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This study is the first genetically-informed investigation of avoidant/restrictive food intake

disorder (ARFID), an eating disorder that profoundly impacts quality of life for those

affected. ARFID is highly comorbid with autism, and we provide the first estimate of

its prevalence in a large and phenotypically diverse autism cohort (a subsample of

the SPARK study, N = 5,157 probands). This estimate, 21% (at a balanced accuracy

80%), is at the upper end of previous estimates from studies based on clinical samples,

suggesting under-diagnosis and potentially lack of awareness among caretakers and

clinicians. Although some studies suggest a decrease of disordered eating symptoms

by age 6, our estimates indicate that up to 17% (at a balanced accuracy 87%) of parents

of autistic children are also at heightened risk for ARFID, suggesting a lifelong risk for

disordered eating. We were also able to provide the first estimates of narrow-sense

heritability (h2) for ARFID risk, at 0.45. Genome-wide association revealed a single hit

near ZSWIM6, a gene previously implicated in neurodevelopmental conditions. While,

the current sample was not well-powered for GWAS, effect size and heritability estimates

allowed us to project the sample sizes necessary to more robustly discover ARFID-linked

loci via common variants. Further genetic analysis using polygenic risk scores (PRS)

affirmed genetic links to autism as well as neuroticism and metabolic syndrome.

Keywords: autism, eating disorders, genetics, ARFID, heritability

1. INTRODUCTION

Parents and caretakers of young children often report “picky eating” as a major concern. Food
selectivity (eating from a small range of foods) and food neophobia (refusing to try new foods),
are commonly seen in children under the age of 6 and are associated with socioeconomic factors
(1) as well as individual factors like food preferences, appetite, and parental feeding strategies (2).
Currently, there is no consensus among clinical and research settings on the definition of picky
eating, and multiple terms for feeding challenges are used in the pediatric feeding literature (3). As
a result, there are differences in assessment and estimates of prevalence, which can affect treatment
recommendations. Prevalence studies show about half (46%) of the general population of young
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children struggle with typical picky eating, as reported in a 2015
Dutch study (4), while roughly one in ten children are considered
to have extreme picky eating: 13% in the Netherlands (4), 14% in
the United States (5).

Although picky eating is common in the general population
of young children, increased prevalence rates are seen in children
with developmental disorders–particularly autism spectrum
disorders (autism) (6). Specifically, a meta-analysis of prospective
studies found that children with autism are 5 times more likely to
have an eating concern than their typically developing (TD) peers
(7), although clinically relevant negative eating behavior rates do
begin to decrease by age 6 (8). The most common presentations
of eating concerns in children with autism include eating from a
very narrow range of foods, or only eating foods with a specific
presentation or sensory characteristic (pickiness), and avoiding
eating new foods (food neophobia) (6). Bandini and colleagues
have specifically defined food selectivity in this population as
defined by food refusal, a limited food repertoire, and high-
frequency single food intake (having a diet overwhelmed by one
particular food) (9). Although some feeding concerns are shown
to wane with age (10), adolescents and adults with autism still
report significantly higher eating/feeding concerns than their TD
peers (11, 12).

Traditionally, the clinical relevance of restrictivemeal patterns
in the context of eating disorders has focused on the fear
of fatness/drive for thinness, which excluded many patients
without such concerns from diagnosis and treatment. In 2013,
Avoidant Restrictive Food Intake Disorder (ARFID) was first
included in the DSM-V as a feeding disorder, characterized by
a persistent pattern of food avoidance, which leaves individuals
unable to meet their nutritional needs. ARFID is distinct
from anorexia, as individuals with ARFID typically do not
fear weight gain (13), implicitly making it a broader, more
inclusive diagnosis. ARFID is reported to be particularly
comorbid with psychiatric disorders, including autism, ADHD,
and anxiety disorders (13, 14). In adults with ARFID, the
resulting eating behaviors may cause just as much (if not more)
distress and impairment as eating disorders like anorexia and
bulimia (15). Of children/adolescents either presenting for eating
disorder evaluation or currently in treatment for eating/feeding
behavior problems, 5–22% (depending on the study) meet
diagnostic criteria for ARFID (16). Although no population-
based prevalence estimates based on clinical assessment are
available, a self-report questionnaire of primary school children
in Switzerland estimated general prevalence of ARFID at
3.5% (14).

ARFID and autism have high comorbidity, with (16) finding
that 13% of pediatric ARFID patients in their clinic had autism,
despite the fact that “. . . patients with longstanding feeding issues
and autism are not typically admitted to our program. . . ”.
Opportunistic estimates like this are critical to establish the over-
representation of autism among individuals with ARFID, but
they do not help provide an estimate of how many individuals
with autism might be at risk for ARFID. Furthermore, relatively
little remains known about how risk for each disorder might
inform the other. For example, the primary drivers of ARFID
are often categorized as: lack of interest in eating (appetite),

avoidance due to sensory characteristics of food (pickiness),
and anxiety over adverse consequences from eating like choking
or vomiting (fear). Research on food selectivity in autism has
typically focused on sensory sensitivities, but restricted and
repetitive behaviors (RRBs) have also been found to strongly
correlate with this phenomenon as well (17). While, the overlap
of sensory sensitivities between autism and ARFID provides an
obvious avenue for this comorbidity, how RRBs might increase
risk for ARFID (or if they may make it more difficult to detect)
remains understudied. For example, a narrative study found that
because many parents believe eating problems are endemic in
autism, they acquiesce to perceived “pickiness” (18), potentially
failing to raise concerns until the effects of malnutrition are
apparent. A clearer sense of how many individuals with autism
are at risk for ARFID—as well as the particular behavioral
patterns whichmay be indicative of this risk—may help clinicians
and caregivers identify children with autism who should be
referred for treatment.

