about half a year. For DNN, the error
actually goes up (MAE: 5.18 → 5.42 yrs). Similar results are
observed when considering other measures. Wilcoxon signed-
rank tests indicated significantly lower absolute errors when
applying DT after linear regression and SVR and significantly
higher absolute errors when applying DT after DNN regression
(see Table 4).

DT especially benefits Objective 2 of PAC 2019, as the
Spearman correlation of brain-predicted age difference with
age itself goes down considerably for all decoding algorithms
when applying DT (see Figure 3, right), thus increasing the
independence of prediction error from predicted variable.

When not applying DT (see Figure 4, top row), DNN yields
the smallest KL divergence (KL = 0.073), with predictions almost
being in the correct range (17 ≤ y2 ≤ 89), whereas linear
regression achieves lower correspondence and SVR suffers from
making a lot medium-age predictions (40 ≤ ŷ2 ≤ 60) and
there not being a lot middle-aged subjects in the training and
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FIGURE 3 | Prediction performance across models, methods and measures. For each performance measure, decoding accuracy is given for multiple linear regression

(green), support vector regression (red), and deep neural network regression (blue), with and without distributional transformation (DT). For abbreviations, see Table 3.

TABLE 4 | Prediction performance across models and methods.

Statistic Method GLM SVR DNN

Predicition performance
Without DT r = 0.91,MAE = 5.07 r = 0.83,MAE = 6.82 r = 0.90,MAE = 5.18

With DT r = 0.93,MAE = 4.58 r = 0.86,MAE = 6.11 r = 0.90,MAE = 5.42

Comparison of models
Without DT – z = −7.44,p < 0.001 z = 0.23,p = 0.817

With DT – z = −5.95,p < 0.001 z = −4.12,p < 0.001

Comparison of methods
With DT vs.

Without DT
z = −4.90,p < 0.001 z = −4.78,p < 0.001 z = 4.04,p < 0.001

The first row lists performance measures for three decoding algorithms (GLM, SVR, DNN) and two prediction methods (without DT, with DT). The second row reports results from

Wilcoxon signed-rank tests comparing GLM against SVR and DNN (thus no entries in the GLM column). The third row reports results from Wilcoxon signed-rank tests comparing

each decoding algorithm with and without DT. Negative z-values indicate significantly lower absolute errors for GLM (second row) or DT (third row), respectively. GLM, multiple linear

regression; SVR, support vector regression; DNN, deep neural network regression; DT, distributional transformation.

validation sample. When applying DT (see Figure 4, middle
row), all methods give rise to the same histogram of predicted
ages and have the same minimally possible distance to the
actual distribution (KL = 0.027). Still, despite having the same
distribution, prediction performance differs between methods
(see Figure 3).

These findings are also reflected in results from KS tests
which indicate significant differences of actual and predicted
age distributions before (see Figure 4, top row), but not after
(see Figure 4, middle row) DT was applied to predicted age
values. Moreover, it can be seen in the graphical display of the

distributional transformations themselves (see Figure 4, bottom
row) which deviate stronger from the diagonal line for higher KL
divergences before application of DT (see Figure 4).

3.3. Influence of Regression Coefficients
In order to see which features aided successful prediction of
age when using multiple linear regression, we report parameter
estimates and compute confidence intervals (see Figure 5). These
results show that (i) there was no effect of gender on age,
putatively because gender was controlled when splitting the data;
(ii) there were only mild site effects, putatively because the whole
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FIGURE 4 | Empirical distributions of actual age (yellow), predicted age (top) and transformed age (middle). Each panel shows relative frequencies, i.e., number of

occurrences divided by total number of subjects. The applied distributional transformation is shown for each decoding algorithm (bottom), with the diagonal line

denoting the identity function. The empirical KL divergence was always computed relative to the validation age distribution (middle row, left), thus this distribution has

KL = 0. Also reported are statistics from a two-sample Kolmogorov–Smirnov test between predicted values and validation ages, thus D = 0 and p = 1 for validation

set age. GLM, multiple linear regression; SVR, support vector regression; DNN, deep neural network regression; DT, distributional transformation; KL, Kullback–Leibler

divergence.

age range was sampled at each site; and (iii) regional GM and
WM densities both contributed to the predictions, as variables
from both groups have significant effects on subject age (see
Figure 5).

