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Background: Postpartum depression (PPD) is a devastating disease requiring

improvements in diagnosis and prevention. Blood metabolomics identifies biological

markers discriminatory between women with and those without antenatal depressive

symptoms. Whether this cutting-edge method can be applied to postpartum depressive

symptoms merits further investigation.

Methods: As a substudy within the Biology, Affect, Stress, Imagine and Cognition

Study, 24 women with PPD symptom (PPDS) assessment at 6 weeks postpartum were

included. Controls were selected as having a score of ≤6 and PPDS cases as ≥12 on

the Edinburgh Postnatal Depression Scale. Blood plasma was collected at 10 weeks

postpartum and analyzed with gas chromatography–mass spectrometry metabolomics.

Results: Variations of metabolomic profiles within the PPDS samples were identified.

One cluster showed altered kidney function, whereas the other, a metabolic syndrome

profile, both previously associated with depression. Five metabolites (glycerol, threonine,

2-hydroxybutanoic acid, erythritol, and phenylalanine) showed higher abundance among

women with PPDSs, indicating perturbations in the serine/threonine and glycerol lipid

metabolism, suggesting oxidative stress conditions.

Conclusions: Alterations in certain metabolites were associated with depressive

pathophysiology postpartum, whereas diversity in PPDS physiologies was

revealed. Hence, plasma metabolic profiling could be considered in diagnosis and

pathophysiological investigation of PPD toward providing clues for treatment. Future

studies require standardization of various subgroups with respect to symptom onset,

lifestyle, and comorbidities.

Keywords: postpartum depression, metabolomics, perinatal depression, pregnancy, GC-MS metabolic profiling,

molecular psychiatry, precision medicine
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INTRODUCTION

Postpartum depression (PPD) affects 1 of 10 women giving birth
(1). Poor mother–infant bonding (2), shortened breastfeeding
duration (3), and increased suicide risk (4) are just some of
many possible consequences of PPD. Furthermore, there is an
increased risk of depression for the partner (5) and of behavioral
problems for the children (6). However, our understanding about
the pathophysiology of the disease, and biological tools for early
and accurate diagnosis, remain limited. Advancements on the
understanding of the complex underlying pathophysiology could
be of great value for accurate and timely diagnosis, prognosis, and
treatment, contributing to ameliorating the high societal effects
associated with PPD (7).

Evidence of alterations in various biomarkers associated with
PPD is increasing (8). The dramatic physical changes involved
during pregnancy, including an increased basal metabolic rate
(9–11), changes in body fat composition (12, 13), and insulin
resistance (14), alterations in various hormonal levels (15–17),
inflammatory factors (18–20), levels of neurotransmitters (21),
and altered neuro-oxidative and nitrosative stress (22), along
with individual sensitivity to such changes, could contribute to
increased risk of PPD.

Metabolomics has emerged as a useful tool in psychiatry
in recent years, providing a comprehensive view of the
metabolic physiology, which combines genetic, epigenetic,
and environmental effects (23, 24). As a high-throughput
biomolecular analysis, untargeted metabolomics can lead to
the identification of discriminatory multi-compound profiles.
Monitoring the metabolic physiology of biological systems
through the interplay and intervariation of many metabolites
in a multivariate way, in combination with the knowledge-
based analysis of the metabolite abundances in the context of
the metabolic pathways and processes to which they belong,
can reveal significance even in subtle quantitative differences
without requiring large sample sizes (25). Blood plasma
and urine metabolomics have been successfully used in the
investigation of other disease pathophysiologies. However, a
challenge in psychiatric and neurological diseases is whether
plasma and urine metabolomics could be informative of brain
physiology [reviewed in (23, 26, 27)], with cerebrospinal
fluid profiling expected to be more relevant, but hard
to obtain for healthy subjects (24). There are, however,
studies that have shown that blood plasma (28), urine
(29), or cerebrospinal fluid (30) metabolic profiles could
discriminate between subjects affected by psychiatric conditions
and healthy participants. A 2016 meta-analysis of 17 articles
including 31,880 people associated depression with the metabolic
syndrome (31) and a 2020 meta-analysis including 15,000
participants found a discriminatory profile of circulating lipids
in depressed patients (32).