Treatment of ARFID is complex, with a broad range of
treatment options and settings (outpatient to intensive treatment
programs), population (from neurotypical to primarily autism),
and practitioner (psychologists, occupational therapists, speech
and language pathologists, registered dietitian nutritionists). This
heterogeneity can result in inconclusive diagnoses or inconsistent
care plans (19). Treatment approaches also vary widely in
part because there are very few randomized controlled trials
with most clinical treatment based upon case reports/series or
retrospective chart review (20). Common treatment approaches
include: Cognitive Behavioral Therapy, Family Based Therapy,
Responsive Feeding Therapy, Applied Behavioral Analysis,
and Sequential Oral Sensory therapy. The lack of empirical
treatments—coupled with the broad range of available options—
can make it difficult for individuals and families to identify
the most appropriate treatment. Therefore, further research at
the intersection of AFRID and autism is warranted to better
understand the root causes of feeding symptoms and to better
inform treatment.

These prior studies beg several questions, which we set out
to address in this investigation. First, what is the prevalence of
ARFID in an autism sample and in their parents? Second, what
is the eating profile of high risk ARFID individuals, and what
core autism traits are most associated with ARFID risk? Lastly,
what role does common genetic variation play in ARFID risk?
This study was uniquely poised to address these questions due to
the availability of genetic data and detailed phenotypic data on
eating habits and problems in a large cohort of both individuals
with autism (N = 5,157) and typically-developing parents (N =

4,985). The primary phenotypes utilized in assessing ARFID risk
were the Nine-Item Avoidant/Restrictive Food Intake Disorder
(ARFID) screen (NIAS) (21), as well as extensive questions
on inflexible eating behaviors and sensory sensitivities, and
familial history of ARFID and other eating disorders. This data,
combined with genetic data and surveys related to core autism
symptoms, allowed us to identify individuals at high-risk for
ARFID and profile the associations of ARFID in the broader
context of general eating habits, core autism traits, and common
genetic variation.
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TABLE 1 | Factor loadings on the NIAS.

Picky factor Appetite factor Fear factor

Question Proband Parent Proband Parent Proband Parent

I am a picky eater 0.83 0.83 0.17 0.18 0.09 0.10

I dislike most of the foods that other people eat 0.81 0.85 0.19 0.18 0.11 0.10

The list of foods that I like and will eat is shorter than the list of foods I won’t eat 0.83 0.74 0.15 0.21 0.07 0.14

I am not very interested in eating; I seem to have a smaller appetite than other people 0.21 0.24 0.81 0.80 0.18 0.19

I have to push myself to eat regular meals throughout the day, or to eat a large enough amount of

food at meals

0.21 0.22 0.82 0.79 0.18 0.21

Even when I am eating a food I really like, it is hard for me to eat a large enough volume at meals 0.13 0.16 0.76 0.74 0.27 0.30

I restrict myself to certain foods because I am afraid that other foods will cause GI discomfort,

choking, or vomiting

0.12 0.12 0.12 0.13 0.84 0.81

I eat small portions because I am afraid of GI discomfort, choking, or vomiting 0.07 0.10 0.25 0.30 0.85 0.80

I avoid or put off eating because I am afraid of GI discomfort, choking, or vomiting 0.08 0.14 0.26 0.25 0.84 0.83

Bold values indicate the primary loadings of each question as previously identified by Zickgraf and Ellis (21).

2. RESULTS

2.1. Factor Analysis of NIAS
Zickgraf and Ellis (21) identified three latent factors within
responses to the NIAS in a typically developing population: picky
eating, low appetite and fear. Within the autism-enriched sample
of SPARK, we identified the same three factors in both probands
and parents. The loadings of these factors were very similar
between probands and parents (see Table 1).

2.2. Identification of Individuals at High
Risk of ARFID
Because ARFID is believed to be under-diagnosed, we sought
to identify individuals at high-risk for ARFID using the three
NIAS factors—as well as all additional survey questions—using
a logistic regression model to predict the small number of
individuals who indicated they or their dependent had an
ARFID diagnosis (53 probands and 35 parents). The fitted values
from the models including the NIAS and survey questions
(referred to hereafter as “ARFID Score”) performed better
than a naïve predictor using only age and sex, as well as
the NIAS questions alone (Supplementary Figure 1), with a
balanced accuracy of 0.87 for parents and 0.80 for probands.
To classify undiagnosed individuals as “high-risk” for ARFID
(ARFID Risk Group), we set a cutoff on the ARFID Score
corresponding to the point on the ROC curve which was closest
to a perfect predictor (0,1) (indicated by the dotted line in
Supplementary Figure 1A). Under this heuristic, 17% of parents
and 21% of probands were predicted as being at high-risk
for ARFID.

2.3. Profile of Individuals at High Risk of
ARFID
The survey responses from parents and probands at high risk for
ARFID exhibited distinct profiles, with some notable similarities,
as seen in Figure 1, and described below. Unless otherwise stated,
all reported associations had FDR p < 0.05.

