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Brain age prediction from brain MRI scans not only helps improve brain ageing modelling

generally, but also provides benchmarks for predictive analysis methods. Brain-age delta,

which is the difference between a subject’s predicted age and true age, has become a

meaningful biomarker for the health of the brain. Here, we report the details of our brain

age prediction models and results in the Predictive Analysis Challenge 2019. The aim of

the challenge was to use T1-weighted brain MRIs to predict a subject’s age in multicentre

datasets. We apply a lightweight deep convolutional neural network architecture, Simple

Fully Convolutional Neural Network (SFCN), and combined several techniques including

data augmentation, transfer learning, model ensemble, and bias correction for brain age

prediction. The model achieved first place in both of the two objectives in the PAC 2019

brain age prediction challenge: Mean absolute error (MAE) = 2.90 years without bias

removal (Second Place = 3.09 yrs; Third Place = 3.33 yrs), and MAE = 2.95 years with

bias removal, leading by a largemargin (Second Place= 3.80 yrs; Third Place= 3.92 yrs).

Keywords: predictive analysis, big data, deep learning, convolution neural network, brain age prediction, brain

imaging

INTRODUCTION

Predictive analysis with data-driven machine learning algorithms brings huge promise in
neuroimaging and neuroscience research. Predictive analysis can not only help disease diagnosis,
such as Alzheimer’s (1), Autism (2), ADHD (3) and schizophrenia (4), but also helps in formulating
new hypotheses (5) and identifying new biomarkers (6). Yet, the predictive analysis paradigm
brings new challenges. First, a fair way to compare predictive analysis models is needed. In
predictive analysis, it is common practise to build models in a training set, and then apply
the models to a test set (7, 8). It is important that no test data is used for model training or
hyperparameter tuning (e.g., learning rate for gradient decent optimisations, number of layers in
convnets) and to report the result objectively (9) and avoid accidental data leakage (10). Second,
data is usually scarce for many diseases so that training a large deep learning model in such modest
datasets is still hard (11).

Brain ageing study is a recent example of the predictive analysis paradigm (12–19). Studies
showed that individuals’ chronological age can be predicted accurately from brain MRI scans (14).
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Brain age delta, the difference of a subject’s predicted (brain) age
and chronological age, is linked with a variety of biological factors
within the healthy population (20), and group differences can be
found in disease populations (21, 22). Yet, accurate prediction of
a subject’s age in healthy population is still a challenging task.

To tackle these challenges, a benchmarking platform is needed
to objectively evaluate the models and strategies. Competitions
have been seen in the field of computer vision [e.g., ImageNet
(23)] and proved to be a valuable vehicle for pushing AI
technology (9). In the field of neuroimaging, the Predictive
Analysis Challenge (PAC) 2019 for brain age prediction1 provides
such opportunities for participants to train machine learning
methods, and then objectively evaluate the models in a test
dataset whose labels are hidden from the participants. PAC 2019
sets two objectives for brain age predictions: (1) to achieve
the most accurate age prediction from brain structural MRI
scans, and (2) to achieve the best accuracy while keeping the
correlation between the prediction error and the ground truth age
sufficiently small.

Our team “BrainAgeDifference” achieved the first places
in both two objectives among 79 participating teams. Our
method is largely based on our previous work (24), with
adaptations made for the challenge. In this report, we will
provide a detailed description of our methods for PAC
2019, including the lightweight deep convnet architecture -
Simple Fully Convolutional Neural Network (SFCN), and the
combined techniques including data augmentation, transfer
learning, model ensemble, and bias correction. We find that the
lightweight model, which has achieved the state-of-the-art results
in UK Biobank, works well in the multi-centre PAC 2019 dataset
with a slightly adaptation in hyperparameters. SFCN pretrained
on UK Biobank data achieves better single model performance
than random initialised models in the PAC 2019 dataset.
In addition, model ensemble with different T1-image derived
maps, and different initializations, and training/validation data
splits are important to achieve the best performance for
the competition.