For perinatal depression, omic analyses in general and

metabolomics in particular are very limited. A study of our group
(33) provided a connection between antenatal depression and a

plasma metabolic profile rich in fatty acids and/or sugars, but
low in branched-chain amino acids (BCAAs), in summer delivery
cases. Another study (34) reported higher plasma levels of three

triacylglycerol metabolites and lower levels of betaine, citrulline,
C5, and C5:1 carnitine to be associated with antenatal depression.

In the case of PPD, some metabolite or metabolite-class
targeted analyses have been reported. From these studies, PPD
has been associated with alterations in the levels of tryptophan
and kynurenine (35, 36), allopregnanolone (37, 38), leptin
(39), steroids (40), glutathione–disulfide, adenyl–succinate,
and ATP (41).

To our knowledge, only two untargeted metabolomic studies
for PPD have been reported to date, both based on urine
samples (42, 43). One of them (42) presented a metabolite
panel (formate, succinate, 1-methylhistidine, α-glucose, and
dimethylamine) for PPD diagnosis, whereas the other (43) found
10 metabolites [alanine, methylmalonic acid, homocysteine,
tyrosine, glutaric acid, vanillylmandelic acid, 4-hydroxyhippuric
acid, 4-hydroxybenzoic acid, 5-hydroxyindoleacetic acid, 3-(3-
hydroxyphenyl)-3, and hydroxypropionic acid] to differentiate
between depressed and healthy controls. Still, the current
literature, including both targeted and untargeted studies,
provide inconclusive results with respect to the metabolic
alterations involved in PPD. This could be due to the complexity
and heterogeneity of the disease, the sample sizes of the cohorts,
the different surrogate tissues analyzed, the time of PPD diagnosis
after pregnancy, and/or the difficulty in PPD characterization and
severity classification.

The aim of this explorative nested case–control study was
to investigate whether blood plasma metabolic profiles could
be discriminatory between women with and without PPD
symptoms (PPDSs), using untargeted gas chromatography–mass
spectrometry (GC-MS) metabolomics, which monitors mainly
the primary metabolism.

MATERIALS AND METHODS

Participants
This study is a substudy conducted within the framework
of the BASIC project (Biology, Affect, Stress, Imagining, and
Cognition), which started in 2009 and finished recruitment in
2018. The BASIC study has been previously described (44). All
Swedish-speaking women ≥18 years of age, who were scheduled
for a routine ultrasound at Uppsala University Hospital, were
invited to participate. After providing informed consent, web-
based surveys were answered at approximately gestational weeks
17 and 32, and 6 weeks postpartum (wpp). Included in the
surveys were questions on background characteristics and scales
including the Edinburgh Postnatal Depression Scale (EPDS) (45).
EPDS is a self-reported screening tool commonly used among the
Swedish population and has a validated cutoff of 12 points, with
higher values associated with higher severity of the disease, and
sensitivity of 96% and specificity of 49% (46).

A subgroup of women participating in the BASIC project,
who scored either ≥12 or 1–8 at the EPDS filled in at
6 wpp, was invited to the research laboratory 10 wpp for
further examinations. The examinations included repetition of
the EPDS, the Mini-International Neuropsychiatric Interview
(MINI) version 6.0, sections A. Depression and N. Generalized
anxiety disorder, and blood sampling. Cases were defined as
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EPDS scores 12–30 (n = 12) at 6 wpp and controls as EPDS 1–8
(n= 12) at all the time points during pregnancy and postpartum
included in the BASIC study. Some of the cases (n = 6) did
not still score ≥12 points at the EPDS 10 wpp. Furthermore,
controls were eligible if reporting no history of depressive
episodes according to the MINI interview. As well-defined
lifestyle and family environment are important in psychiatric and
PPD research, the 24 women included were selected based on
strict inclusion criteria: (a) 26–39 years of age, (b) body mass
index (BMI) between 20.0 and 29.9 kg/m2, (c) non-smokers prior
and during pregnancy and at time of blood sampling, (d) parity
≤4, (e) glucose levels <6.8 mmol/L during pregnancy, (f) no
medication except antidepressants (for cases) or levothyroxine
at time of invitation and sample collection, (g) breastfeeding,
(h) no pregnancy complications including diabetes, (i) no twin
pregnancies, (j) blood loss during delivery <1,000mL, and (k)
no unhealed lacerations at 10 wpp. These criteria were applied
with the purpose of examining a very well-defined cohort with
respect to PPD, based on the medical records of the subjects, any
confounding factors, and the knowledge that we had gained from
our previous study investigating antenatal depressive symptoms
(33). All participating women had been fasting overnight, and
visits were scheduled in the morning, mean time 8:54 AM.
Previously, seasonal variations inmetabolites of pregnant women
had been reported (33). Therefore, only women who donated
blood during the period April to September, that is, during the
summer season, were included in this substudy.