2.3.1. Nine-Item ARFID Screen (NIAS)
Although not directly included in either sub-cohort’s ARFID
risk model, the individual questions of the NIAS served as the
foundation of both models. In both probands and parents, all
nine items were significantly (p < 0.05, see Figure 1) associated
with an endorsed ARFID diagnosis, though the questions
underlying the “fear” factor was the least associated compared to
the “picky” and “appetite” factors. In probands, three questions
underlying the Picky Factor were the most enriched in high-risk
individuals (Wilcox test location shift 95% CI range: 0.90–1.49
SD), while the questions underlying the Appetite Factor generally
ranked higher in parents (Wilcox test location shift 95%CI range:
0.28–0.91 SD).

2.3.2. Inflexible Eating Behaviors (INFLEX)
Anxiety over eating (“The idea of eating a food [parent/proband]
does not like fills [her/him/me] with anxiety.”), most
distinguished parents and probands identified as high risk
from those at low risk for ARFID, (Wilcox test location shift 95%
CI range: 0.70–0.77 SD for parents, 1.66–1.73 SD for probands).
In fact, this item was included in both ARFID Score models
(indicated by an asterisk in Figure 1). Inflexible behaviors were
generally more enriched in high-risk probands compared to
parents. This difference is particularly stark when it comes to
presentation of food (“If a food that [parent/proband] usually
likes is not presented in a certain way, [she/he/I] prefer(s) not to
eat it.”).

2.3.3. Sensory Sensitivities (SENS)
Sensory sensitives were found to be more broadly enriched in
parents at high risk for ARFID than probands. In probands,
sensitivity to taste was most pronounced in high-risk individuals
(Wilcox test location shift 95% CI range: 0.64–0.88 SD). The
opposite trend was found in parents, although the difference in
enrichment was smaller than that observed in children.

2.3.4. Gastrointestinal Issues (GIH)
Food sensitivities and problems with bowel movements were
weakly enriched in high-risk probands (Wilcox test location shift
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FIGURE 1 | The association of individual age-corrected and scaled items from the parent or proband surveys, quantified as the median difference (location shift) from

a Wilcox rank-sum test. All items were scaled to have a unit variance of 1 prior to quantification. Items marked with an asterisk (*) were included in the ARFID

Score model.
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95% CI range: 0.09–0.49 SD). Meanwhile, issues with choking
and vomiting were some of the weakest enrichment in high risk
probands (Wilcox test location shift 95% CI range: 0.03–0.05
SD), which may be reflective of the slightly weaker enrichment of
the items underlying the Fear Factor in this sub-cohort. Despite
receiving a far less granular set of questions related to GI issues,
general GI distress showed substantial enrichment in high-risk
parents (Wilcox test location shift 95% CI range: 0.47–0.61 SD).

2.3.5. Supplementary Questions (MISC)
Unsurprisingly, both high-risk parents and probands were
more likely to have “abnormal” eating habits which negatively
impacted day-to-day life—although only (“How much of a
departure from the ‘norm’ do you consider [proband/parent’s]
eating habits to be?”) was informative enough to be included in
the proband ARFID risk model.

2.4. Association of NIAS Factors and
ARFID Risk With Core Autism Symptoms
The NIAS factors and ARFID score were found to be strongly
associated with several measures of core autism symptomology
(RBS-R, SCQ, and DCDQ) as well as adaptive behaviors (VABS).
Unless otherwise stated, all associations reported below were
FDR p < 0.05. Compared to the other NIAS factors, the
Appetite Factor was found to have notably fewer—and weaker—
associations (Figure 2).

Of the assessments covering core autism symptoms, restrictive
and repetitive behaviors (RBS-R) had the strongest and broadest
association, particularly with the ARFID Score (RBS-R total score
ρ = 0.30, 95% CI: 0.28–0.32). Communication ability (SCQ) had
more modest association with the ARFID Score (SCQ summary
ρ = 0.18, 95% CI: 0.16–0.20), and had a stronger association
with the Picky Factor (SCQ summary ρ = 0.15, 95% CI: 0.12–
0.17), compared to the Fear Factor (SCQ summary ρ = 0.11, 95%
CI: 0.09–0.13) or Appetite Factor (SCQ summary ρ = 0.02, 95%
CI: −0.01 to 0.04, not significant). Developmental Coordination
(DCDQ) had generally weaker correlations, the strongest of
which were with the Fear Factor (DCDQ total ρ = 0.12, 95%
CI: 0.09–0.15) and ARFID Score (DCDQ total ρ = 0.10, 95%
CI: 0.07–0.13).

All of the adaptive skills assayed by the VABS—save for
writing—were significantly associated with at least one NIAS
factor or with ARFID risk. The strongest associations across all
domains were with internalizing problems, (ARFID Score ρ =

0.30, 95% CI: 0.26–0.33, Fear Factor ρ = 0.21, 95% CI: 0.17–0.24,
Picky Factor ρ = 0.17, 95% CI: 0.13–0.21, Appetite Factor ρ =

0.11, 95% CI: 0.07–0.15).