DATASETS AND PREPROCESSING

PAC 2019
The Predictive Analytic Challenge (PAC) 2019 was to predict
age from brain MRI scans. The goal of the challenge includes
two parts: (1) to achieve the most accurate age prediction, as
measured by mean absolute error (MAE), and (2) to achieve
the best MAE while keeping the Spearman correlation r-value
between the prediction error (brain age delta) and the actual
age below 0.1 (|r| < 0.1). The dataset consists of both label-
known training/validation dataset (2,638 subjects in total) and
a “true” test set of 660 subjects whose labels are unknown to
the competition participants. The participants had a one-time
opportunity to upload their predictions in the test set to the
competition server for each objective, and the MAE and the
Spearman’s r-value were evaluated automatically. The subjects

1https://web.archive.org/web/20200214101600/https://www.photon-ai.com/

pac2019

are from 17 different sites. Most of the data is based on (14) and
a few new sites were added by the organisers, including MRI data
from both 1.5 and 3 T scanners. The training set and the test set
have the same age and site distribution.

PAC 2019 organisers provide three version of MRI data: (a)
raw T1 brain MRI scans, (b) white matter volume segmentation
(WM), and (c) grey matter volume (GM) segmentation derived
from T1 data. We use all three versions to develop deep learning
models. We further preprocess the raw T1 images using FSL (25)
(command fsl_anat) to derive two different pseudo-modalities:
one is brain linearly registered to standard 1mm MNI space
(by FLIRT), and the other is brain non-linearly registered to
standard 1mm MNI space (by FNIRT). We use all the four
pseudo-modalities to develop the convnet models. WM and GM
segmentations are in 1.5mm MNI space as provided by the
PAC 2019 organisers, and the preprocessing pipeline is described
in (15).

For linearly and non-linearly registered modalities, the input
images are cropped to retain the central 160× 192× 160 voxels,
which is the same as what we had done with UK Biobank data.
The WM and GMmodalities are cropped in the central 96× 128
× 96 voxels.

UK Biobank
UK Biobank brain imaging data consists of multimodal brain
scans from a predominantly healthy cohort (26). Currently (year
2020) there are about 40,000 subjects released for research, and
the number will eventually reach 100,000 (27). In our previous
study, we reported SFCN trained and tested on the initial 14,503
structural MRI brain images (24), and released the pretrained
model in a GitHub repository (https://github.com/ha-ha-ha-
han/UKBiobank_deep_pretrain). In this study, we mainly focus
on optimising pipelines and models for PAC 2019, and most
of the models are initialised randomly and then trained with
the PAC 2019 data unless otherwise stated. To apply transfer
learning, we also use 5,698 UK Biobank T1 images to pretrain
a model, and then use the trained weights as initialisations for
finetuning five models in the PAC 2019 dataset (see details in the
section Experiments and Results – Transfer Learning).

The UK Biobank preprocessing pipeline can be found in (28),
and the UKB data release includes preprocessed data, so that
researchers do not need to re-run the preprocessing pipeline.
Models are trained/validated/tested separately. The inputs are in
1mmMNI space, cropped for the central 160× 192× 160 voxels
to reduce GPU memory required.

Difference Between UK Biobank and PAC
2019
UK Biobank and PAC 2019 datasets differ in age distribution and
number of subjects. A summary of the statistics of both datasets
(mean and standard deviation of age distribution, and number
of subjects) is shown in Table 1 and visualised in Figure 1. The
PAC 2019 dataset has a significantly smaller number of subjects
and larger age range. Moreover, PAC 2019 contains multisite data
with different data quality and scanner configurations. All these
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TABLE 1 | Difference in age distribution between PAC 2019 used in this study and UK Biobank dataset used in Peng et al. (24).