Ethical Considerations
Written informed consent was obtained from all participants
when entering the BASIC study, as well as prior to any sampling
or testing at the research laboratory. The study protocol was
approved by the Regional Ethical Review Board of Uppsala,
Sweden (Dnr 2009/171).

Sample Collection
Venous blood samples were collected and prepared as described
by Brann et al. (20). Samples were later thawed and two 100
µL plasma aliquots per participant were shipped on dry ice to
FORTH/ICE-HT for the metabolomic analysis.

Metabolomic Data Acquisition and
Normalization
Metabolite extraction, metabolic profile acquisition, metabolite
identification, and normalization protocols were applied as
in Henriksson et al. (33), with the addition of 5 µg ribitol
(AlfaAesar, Germany) to each 100 µL plasma aliquot as internal
standard, instead of 0.05 µg ribitol in Henriksson et al. (33).
Peak identification was based on the commercial NIST and our
in-house MESBL peak library (47, 48). Eighty-five metabolite
derivative peaks were identified in at least one of the acquired
profiles. Metabolite derivative abundances were estimated from
the relative peak area (RPA) of the marker ion of each metabolite
derivative with respect to the peak area of the internal standard
ribitol ion 319. Data validation, normalization, and filtering of
the low confidence measurements and inconsistently detected

metabolite derivatives [>25% mean CoV between technical
replicates; >30% mean CoV between aliquots (48–50)] were
carried out using our group’s GC-MS metabolomic analysis
software M-IOLITE (http://miolite2.iceht.forth.gr) (47). After
metabolite derivative combination, normalization, and filtering,
the normalized profiles involved 38 metabolites. Metabolic
profile of each aliquot was estimated as mean of normalized and
filtered profiles of all its technical replicates. Metabolic profile
of each sample was estimated as the mean metabolic profile of
its aliquots. Final normalized dataset used for further analysis is
provided in Supplementary Table 1.

Statistical Analysis
Demographic, Medical, and Questionnaire Data
Background characteristics were analyzed using the Statistical
Package for the Social Sciences version 26. For univariate
analyses, Student t-test and Mann–Whitney U-test were applied
for continuous variables as suited, whereas theχ

2 test was applied
for categorical variables. Statistical significance threshold was set
at p < 0.05.

Primary Multivariate Statistical Analysis of the

Metabolomic Dataset
For primary analysis, hierarchical clustering (HCL), principal
component analysis (PCA), and significance analysis for
microarrays (SAM) algorithms were implemented in version 4.9
of the omics data analysis TM4/MeV software (51). Analysis
was performed with missing values not imputed. Metabolites
identified by SAM with concentration significantly higher or
lower in a set of metabolic profiles compared to another are
referred to as positively or negatively significant metabolites of
the particular comparison, respectively. Analysis was based on
the standardized metabolomic dataset.

The standardized RPA of a metabolite M in the profile j,

stRPA
j
M , equals to:

stRPA
j
M =

RPA
j
M − RPAM

SDRPAM

where RPA
j
M , RPAM , and SDRPAM depict, respectively, the RPA of

metaboliteM in profile j, the mean RPA of metaboliteM, and its
standard deviation in all profiles.

In SAM, the threshold of significance (δ) is selected as the
largest for the false discovery rate (FDR) median to be <10%
or that corresponding to the smallest FDR median, if the latter
is >10%, as specified in each case.

Sensitivity Analyses
Based on previous experience, to identify discriminatory
metabolites in possible subgroups within the groups, sensitivity
analyses (excluding very metabolically diverse individuals in
comparison to the rest of their group) were carried out using
SAM algorithms. Selection criteria for the significance threshold
were the same as described for the primary analysis.
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TABLE 1 | Background characteristics of women with and without postpartum

depressive symptoms.