2.5. PRS
The three NIAS factors and ARFID Score demonstrated genetic
overlap with several neuropsychaitric and morphological traits,
as measured by correlation with polygenic risk scores (PRS)
for those traits (Figure 3). The ARFID Score of parents had
significant positive association with PRS for metabolic syndrome
(ρ = 0.070, FDR p= 0.03) and neuroticism (ρ = 0.072, FDR p=
0.03), and a nominal positive association with autism (ρ = 0.058,
FDR p = 0.094). The Appetite Factor had significant negative

correlations with BMI (ρ = −0.067, FDR p = 0.022) and basal
metabolic rate (ρ = −0.066, FDR p = 0.022) in probands, while
the Fear Factor was nominally positively correlated with basal
metabolic rate (ρ = 0.052, FDR p = 0.194) and anorexia (ρ =

0.055, FDR p = 0.138) in parents. The Picky Factor was found
to be negatively associated with PRS for educational attainment
in both probands (ρ = −0.059, FDR p = 0.045) and parents (ρ
= −0.062, FDR p = 0.057) and positively correlated with PRS
for birth weight (ρ = 0.075, FDR p = 0.007) and nominally with
major depression (ρ = 0.046, FDR p= 0.194) in probands alone.

2.6. Heritability
The size of each sub-cohort was too small detect narrow-sense
(SNP-based) heritabilities of modest effect sizes, with a minimal
detectable heritability (at 80% power) of 0.28 in the probands,
and 0.40 in the parents (Supplementary Figure 2A). Despite this,
the proband ARFID Score was estimated to have significant SNP
h2 of 0.45 (95% CI: 0.13–0.76) (Figure 4A). The ARFID score for
parents had a SNP h2 of 0.25 (95% CI:−0.19 to 0.69).

In the combined cohort, the h2 estimate for the ARFID score
had little-to-no excess pedigree heritability (Figure 4B).

2.7. ARFID Score GWAS
One SNP on chromosome 5, rs13177031 (p = 1.6 × 10−8),
reached genomewide significance (Figure 4C,Table 2). The gene
nearest to this SNP is ZWIM6 (13 kb downstream of SNP),
which has been previously implicated in intellectual disability
(22) and schizophrenia (23). A locus on chromosome 17 with
the lead SNP rs73984121 (p = 5.0 × 10−7) is near ULK2 (105 kb
upstream of SNP) and ALDH3A1 (17 kb downstream of SNP).
ULK2 has been shown to regulate axon growth in mice (24).
A locus on chromosome 7 with the lead SNP rs78495856 (p =

4.9 × 10−7) is in an intron of the THSD7A gene. A previous
genome-wide association study of BMI found an association with
THSD7A (25).

The current sample is likely underpowered for effective gene
discovery, which is supported by the discordance between the
appreciable estimated SNP heritability and finding only one locus
that exceeded the genome-wide significance threshold. Indeed, in
a follow-up analysis that used the effect size and allele frequency
of 162 independent lead SNPs from the GWAS, most would not
be detectable as genome-wide significant without a cohort size of
approximately 10,000 (Supplementary Figure 2B).

3. DISCUSSION

The essential contributions of this work to our understanding of
ARFID include the estimation of risk for ARFID in individuals
with autism (21% of probands and up to 17% of their parents) and
the demonstration of its heritability, estimated at 0.45 (95% CI:
0.13–0.76). We further implicated autism, metabolic syndrome,
and neuroticism as genetically linked to ARFID via common
variants, and identified ZSWIM6, a known neurodevelopment
gene, as the first putative genetic association with ARFID. Our
ARFID GWAS also suggested other genes implicated in BMI
and axon growth, such as ULK2 and THSD7A. Finally, although
our GWAS was underpowered, our estimates of heritability
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FIGURE 2 | The association of various assessments from the probands with the NIAS factors and ARFID Score, quantified as Spearman correlation coefficient. For

differences for those identified as high risk for ARFID (ARFID Risk Group), the association is quantified as the median difference (location shift) from a Wilcox

rank-sum test.

allowed us to project the number of participants needed (N
= 10,000) to achieve sufficient power for further ARFID
gene discovery.

In line with previous work, three latent factors (appetite, fear,
and pickiness) were found to underlie the NIAS in both the
parent and proband sub-cohorts (21). These factors, along with
other individual items from the parent and proband survey were
useful in predicting ARFID diagnosis, resulting in an ARFID

Score (Supplementary Figure 1), with a balanced accuracy of
0.85 in parents and 0.80 in probands. These estimates lead
us to estimate that 17% of parents and nearly 21% of autism
probands may be at high-risk for ARFID. These estimates
are notably higher than one estimate of ARIFD rates in the
general population of children at 3.5% (14), but are in line
with an estimated ARFID prevalence of 22.5% among children
undergoing treatment for eating disorders (16).
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FIGURE 3 | Spearman correlation coefficients for ARFID Score and NIAS factors with PRS for a variety of neuropsychiatric and morphological traits. The strongest

association across three p-value thresholds (0.0005, 0.05, and 0.5), is shown here. FDR correction applied across all tests (n = 336). IBS, irritable bowel syndrome;

IBD, inflammatory bowel disease; Scz, schizophrenia; BpD, bipolar disorder; ADHD, attention deficit hyperactivity disorder; MDD, major depression disorder; autism,

autism; An, anorexia; MetS, metabolic syndrome; BW, birth weight; BMI, body mass index; BMR, basal metabolic rate; Neur, neuroticism; EduA, educational

attainment.