Dataset Age range (yrs) Age (yrs) mean ± STD Number of subject Number of site

Training/validation/test Total

UK Biobank 44–80 62.7 ± 7.5 5,698/518/– 6,216 2

PAC 2019 17–90 35.9 ± 16.2 2,198/440/660 2,638 with label + 660 without label 17

FIGURE 1 | Age distribution of different datasets. The UK Biobank (blue bars) and the PAC 2019 (orange bars) differ in age range and number of subjects.

factors make the prediction task more difficult in PAC 2019 than
UK Biobank.

Note that the test set labels are not available to the
participants in the PAC 2019 challenge. This setup of a “true”
test set prevents the competition participants from the risk of
accidental data leakage. During the competition, the prediction
results were allowed to be uploaded only once, and then the
performance metric was evaluated automatically. Therefore, no
hyperparameter adjustment could bemade for the testing process
to elaboratively overfit the test set. In summary, we believe the
results in the test set are an objective measurement of model
performance in an unknown dataset with a similar age and
site distribution.

METHOD

Model
The backbone of our method is the lightweight fully
convolutional neural network architecture, Simple Fully
Convolutional Neural Network (SFCN), that we proposed in
(24). We briefly summarise the key aspects of the model and the
adjustment for PAC 2019 here.

The SFCN model architecture is shown in Figure 2

[reproduced from the original work by (24)]. The model
consists of seven convolution blocks. Each of the first five blocks
consist of a 3× 3× 3 3D convolution layer, a batch normalisation
layer, a max pooling layer, and a ReLU activation layer. The key
facet of this architecture is that the model downsamples the
input every time after a convolution layer. As a result, the spatial
dimension is reduced quickly as the layer goes deeper, and it
takes only five blocks to reduce the input data size from 160 ×

192 × 160 to 5 × 6 × 5 (voxels). This simple design saves GPU
memory and reduced the number trainable weights. The sixth
block is similar but without a max pooling layer and uses a 1 ×

1 × 1 3D convolution layer to increase non-linearity without
changing feature map spatial dimensions. The resulting 5 × 6
× 5 feature map is pooled by an average pooling layer and then
projected to the output layer with a linear transformation (i.e.,
fully connected layer). For convenience of implementation, the
fully connected layer is also treated as an 1 × 1 × 1 Conv3D in a
1× 1× 1 input “feature map.”

The input size is 160 × 192 × 160 voxels for both T1 non-
linearly registered brains and linearly registered brains, and 96×
128 × 96 voxels for both WM and GM for PAC 2019. Note that
the model is fully convolutional; therefore it can take different
input sizes without modifying the architecture. The feature map
size before the average pooling layer in the final block is 5 × 6 ×
5 for the input size 160× 192× 160, and 3× 4× 3 for the input
size 96× 128× 96.

Model Output and Loss Function
We treat the regression as a soft classification problem. In this
set-up, the label of the age is not treated as a single number, but
a discretized Gaussian probability distribution centred at the true
age. The output of the model is also a probability distribution.
Kullback-Leibler divergence is used to measure the similarity
between the two probabilities.

The output is 40 digits standing for 40 age bins for the UK
Biobank data. Each age bin covers a 1-year range. The number
of age bins is 38 for trained-from-scratch models for PAC 2019,
each of which covers a 2-year range. The sigma of the Gaussian
distribution for the labels is set to be the size of one age bin (i.e.,
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FIGURE 2 | Illustration of the core network for the Simple Fully Convolutional Neural Network (SFCN) model. (A) SFCN model architecture. (B) An example of soft

labels and output probabilities. The figure is reproduced from Peng et al. (24) under CC-BY-NCND 4.0.

FIGURE 3 | Training curves for the SGD and ADAM optimisers in PAC 2019

data. The curves are smoothed with a 7-step averaging window. The shading

areas show the standard deviation within the window.

1 year for UK Biobank and 2 years for PAC 2019). The final
age prediction is the average of all the age bins weighted by the
output probability.

For models pretrained in UK Biobank and finetuned in PAC
2019, the number of output age bins is set to 40 to reduce coding
effort (although the bins stand for different age ranges).