4. DISCUSSION

We have applied distributional transformation (DT), a post-
processing method for prediction analyses based on machine
learning (ML), to predict chronological age from structural MRI
scans in a very large sample of healthy adults (4). By using DT,
we were able to significantly reduce the mean absolute error
(MAE) of linear regression and support vector regression, but not
deep regression.

4.1. Distributional Transformation
DT can be particularly advantageous when predicting variables
which are hard to control experimentally (esp. biological
phenotypes), but the distribution of which is known through the
availability of training data. The rationale behind distributional
transformation for ML-based prediction is simple:

1. A lot of target variables have a natural range into which their
values must fall:

(a) Human age cannot be smaller than zero (or at least, smaller
than −9 months), is rarely larger than 100 years and has
thus far not exceeded 122 years.

(b) Intelligence quotients (IQ) are (by construction) normally
distributed with mean 100 and standard deviation 15.

(c) Physical parameters such as weight and height fall into
typical ranges differing by gender and age.

(d) Probabilities and frequencies, e.g., proportions of correct
responses, are bound to the interval [0, 1].

2. When associations between target variable and feature
space are learned by sending training samples through a
complex machinery of linear and non-linear optimizations,
some test set predictions will likely be outside these
areas, thereby violating the natural range of the
target variable.

3. Distributional transformation brings the predictions back
into the natural range by putting them in reference to the
training set samples, but preserving the ranks obtained when
reconstructing from the test set features.
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FIGURE 5 | Parameter estimates and confidence intervals from linear regression, obtained when combining training and validation samples into one data set. For

each regressor, the estimated coefficient is plotted as a bar and a 90% confidence interval is reported as well. Model parameters are also reported as being

significantly different from zero (*p < 0.05; **p < 0.001; ***p < 0.05/250).

The extent to which this transformation will work naturally
depends on how precise the cumulative distribution functions of
training samples and predicted values can be estimated. Generally
speaking, those estimates will be more precise, the more samples
are available to generate them.

Note that DT assumes independent subsets and identical
distributions. This means, (i) training and validation set
must be independent from each other in order not to
introduce dependencies between data used for training an
algorithm and data used for reporting its performance; and
(ii) training and validation samples must be drawn from
the same underlying distribution in order to justify the
assumption that they have the same cumulative distribution
function. The first requirement is usually met when samples
are independent from each other (e.g., subjects); the second
requirement is usually met when the variable of interest (e.g.,
age) does not influence whether samples are in the training or
validation set.

With the present data set, we were able to show that
DT improves age prediction from structural MRI using some
methods (i.e., linear regression or SVR), reducing the MAE
by about half year (see Figure 2, left and middle). Notably,
DT does not increase prediction precision when the decoding
algorithm (e.g., DNN regression) generates test set predictions

that already have a similar distribution as the training set
samples. This can also be seen from the fact that DT does not
substantially change the distribution of DNN predictions (see
Figure 4, right) which is in clear contrast to linear regression
and SVR.

It is also noteworthy that DT substantially reduced the
correlation between brain-predicted age difference (BPAD) and
actual age (see Figure 3, right). This is a highly desirable property,
because it means that the prediction error is less dependent on
subjects’ age and prediction tends to work as good for a 20-
year-old as it works for an 80-year-old adult—which is why
this quantity was an objective in the PAC 2019 (see section 2.5)
and this finding makes our work complementary to other
approaches attempting to reduce bias in brain age estimation
(8, 16).