In contrast to previous studies of ARFID, which noted anxiety
due to fears of choking, vomiting, or GI issues as the predominate
drivers in a typically developing population, (16), our data
indicate that RRBs and sensory sensitivities play a larger role,
at least in autism. In probands, RRBs had stronger associations
with ARFID risk than social skills, developmental coordination,
and adaptive behaviors (Figure 2). RRBs also had the broadest
association across all three of the NIAS factors, suggesting
primacy in all domains of ARFID risk. Internalizing problems—
a maladaptive subscale on the Vineland Adaptive Behavior
Scales featuring questions about anxiety, worry, fear, and eating
problems—had the next strongest association across all domains
of that instrument. This raises the prospect that therapies targeted
at RRBs or anxiety/fear may alleviate the factors underlying
ARFID in some individuals with autism. Despite the strong inter-
relationships of core autism symptoms (e.g., RRBs) with the
fear and pickiness NIAS factors, the appetite NIAS factor lacked
strong associations with any of the other adaptive, social, and
coordination measures. This suggests a weaker interaction of
low appetite with core autism symptoms, and consequently, less
potential for inroads to treating ARFID via behavioral therapies
when low appetite is the driving factor.

Given this apparent elevated risk for ARFID in autism,
patterns of behavior associated with this risk—whether they
involve eating or not—may be useful hallmarks for clinicians
as they consider diagnoses. We found sensory sensitivities—
particularly related to taste and food texture—to be over-
represented in individuals at high risk for ARFID (Figure 1). This
difference was less pronounced in autism probands than parents,
perhaps due to the higher baseline amount of sensory sensitivity
in individuals with autism. Thus, while these sensitivities clearly
indicate ARFID risk, the presence of core autism symptoms may
make them less salient.

Most neurodevelopmental conditions are heritable, with
autism’s SNP-based heritability estimated at 0.12 (95% CI: 0.10–
0.14) (26) based on a cohort of 35,740 individuals. While, the
continuous predictor of ARFID risk (ARFID Score) showed
significant heritability in probands, the sample here was smaller
by an order of magnitude (3,142 for probands and 2,205 for
parents), leading to a less precise estimate: 0.45 (95% CI: 0.13–
0.76) in probands and 0.25 (95% CI: −0.19 to 0.69) in parents.
This indicates that common genetic variation likely plays a
significant role in ARFID, especially in those with autism.
We identified little excess pedigree heritability for the ARFID
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FIGURE 4 | (A) SNP-based (i.e., narrow sense) heritability estimates of ARFID Score and ARFID Risk Group (high vs. low), with 95% confidence intervals. (B) Excess

pedigree heritablility estimates (beyond what is explained by SNP h2) ARFID Score and ARFID risk group, with 95% confidence intervals. (C) GWAS Manhattan plot of

the proband ARFID Score. The dashed line indicates the genome-wide significance threshold of 5e−8.

TABLE 2 | Top 5 lead SNPs from proband ARFID Score GWAS.

rsID Chr Effect allele Allele frequency INFO score P-value Beta SE Nearest genes

rs13177031 5 A 0.35 0.83 1.6e-08 0.17 0.03 ZSWIM6

rs78495856 7 T 0.04 1.00 4.9e-07 0.32 0.06 THSD7A

rs73984121 17 T 0.03 0.95 5.0e-07 0.41 0.08 ULK2, ALDH3A1

rs1575620 1 C 0.50 0.96 1.2e-06 −0.13 0.03 GDAP2, WDR3, SPAG17, TBX15, WARS2

rs78624779 1 T 0.04 0.85 2.3e-06 −0.33 0.07 GPATCH2, SPATA17

Score, suggesting that common genetic variation dominates
environmental factors for ARFID risk. The GWAS and PRS
analyses implicated both neurodevelopment and metabolism as
significant factors involved in ARFID. The higher heritability
in probands increased the power of GWAS, revealing one
genome-wide significant SNP near the neurodevelopmental gene
ZSWIM6. PRS analyses also revealed pleiotrophic associations of
ARFID risk with neuroticism, autism, and metabolic syndrome
in the parents. These associations may not have been detectable
in probands because that sub-cohort was already enriched for
autism and neuroticism risk. Further dissection of the ARFID
score phenotype by the PRS associations of the NIAS factors
showed the Appetite and Fear Factors to be more associated with

metabolism, while the Picky Factor showed more associations
with neurodevelopment (Figure 3).

3.1. Limitations
A primary limitation of nearly all studies in the SPARK cohort
is the constraint of self- and parent-report surveys, rather than
clinical assessment, to collect data. This means the length of a
survey must be balanced with the burden on participants, often
resulting in limitations of resolution and specificity. For example,
because this study was focused specifically on a population-
level study of ARFID, it was not well-situated to conclusively
distinguish ARFID risk factors from those of other eating
disorders. Regardless, this limitation is generally offset by the
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large sample sizes that can be recruited from within SPARK, and
this work remains by far the largest study the authors are aware
of to examine ARFID in the context of autism. Additionally,
it should be noted that the NIAS (21), while designed as an
adult self-report instrument, was adapted for use as a parent-
report measure in this study due to a lack of empirically validated
screening tools for ARFID in children at the time this research
was conducted. The current study did demonstrate similar factor
loadings of the three latent factors (picky eating, low appetite,
and fear) in the NIAS across proband and parent subsamples.
However, there may be error introduced in the probands’
NIAS scores due to our reliance on parents’ observation and
interpretation of their children’s eating habits.