Hyper Parameter, Optimiser Choice and
Training
Hyper parameters are tuned with the validation set. We also
evaluate different optimizers, namely, an adaptive moment
estimation optimizer (i.e., ADAM) (29) and a stochastic gradient
descent optimizer (SGD) (30). In UK Biobank we find ADAM
easily overfits the model and thus performs worse than SGD (24).
However, in PAC 2019, we find that ADAM, although it overfits
more than SGD (as measured by the val-train gap in Figure 3),
performs slightly better than SGD in the validation set. Also,
ADAM is observed to be more stable during the training process
for the PAC 2019 dataset (as shown in Figure 3), so that we use
ADAM for PAC 2019 for the rest of our experiments.

The validation set is used to evaluate model performance
after every epoch (i.e., one iteration through the full dataset) in

the training set, and the model weights for the best validation
performance within 150 epochs are chosen for testing.

Data augmentation and weight regularisation are important
to achieve the best prediction accuracy and to reduce overfitting.
We use the same augmentation and regularisation strategy as
specified in detail in (24) for all experiments reported in this
work: voxel shifting, mirroring and dropout.

EXPERIMENTS AND RESULTS

To achieve accurate brain age prediction, we use several
techniques in the competition setup besides the lightweight
SFCN model, the regularisation and the data augmentations. For
a single model, we applied transfer learning to boost the single
model prediction accuracy. We also train multiple models using
different (pseudo-)modalities to form an ensemble for better
performance. As summarised in Table 2, we find that the best
ensemble uses all the modalities. While transfer learning stably
achieves better single-model performance, only five out of 45
models in the final ensemble are transferred from UK Biobank,
due to the limit of time and computational power. The details of
the experiments and the results are described below.

Transfer Learning
To test how pretraining in the large UK Biobank dataset can help
smaller datasets such as PAC 2019, we compare the performance
of models that are pretrained-and-finetuned and those trained-
from-scratch using the PAC 2019 data only.

The finetuning process and all the hyperparameters are
the same with the trained-from-scratch ones except for the
initialisation of model weights. For the pretraining, an SFCN
model is trained with 5,698 UK Biobank subjects using the
methods specified in (24) and achieving validation MAE = 2.20
yrs in UK Biobank dataset. This MAE is slightly worse than
the reported value due to the smaller training dataset size we
use. The trained weights are then used to initialise models that
are finetuned with the PAC 2019 dataset. There are five models
initialised with the same weights, and then trained with different
train-validation split under a 5-fold cross validation scheme
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TABLE 2 | Performance of model ensembles with different pseudo modalities in

PAC 2019.

Modality Performance

Single model Ensemble

MAE

(yrs)

r value MAE

(yrs)

r value

Raw, linearly registered,

Pretrained with UK Biobank × 5

3.69 ± 0.08 0.946 ± 0.006 3.22 0.960

Raw, linearly registered × 10 3.91 ± 0.13 0.935 ± 0.007 3.48 0.951

Raw, non-linearly registered × 10 3.89 ± 0.16 0.937 ± 0.006 3.40 0.957

Grey matter

× 10

3.93 ± 0.13 0.948 ± 0.003 3.54 0.957

White matter

× 10

4.19 ± 0.09 0.937 ± 0.003 3.74 0.951

All 45 models 3.95 ± 0.19 0.940 ± 0.007 2.98 0.971

Five models are initialised with pretrained weights and then finetuned with linearly

registered brains. For all other experiments, 10 models are trained from scratch for each

modality and used to predict brain age individually. The mean and the standard deviation

of the single model performances are computed within each modality.