Variable Control (n = 12) PPDS (n = 12) p-value

EPDS 6 wpp, median (IQR) 4.0 (0.8) 16.0 (4.8) 0.000

EPDS 10 wpp, median (IQR) 3.0 (2.8) 11.5 (7.5) 0.000

MINI-defined ongoing

depression, n (%)

0 (0) 3 (25) —

MINI-defined previous

depression, n (%)

0 (0.0) 11 (91.6) —

MINI-defined GAD, n (%) 0 (0.0) 1 (8.3) —

SSRI-use, n (%) 0 (0) 4 (33.3) 0.028

Age, mean (SD), years 32.6 (3.5) 32.3 (3.7) 0.799

BMI, median (IQR), kg/m2 24.1 (1.1) 25.0 (6.1) 0.449

University education, n (%) 9 (81.8) 9 (81.8) 1.000

Breastfeeding 6 vpp, n (%) 0.059

Breastfeeding only 11 (91.7) 7 (58.3)

Breastfeeding and formula 1 (8.3) 5 (41.7)

Levothyroxine treatment, n (%) 2 (16.7) 4 (33.3) 0.346

Nulliparous, n (%) 4 (33.3) 5 (41.7) 0.673

Days from parturition, median

(IQR)

74 (4.8) 79 (8.0) 0.020

PPDSs, postpartum depressive symptoms; EPDS, Edinburgh Postnatal Depression

Scale; IQR, interquartile range; SSRI, selective serotonin reuptake inhibitor; SD, standard

deviation; BMI, body mass index; MINI, Mini-International Neuropsychiatric Interview;

GAD, generalized anxiety disorder.

RESULTS

Demographic, Medical, and Questionnaire
Data
Univariate analyses of background characteristics showed only
a slight difference in the number of days from parturition
until the day of blood sampling between the controls and
women with PPDSs (apart from the expected difference
in EPDS scores, previous depressive episodes, and use of
antidepressants, which were the guiding variables in the
control/case definition) (Table 1).

Of the 12 women who reported depressive symptoms
according to the EPDS at 6 wpp, six (participants 9, 13, 17, 26,
34, and 35) did not pass the 12-point threshold in the EPDS
filled at 10 wpp. However, these women were still included in the
PPDS group. Nevertheless, one womanwith EPDS<12 at 10 wpp
(participant 26) did meet the criteria for ongoing depression at
the MINI interview.

Primary Metabolomic Data Analysis
The standardized metabolomic dataset (Supplementary Table 1)
was analyzed using HCL and PCA (Figures 1A,B). Observed
metabolite clusters in the HCL heat map are color coded.
HCL indicated differences in the metabolic profiles of the
controls and PPDS cases that could discriminate betweenmost of
them. However, there were distinct subclusters within the PPDS
samples. Both HCL and PCA indicated a distinct cluster that
comprised PPDS samples 2, 9, 16, and 34, and control sample 12
[the left branch of the heat map in Figure 1A and the right part
of the PCA graph (positive PC1 values) in Figure 1B]. According

to the heat map, the particular cluster was characterized by high
abundances in the “olive green” metabolite cluster, including
mainly the amino acids threonine, serine, ornithine/arginine,
valine, leucine, isoleucine, lysine, and the aminomalonic acid,
combined, though, with distinctly low abundances in the “purple”
metabolite cluster, including threonate, sorbitol, glutamate,
uric acid, glyoxylate, gluconate, glycerate, and erythronate.
The differences in the profile of participant 9 compared to
other samples in this cluster were higher abundances of the
metabolites in the “purple” cluster, and high abundances of the
metabolites myo-inositol, 3-methylbenzoate, phenylalanine, and
the unannotated metabolite Un_0244 of the “light blue” cluster.

Based on the heat map, the rest of the PPDS samples,
including samples 17, 10, 13, 18, 33, 26, 19, and 35, showed, in
controversy to the first cluster, no significant differences in the
abundance of the metabolites of the “olive green” cluster, but
higher abundances in the “purple” cluster metabolites, compared
to the controls (excluding participant 12). In addition, this PPDS
sample group shows higher abundances in the “blue” (“fatty
acid”) metabolite cluster, including cholesterol, linoleic acid,
stearate, myristate, putative lauric acid, 2-hydroxybutanoic acid,
and glycerol, and/or the “pink” cluster, including urea, erythritol,
4-hydroxybutanoic acid, and glucose, compared to the controls
(excluding participant 12).