A secondary limitation to reliance on self- and parent-
report surveys in the context of eating problems is the effect
of environment on the perception of eating habits. Parents in
particular have extensive control over their environment, and
may do so in order to minimize the adverse effects caused
by sub-clinical eating problems, resulting in a bias of self-
perception. There is also potential for ascertainment bias in
reported ARFID diagnoses as a result of how some participants
are recruited into SPARK. Although SPARK actively recruits
across the entire United States, many participants are enrolled
through partnerships with clinical sites (typically co-located with
large research institutions). Due to data anonymization, we
were unable to determine if self- and parent-reported ARFID
diagnoses came from a small subset of clinical sites, where
practitioners might be more aware of ARFID. However, such
a scenario would simply reflect the overall under-diagnosis of
ARFID, which was a major motivator for this study.

Particular features of the SPARK cohort also complicated
comparisons between probands and parents due to
representation of difference sexes in each. The Research
Match survey for this study was sent to “primary” participants
(independent adults with autism, or the parent who initiated
enrollment into SPARK). In the data release use in this study,
88.6% of such “primary” parents are the biological mothers
of probands. It is therefore possible that—although sex was
accounted for in all tests performed here—the signal detected
in parents is somewhat female-specific, just as the male-skewed
proband subsample may lead to poor detection of patterns
specific to female probands.

As a genome-wide genetic investigation, the current study
had low power, though some important insight was obtained.
We found that the current cohort was only suitable to detect
substantial narrow-sense heritability (SNP h2 = 0.28–0.40;
Supplementary Figure 2A). Similarly, the SNP-level associations
found by GWAS were mostly below the detection threshold for
the current cohort size (Supplementary Figure 2B). However,
performing these analyses is an important first step in
understanding the genetics of ARFID, as it allowed us to project
that sample sizes of 10,000 andmore would begin to yield returns,
based on the effect sizes observed in our study.

3.2. Future Directions
This study showed the first evidence of significant SNP
heritability of ARFID risk, and potential genetic connections

TABLE 3 | Demographic summary of the cohort.

Role Proband Parent

Total N 5,157 4,985

Mean age (SD) 11.1 (5.87) 41.63 (8.24)

Male 81% 16%

Race: Asian 4% –

Race: African American 7% –

Race: Native American 3% –

Race: Native Hawaiian 1% –

Race: White 85% –

Race: Other 5% –

Cognitive impairment 17% –

Mean BMI (SD) – 29.84 (7.97)

Genotype N 3,142 2,205

Variables with the mean reported have the standard deviation in parenthesis. Nine

probands did not have data for cognitive impairment. Race was self-reported

endorsement with none and/or multiple selections allowed.

to other traits, such as metabolic syndrome, autism, and
neuroticism. Although the data yielded one genome-wide
significant hit, this study is clearly underpowered, and future
work will focus on expanding the sample size. Further, since
previous studies have found evidence of rare variant burden in
eating disorders (27–29), this is a logical next step in this cohort.
Together, rare and common variant association studies may lead
to a better understanding of themolecular pathways that underlie
ARFID risk, potentially exposing new therapeutic opportunities.
Finally, our estimators of ARFID do not explain all the variation
in eating and gastrointestinal problems in our sample or in
SPARK generally. As such, future work will concentrate on the
identification of robust and recurrent patterns of eating and
gastrointestinal phenotypes distinct from ARFID.

4. MATERIALS AND METHODS

4.1. Cohort Description
Participants were recruited from the nation-wide SPARK study
(30) via a research match. All respondents provided informed
consent. This study was approved by the IRB of University
of Iowa (IRB# 201801821) and SPARK is approved by the
Western IRB (IRB# 20151664). In total, 5,686 independents
responded to survey questionnaires for themselves and one
proband. After merging the survey responses with available basic
demographic and medical data, 5,157 probands and 4,985 adults
without autism were used for analyses (Table 3). For analyses,
these SPARK-collected data were combined with research match
participants’ survey responses on measures of eating behaviors
and GI symptoms. A subset of 3,142 probands and 2,205
parents of European ancestry had SNP genotyping data available
for analysis.

4.2. Phenotypic Measures
In addition to the measures assessed as part of this study (see
below), all families also had available demographic, medical,

Frontiers in Psychiatry | www.frontiersin.org 9 June 2021 | Volume 12 | Article 668297

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Koomar et al. ARFID and Autism

and core autism behavioral data collected through SPARK.
Except where noted, each primary respondent was a parent
who answered the measures in our study for both self and
their dependent (proband). Independent adults with autism were
given the same survey as parents and answered the measures for
themselves, but were not analyzed as part of this study.

4.2.1. Nine-Item Avoidant/Restrictive Food Intake

Disorder (ARFID) Screen (NIAS)
At the time this study was conducted, there was no validated
measure for assessing symptoms of ARFID in children, so the
NIAS (21) was adapted in the surveys to collect responses for
parents as well as probands. The 9 items in this measure assess
three categories of eating disturbance that can lead to ARFID
symptoms, as described in the DSM-5: avoidance of many foods
based on sensory properties, low appetite or limited interest
in eating, and fear of negative consequences (i.e., choking,
vomiting) from eating. The scale demonstrated high internal
consistency (alpha ranging from 0.79 in an undergraduate sample
to 0.90 in a sample with familial eating problem behaviors). One
item in this measure simply asks respondents to self-identify
picky eating behavior, which has been shown to distinguish picky
from non-picky eaters in and of itself (31–34).

4.2.2. Inflexible Eating Behavior
An Inflexibility Index was created by Zickgraf et al. (15) to
measure the rigid eating behavior associated with picky eating
severity, with items such as: “the thought of eating a food I do
not like fills me with anxiety” and “I avoid letting different foods
touch on my plate, even when they are both foods that I like.” An
unrotated principal components analysis (PCA) indicated that all
items loaded on a single factor, with all loadings > 0.50, and the
internal reliability for all 12 items was excellent (alpha= 0.92).