FIGURE 4 | Training curves for transfer learning. The curves are averaged by

five models trained with 5-fold cross-validation splitting, and then smoothed

with a 7-step averaging window. The shading areas show the standard

deviation within the window.

using the PAC 2019 training data. as shown in Figure 4, the
five finetuned models achieve a mean MAE of 3.69 ± 0.19 yrs
(mean ± STD), which is 0.22 years better than the randomly
initialised models (MAE = 3.91 ± 0.13 yrs, mean ± STD). The
pretrained models also converge faster. This result shows that
initialisingmodels with pretrained weights fromUK Biobank can
help achieve better performance in small datasets, even using
a naïve finetuning protocol. Finally, as is shown in Table 2,
models initialised with UK Biobank pretrained weights result in
a better-performing ensemble (MAE = 3.22 yrs) than randomly
initialised models (MAE= 3.48 yrs). This result suggests that one
could use UK Biobank pretrained models (as we released in the
GitHub) and finetune them in a new smaller dataset, and achieve
better prediction.

Performance of Different
(Pseudo-)Modalities and Model Ensembles
Different T1-derived data contain distinct information regarding
brain ageing. We find that averaging predictions with different

FIGURE 5 | Correlations of predicted brain age difference (d-age) between

different models, showing similar results as Peng et al. (24).

pseudo-modalities (outputs from distinct pre-processing
approaches applied to the same original input data modality,
here T1) is an effective method to utilise the independent
information to achieve the overall best ensemble performance.
We train and test 10 models (from scratch, no pretraining) in
each pseudo-modality, namely, T1 data linearly registered to the
MNI space (Lin), raw T1 data nonlinearly registered to the MNI
space (NonLin), segmented grey matter (GM) and white matter
(WM) volumes. Lin and NonLin modalities are preprocessed by
us, and GM and WM are provided by the organiser. Models are
randomly initialised (with different random seeds). As shown
in Table 2, models trained with Lin, NonLin and GM achieve
comparable MAEs ranging from 3.89 to 3.93 years, which are all
better than the MAE for WM (4.19 years), and is in accordance
with our previous findings (24).

We show in our previous work (24) that, even though with
comparable MAEs, brain-PADs contain different information
from different pseudo-modalities. This result is consolidated in
the PAC 2019 dataset using the left-out validation set (not used
in cross-validation) in Figure 5. Models with the samemodalities
show higher correlation for the brain-PAD prediction.

To achieve the best performance in the challenge, we use all
four pseudo-modalities to form an ensemble. For every pseudo-
modality, there are 10 models initialised randomly and trained
separately with different train/validation splits. For the Lin
modality, five additional models are pretrained in UK Biobank
and finetuned in PAC 2019, as previously mentioned, adding up
to 45 models in total. All models are trained separately, and make
predictions independently. For every subject, mean and standard
deviation (STD) are computed for the 45 age predictions, and
the predictions deviating more than λ-STD from the mean are
treated as outliers (λ is a coefficient of our choice), and the final
prediction is the new average of the rest predictions. λ is set to
be 1.1 to optimise the performance in the left-out validation set,
which makes the ensemble performance slightly biased toward
this “validation” set. This strategy achieves MAE= 2.98 yrs in the
left-out validation set andMAE= 2.90 yrs in the test set, as shown
in Table 3. Our result in the test set ranks the first for the first
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TABLE 3 | Bias correction results.

Model Performance Performance with bias correction

MAE (years) Spearman correlation

d-age vs. age

MAE (years) Spearman correlation

d-age vs. age

45 Model ensemble

(left-out validation set)

2.98 −0.44 3.01 −0.06

45 Model ensemble

(PAC test set)

2.90 −0.39 2.95 −0.03

FIGURE 6 | Ensemble performance with different number of models. (A) Average performance in MAE with different number of models used by ensemble. The mean

and standard deviation come from 1,000-time bootstraps. (B) The fitted line of a power law. MAE0 is the critical point if an infinite number of models are used to form

the ensemble.

goal of PAC 2019 (best MAE), and is 0.18/0.42 years better than
the second/third place (MAE: Ours = 2.904 yrs; Second Place =
3.086 yrs; Third Place= 3.328 yrs).

We also found a sex difference in brain age prediction
accuracy in the left-out validation set (females, MAE = 2.85
yrs; males, MAE = 3.09 yrs), which is in line with previous
results (31).