Taking into consideration the loads of the PC axes, the
observations from theHCL analysis are supported by the position
of the profiles in the PCA graph. Positive values on PC1
correspond to high abundances of the “olive green” cluster
metabolites combined with low abundances of the “purple”
cluster metabolites. Positive values on PC2 correspond to
high abundances of the “blue” (fatty acid) cluster metabolites
combined with low abundances of “pink” cluster metabolites.
Lastly, positive values on PC3 correspond mainly to low glucose
and cholesterol combined with high abundances of threonate,
ornithine/arginine, and the “light blue” cluster metabolites
myo-inositol, 3-methylbenzoate and phenylalanine. Accordingly,
negative values in the respective axes correspond to the opposite
profile discussed for each axis above. The further a profile is from
the PCA graph origin, the more it tends to be associated with a
PPDS participant’s sample.

Multivariate significance analysis based on the SAM method
of the complete set of the control and PPDS profiles indicated
that the total abundance of the 38 metabolites included in the
analysis is on average larger in the PPDSs than in the controls.
Additionally, 18 metabolites were positively significant with no
metabolite identified as negatively significant in the PPDS profiles
compared to the control profiles, although there was a high
number of false positives (i.e., 5.5 metabolites or 30.7% FDR-
median at the strictest threshold of significance that provided
any results). The complete list of the 18 positively significant
metabolites in decreasing order of significance is shown in
Table 2.

Sensitivity Metabolomic Data Analysis
Two sensitivity SAM analyses were performed, comparing
separately the different PPDS clusters observed in the primary
analysis. Excluding control sample 12, which, based on HCL,
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FIGURE 1 | (A) Hierarchical trees for both samples and metabolites based on hierarchical clustering (HCL) analysis of the standardized metabolic profiles (Euclidean

distance). The colored bars on the right side of the HCL heat map depict the identified metabolite clusters, discussed in the text. (B) The PCA graph of the

standardized metabolic profiles, depicting the relative position of the controls compared to the PPDS sample profiles. In both (A,B), the control and PPDS sample

profiles are colored, respectively, light blue and orange. PCi refers to principal component axis i.
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TABLE 2 | List of positively and negatively significant metabolites in decreasing order of significance in the primary and the two sensitivity analyses based on the SAM

method.

Primary analysis

(PPDS) vs. (controls)

Sensitivity analysis 2A

(PPDS samples 2,9,16, 34) vs. (controls but sample 12)

Sensitivity analysis 2B

(PPDS samples 17, 10, 13, 18, 33,

26, 19, 35) vs. (controls but

sample 12)

Positively significant Positively significant Negatively significant Positively significant

1. glycerol 1. aminomalonic acid 1. gluconate 1. uric acid

2. threonine 2. lysine 2. glycerate 2. stearate

3. 2-hydroxybutanoic acid 3. dodecanoic (lauric) acid putative 3. glyoxylate 3. urea

4. erythritol 4. ornithine+arginine 4. erythronate 4. 2-hydroxybutanoic acid

5. aminomalonic acid 5. serine 5. sorbitol 5. linoleic acid

6. Un_0089 (P1933/f_106/a_33) 6. valine 6. threonine

7. phenylalanine 7. leucine 7. erythronate

8. stearate 8. glycerol 8. cholesterol

9. linoleic acid 9. isoleucine 9. glycerol

10. serine 10. Un_0017 (P1091/C_041) 10. Un_0089 (P1933/f_106/a_33)

11. ornithine+arginine FDR-median = 0% 11. phenylalanine

12. lysine 11. erythritol 12. erythritol

13. lactate 12. phenylalanine 13. glyoxylate

14. Un_0017 (P1091/C_041) FDR-median = 2.48% 14. lactate

15. uric acid 13. threonine 6. threonate FDR-median = 16.92%

16. myristate FDR-median = 4.40%

17. myo-inositol 14. myo-inositol

18. cholesterol 15. 3-methylbenzoate

FDR-median = 30.7% FDR-median = 6.00%

19. isoleucine 16. Un_0089 7. urea

FDR-median = 33.2% 17. 2-hydroxybutanoic acid 8. uric acid

9. glutamate

FDR-median = 9.72%

FDR, false discovery rate; Un_, Unannotated metabolite (in parenthesis previously used IDs in published studies); positively significant metabolite in Group B vs. Group A means that

the metabolite is of higher abundance in Group B compared to Group A; negatively significant metabolite in Group B vs. Group A means that the metabolite is of lower abundance in

Group B compared to Group A.

could have a physical condition not yet aware of, comparisons
of (a) the PPDS subcluster of samples 2, 9, 16, and 34 with all
controls (analysis 2A) and (b) the rest of the PPDS samples with
all the controls (analysis 2B) were performed.