Our explanation for the observed reduction is that DT
distributes predicted values more evenly across the age
spectrum, thereby avoiding negative prediction errors for
older subjects (not predicted as being old) and positive
prediction errors for younger subjects (not predicted as being
young)—a phenomenon commonly observed [see e.g., (16),
Figure 1]. This is also compatible with the fact that linear
regression covered the age range more broadly, especially for
old ages (see Figure 2, left and Figure 4, top), and achieved
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the lowest Spearman correlation coefficient with and without
applying DT.

4.2. Limitations
The limitations of our study are three-fold:

• First, we were operating in a low-dimensional setting with
fewer features than observations (here: n = 2640 > 250 = p).
Our analyses therefore do not show that DT also improves
decoding accuracy in high-dimensional settings (where n < p)
such as decoding from voxel-wise structural data. Previous
studies suggest that DNNs outperform simpler methods in
this regime (4, 10), but this does not preclude that DT further
improves accuracy of CNN predictions.
• Second, we were performing feature extraction using an a

priori selected brain atlas (here: by extracting from AAL
regions). Our analyses therefore do not show that DT also
improves decoding accuracy under other feature extraction
methods or after feature dimensionality reduction. The
results reported in this study suggest that DT works well
with region-based feature extraction and relatively simple
decoding algorithms (linear regression, SVR), but that does
not preclude that DT also improves prediction after voxel-
based feature extraction.
• Third, we were exclusively analyzing data from healthy

subjects (here: by using PAC 2019 data). Our results
therefore do not apply to clinically relevant groups such as
subjects suffering from Alzheimer’s disease (AD) or mild
cognitive impairment (MCI). Because structural MRI data
contain signatures of chronological age and disease status
in patients as well (5), we expect DT to also show its
merits in those clinical contexts – provided that training
and validation set constitute representative samples from the
underlying population.

5. CONCLUSION

Our results suggest that, when combining distributional
transformation with relatively simple decoding algorithms (e.g.,
linear regression or SVR), predicting chronological age from
structural MRI can reach acceptable decoding accuracies in short
time. We have provided an algorithm for DT (see Appendix)
that can be easily added as a post-processing step to ML-based
prediction analyses. Future studies may investigate whether the

DT methodology might also be beneficial in other areas of
computational psychiatry than brain age prediction.
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APPENDIX

A. Proof of Distributional Transformation
Let X and Y be two random variables. Then, X is distributionally
transformed to Y by replacing each observation ofX by that value
of Y which corresponds to the same quantile as the original value
(see section 2.4), i.e.,

x̃ = F−1Y

(

FX(x)
)

. (A.1)

where FX(x) is the cumulative distribution function (CDF) of X
and F−1Y (y) is the inverse CDF of Y . Consequently, the CDF of X̃
follows as

FX̃(y) = Pr(x̃ ≤ y)

= Pr
(

F−1Y

(

FX(x)
)

≤ y
)

= Pr
(

FX(x) ≤ FY (y)
)

= Pr
(

x ≤ F−1X

(

FY (y)
))

= FX
(

F−1X

(

FY (y)
))

= FY (y)

(A.2)

which shows that X̃ and Y have the same CDF and are thus
identically distributed.

B. Code for Distributional Transformation
The following code distributionally transforms x to y in
MATLAB:

01 function xt = MD_trans_dist(x, y)
02 % _
03 % Distributional Transformation
04 % FORMAT xt = MD_trans_dist(x, y)
05 % x - source data
06 % y - reference data
07 % xt - transformed data
08
09 % calculate CDFs
10 [f1, x1] = ecdf(x);
11 [f2, x2] = ecdf(y);
12
13 % transform x
14 xt = zeros(size(x));
15 for i = 1:numel(x)
16 j1 = find(x1==x(i));
17 j1 = j1(end);
18 [m, j2] = min(abs(f2-f1(j1)));
19 xt(i) = x2(j2);
20 end;
21 clear m j1 j2
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