In our previous work (24), we showed that independent
predictions are important to form a good ensemble. Here, we
further show that a sufficiently large number of models is also
important for good ensemble performance. To demonstrate this,
we explore the ensemble performance with different number of
models, as summarised in Figure 6. Ensembles are randomly
formed using some of the 45 trained models (replacement
allowed) and predictions are made using the mean without
excluding outliers. As the number of models increases, the MAE
decreases and finally saturate. A power law can be fitted to
empirically describe the quantitative relationship between the
size of ensemble and the MAE, as shown in Figure 6B. A
“critical point” of MAE of 3.07 yrs is estimated, and can be
interpreted as the ideal MAE if we can increase the number
of models to infinity. This empirical observation suggests that
simply increasing ensemble size will result in only limited
performance gain.

The “critical” MAE is worse than the actual MAE we get
from all the models. This is because the bootstrap process allows
replacement, i.e., the same model is allowed to be selected more

than once, which reduces the independent information gathered
from the ensemble.

Bias Correction
We follow (24, 32) to fit a straight line between the predicted
brain-PAD and the ground truth age in the left-out validation set,
and then apply the fitted parameters (slope and intercept) to bias-
correct predictions in the test set whose labels are unknown. We
correct the bias for the ensemble predictions rather than for every
single model.

For the validation set, this linear regression method reduces
the Spearman’s r-value (between delta and age) from −0.44
to −0.06 with a small increase (0.03 years) in the MAE. The
generalisation to the test set reduces the Spearman’s r-value from
−0.39 to 0.03, with a small increase of 0.05 years in the MAE
(from MAE = 2.90 to MAE = 2.95). This result is summarised
in Table 3.

The result in the test set achieves the first place for the second
goal of the competition (smallest MAE with sufficiently small
Spearman’s r-value between brain-PAD and the true age), and it
leads by a large margin (MAE: Ours= 2.950 yrs; Second Place=
3.799 yrs; Third Place= 3.924 yrs).

DISCUSSION AND CONCLUSION

We note that different datasets may require distinct
hyperparameters and optimisers for optimal performance
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for a deep learning algorithm. For example, we showed in our
previous study that ADAM easily overfits the model and thus
performs worse than SGD in UK Biobank data (24). In this study,
we find ADAM works comparable or even slightly better than
SGD in PAC 2019 validation data. We have not fully explored the
mechanism behind this empirical difference. One can assume
that PAC 2019 is a more difficult dataset for deep learning models
to optimise, due to the multi-site origin and inhomogeneous
data quality, and this may be the reason why ADAM performs
better in PAC 2019; it has been shown to be a more powerful
optimizer for other problems (29). For future studies, it may be
beneficial to explore and choose different optimisers for different
datasets even for similar tasks.

Despite additional hyperparameter tuning, we have shown
that the SFCN method together with the data augmentation
and model regularisation methods are generalisable outside the
UK Biobank dataset. However, this “generalisability” requires
retraining or finetuning in the targeting dataset, and may not
be feasible for smaller datasets (e.g., a dataset with 100-subject).
Also, although PAC 2019 provides a true measurement for
generalisability of models to unseen data (because the test set
labels are hidden from the participants), this does not guarantee
the generalisability to unseen scanning site (because the test set
follows the same site and age distribution as the training set).
For applications requiring site generalisability, see recent work
aiming to address this specific issue (33).

Finally, we need to point out that our choice of
hyperparameters, transfer learning and the naïve ensemble
strategy may not be optimal, due to the limit of time and
computation power in the competition setup.

To conclude, we have applied the lightweight convnet - SFCN
model, data augmentation, regularisation, and bias correction
techniques proposed in (24) to PAC 2019 challenge and achieved
leading results. Besides initialising models randomly, we have
shown that initialising weights pretrained in UK Biobank achieve
better single-model results for the PAC 2019 dataset (after
retraining/finetuning). For ensembles with multiple models, we
have shown that the best ensemble comes from a large number of
models taking the input of different pseudo-modalities.
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