4.2.3. Sensory Sensitivities
Additionally, Zickgraf et al. (15) developed 11 sensory sensitivity-
related questions based upon questionnaires such as the SensOR
Assessment (35) and the Glasgow Sensory Questionnaire (36). In
an attempt to reduce the question load on participants of this
study, we selected questions only related to food sensitivities (e.g.,
“my sense of taste/smell is stronger/more sensitive than other
people’s”; “I am very aware of the texture of food in my mouth”).
These questions are designed to assess the sensory component of
eating that might be affecting eating behavior in the study cohort.

4.2.4. Eating Attitudes Test (EAT-26)
This shortened (26-item) version of the Eating Attitudes Test
(originally 40 items) was developed in 1982 by Garner and
colleagues, and has been used popularly as a screening measure
for disordered eating behaviors since. Internal consistency of the
EAT-26 is high (alpha = 0.90 in a cohort with anorexia nervosa
and 0.83 for a group of female controls), and higher scores (> 20)
are indicative of potentially disordered eating (37). This measure
was only included in the survey sets for parents.

4.2.5. Gastrointestinal History (GIH)
The GIH assesses the frequency of 10 current gastrointestinal
symptoms (within past 3 months). Assessing GI symptoms in

individuals with autism can be very challenging due to potential
lack of communicative abilities, and thus assessments so far
have been varied, and none have yet been validated, according
to a comprehensive literature review (38). However, of the 5
GI measures designed with an autism population in mind,
Holingue and colleagues describe the CHARGE GIH as one of
the simplest to take, while assessing a comprehensive range of
GI symptoms and their frequencies. The GIH was only included
in probands’ survey sets; parents were simply asked to report
the frequency with which they experience constipation or other
gastrointestinal upset.

4.2.6. Miscellaneous
Several standalone items were included in survey sets in order
to assess some potentially important factors in eating behavior
patterns: food allergies, foods avoided by preference, family
history of eating disorders, and the subjective negative impact
of eating behavior on daily life. The family history of eating
disorders included the responding parent and proband (i.e.,
“self ” history of eating disorders). ARFID diagnosis was based
on this report by the responding parent.

4.2.7. Measures of Broad Autism Symptoms
These data were released as part of SPARK Data Collection 5
in December 2020. For a breakdown of the summary and sub-
scores from individual instruments, including sample number,
see Supplementary Table 4. All data from SPARK, including
autism diagnosis, are parent/caregiver or self-reported through
online surveys.

4.2.7.1. Social-Communication Questionnaire (SCQ)
The SCQ (39) was administered to probands and control
siblings (when available), between the ages of 2 and 18 years.
The final score was nullified when a surplus of missing items
affected validity.

4.2.7.2. Developmental Coordination Disorder

Questionnaire (DCDQ)
The DCDQ (40) was administered for probands between the ages
of 5 and 15 years. Scores were reversed so that higher scores
indicated worse coordination. The DCDQ was not completed
if parents/caregivers indicated the proband was unable to use
his/her hands or to ambulate. The final score was nullified if
one or more items were incomplete across an entire measure (in
concordance with publisher recommendation).

4.2.7.3. Repetitive Behavior Scale-Revised (RBS-R)
The RBS-R (41) was administered to dependent probands age
3 and older. Subscale scores were nullified if more than two
component items were missing. The final score was nullified if
more than 5 items total were missing.

4.2.7.4. Vineland Adaptive Behavior Scales (VABS)
The Vineland 3rd Edition Parent-Caregiver Comprehensive
rating form (42) was administered to parents or caregivers
of probands using Pearson Q Global. Scores for all non-
maladaptive scales were revered so that higher scores indicated
more problems.
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4.3. Phenotype Data Cleaning
Ordinal survey items were imputed to the median. 0.6% ordinal
data was missing and imputed in the proband data, and 0.3% was
missing in the parents. Ordinal survey items were corrected for
non-linear effects of age via local regression. First, the empirical
cumulative distributions of individual items were mapped to
a standard normal distribution via ecdf() and qnorm()
functions in R. Age was then residualized from responses using
R’s loess() function with span = 0.5.

4.4. Identification of Individuals at High
Risk for ARFID
We performed a two-step process to create a quantitative score
estimating every individual in the cohort’s risk for ARFID and
used this score to classify individuals as high or low risk. Both
of these steps were carried out in parallel for parents and
probands. The demographics, mean NIAS factor values, and
median model items stratified by low risk and high risk ARFID
groups are shown in Supplementary Table 2 for probands and
Supplementary Table 3 for parents.

4.4.1. Factor Analysis
Previous studies have reported three clear factors underlying the
nine questions of the NIAS (21). Factors were calculated on the
individual NIAS items using the factanal() function in R.
Factor scores using Thompson’s method were calculated for each
individual. These factor scores were then scaled within each age
decile (10 separate age bins for parents and probands), and these
age-corrected factor scores were used as the phenotypes for all
association analyses.

4.4.2. Logistic Regression
To leverage the additional granularity of the survey questions
described above, we fit logistic regression models predicting
ARFID diagnosis with glm() in R, serially adding terms to
the model to reduce the Akaike information criterion (AIC).
The three NIAS factors were used as a baseline model and
each additional survey item was added to the model, with the
single item which reduced the AIC the most carried forward
(Supplementary Table 1). This process repeated until none of
the remaining survey questions reduced the models’ AIC.

4.5. Common Genetic Variation
The SNPs used in this study were based on the combined SPARK
2019 Version 3 release and the SPARK 2020 Version 4 release.

4.5.1. SNP Processing and Imputation
SNPs were merged using PLINK (43), then lifted from hg38 over
to hg19. The SNPQC process was based on the recommendations
by (44) using PLINK (43) and R (45). First, 25,840 SNPs and 86
individuals were removed due to global missing rate greater than
20%. Second, the more stringent threshold of 5% global missing
rate was used again which removed an additional 30,845 SNPs
and 711 individuals. Third, 102,530 SNPs were removed because
the minor allele frequency was less than 1%. Fourth, 47,825 were
removed due to the HWE p-value less than 1×10−10. Fifth, 1,180
individuals were removed because of missing rate greater than
5% on any autosome. Sixth, 1,115 individuals were removed due

to their heterozygosity rate not within 3 standard deviations of
the cohort mean heterozygosity. After this QC, the remaining
SPARK cohort wasmerged and clustered with the 1,000 Genomes
Phase 3.

Clustering was based on the first 10 components from multi-
dimensional scaling of the combined kinship matrix of the
cohort and 1,000 Genomes. This combined cohort was clustered
into 5 groups, representing the 5 distinct super-populations.
Three thousand nine hundred and sixty-three individuals were
removed due to being more than 3 standard deviations away
from any of the 5 mean multi-dimensional scaling components.
In total, 36,154 individuals and 409,281 SNPs remained. The top
10 principal components of each of the 5 clusters of the SPARK
cohort were calculated separately to be used as covariates in
heritability, polygenic risk score, and genome-wide association
analyses. These remaining individuals and SNPs were imputed
to the 1,000 Genomes Phase 3 reference of their respective
cluster using the Genipe pipeline (46). Genipe performed LD
calculation and pruning with PLINK (43), genotype phasing
with SHAPEIT (47), and genotype imputation by IMPUTE2 (48)
using default parameters.

4.5.2. Polygenic Risk Scores
Polygenic risk scores (PRS) were calculated using PRSice (49)
from the following base GWASes: metabolic syndrome (UK
Biobank 2019) (50), body mass index (UK Biobank 2019) (51),
birth weight (UK Biobank 2019) (51), basal metabolic rate (UK
Biobank 2019) (51), neuroticism (SSGAC 2016) (52), educational
attainment (SSGAC 2018) (53), schizophrenia (PGC 2018) (54),
major depression disorder (PGC 2018) (55), bipolar disorder
(PGC 2018) (54), autism spectrum disorder (PGC 2019) (26),
anorexia (PGC 2017) (56), attention deficit hyperactivity disorder
(PGC 2019) (57), inflammatory bowel disease (58, 58), and
irritable bowel syndrome (59). PRSes were calculated at three p-
value thresholds: 0.0005, 0.05, and 0.5. To control for the possible
effects of population stratification, the first 10 common genetic
principal components were regressed out of each PRS using the
lm() function in R. To control for any systematic differences in
phenotype between sexes, all phenotypes were scaled separately
by sex before association testing. The association of the NIAS
factors and ARFID Score with each PRS was quantified as non-
parametric (Spearman’s) correlation using the cor.test()
function in R. False discovery rate correction was applied to the
p-values of these test across all PRS thresholds and scores/factors
using the p.adjust() function in R.

4.5.3. SNP Heritability
GCTA (60) was used to calculate SNP-based heritability, and
the GCTA power calculator (61) was used to estimate the
power of each sub-cohort (Supplementary Figure 2A). The
genetic relationship matrix (GRM) was created for N = 29,443
individuals in the European population cluster. SNPs were
pruned for a final set of 192,500 autosomal SNPs to generate
the GRM. This resulted in N = 3,142 probands and N = 2,205
parents being used for GCTA. SNP-based heritabilities were
calculated separately for parents and probands using the GREML
method (62). The ARFID Score was scaled separately for males
and females, and the first 10 scaled genetic principal components
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were used as covariates. Pedigree-based heritabilities on the
combined phenotypes were calculated with both the original
GRM and an additional GRM with a relatedness cutoff of 0.05
using the GREML method (63).

4.5.4. Genome-Wide Association Study
The GWAS on the proband ARFID Score was performed on the
directly observed and imputed SNPs using BOLT (64), a mixed-
model analysis which accounts for population stratification and
relatedness. The ARFID Score was scaled separately for males
and females. The first 10 scaled genetic principal components
were used as covariates. After the imputation quality control
filtering performed by BOLT, 3,142 individuals were used for the
GWAS. The summary statistics were filtered on 1% minor allele
frequency and INFO imputation score of 0.8 or greater. 8,275,942
SNPs remained after filtering. Lead SNPs were identified using
the default clumping parameters of plink (43). Estimates of the
minor allele frequency and effect size detection threshold (at
80% power) in the proband sub-cohort was calculated using
the genpwr package (65), assuming an additive genetic model
(Supplementary Figure 2B).

4.6. Visualization and Data Processing
All visualizations were generated in R (45) with the ggplot2
(66) and patchwork (67) packages. Unless otherwise noted,
data processing was performed in R using the tidyverse
family of packages (68). When reported, 95% confidence
intervals for Spearman correlations were based on 1,000
bootstrap permutations.
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