In the SAM analysis 2A, at the largest significance threshold
for which FDR median is <10%, 26 of the 38 metabolites were
identified as statistically different between the two groups (FDR-
median = 9.72% or 2.5 metabolites). It is noted that in this
analysis, 15 metabolites were identified as distinctly differential at
FDR-median= 0%. Among the 26metabolites, 17 were positively
and 9 negatively significant in the PPDS subcluster compared
to the controls (10 and 5 were identified in the respective
groups at FDR-median = 0%). The significant metabolites,
shown in Table 2 in decreasing order of significance, confirm the
observations from the HCL and PCA analyses (Figures 1A,B).
The small FDR supports the distinctness of the metabolic profile
of the PPDS subgroup (participants 2, 9, 16, and 34) compared to
the controls.

In the SAM analysis 2B, where the rest of the PPDS samples
were compared with all controls but sample 12, 14 positively
and none negatively significant metabolites were identified (with

FDR-median = 16.92% or 2.4 out of the 14 metabolites). The
significant metabolites of 2B analysis are shown in Table 2.

Five metabolites, glycerol, threonine, 2-hydroxybutanoic acid,
erythritol, and phenylalanine, were identified as positively
significant in both sensitivity (2A and 2B) analyses and the overall
primary comparison between PPDS and control sample profiles.

DISCUSSION

Metabolomic analyses indicated discriminatory differences
between the metabolic profiles of most controls and PPDS
samples. However, there were distinct subclusters within the
PPDS samples, which need to be taken into consideration if high-
risk metabolic biomarkers for PPD are to be accurately identified.
It appears that multiple different metabolic profiles are associated
with PPDS subtypes, supporting the need to standardize PPD
molecular phenotyping with respect to time of onset, time of
profiling, and/or symptom subgroups, to enable accurate and
sensitive diagnosis and biomarker detection. Although further
validation in a larger cohort is necessary, our findings are
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supported by previous studies suggesting heterogeneity within
PPD (52–54).

The two sensitivity analyses suggested two distinct PPDS
clusters, one with high abundance of amino acids, fatty acids,
and glycerol–phospholipid metabolism intermediates, and low
abundance of sugars and sugar acids, compared to the controls.
Lower abundance of sugars combined with higher of BCAAs
is commonly considered as a “favorable” metabolic profile.
The combination of higher ornithine+arginine to urea ratio in
this cluster of PPDS samples suggests an aberrant urea cycle
compared to the controls (55). During pregnancy, the glomerular
filtration rate increases, leading to decreased urea and uric
acid values (56). We speculate that these women might not
have been able to regulate the filtration rate back to a non-
pregnant state, perhaps due to the impact of oxidative stress
on kidney function even postpartum (57). Even though GC-
MS cannot differentiate between arginine and ornithine, these
findings combined with the urea measurement may indicate
lower arginase activity (i.e., higher abundance of arginine and
lower of ornithine) in the PPDS samples compared to the
controls, as both urea and ornithine are products of the
arginase-catalyzed reaction of the urea cycle. Such profile has
been associated with insulin resistance and type 2 diabetes
mellitus (58); arginase is regulated by insulin. Decreased urea
has been associated with increased blood pressure (BP) (59),
and dysregulation of BP has in turn been linked to depression
[reviewed in (60)]. Unfortunately, BP measurements were not
included in the assessment of the participants in this study, but
may be considered regularly in studies examining depression. It
is noted that in this study none of the participants had a history
of hypertension before or during pregnancy. Furthermore,
aminomalonic acid was identified as the metabolite with the
highest positive difference in the PPDS samples compared to
the controls. Production of aminomalonic acid is considered
associated with oxidative damage (61, 62) and has previously
been used in a potential biomarker panel for depression and
anxiety outside the perinatal period (63).

The second group of PPDS samples included in the
second sensitivity analysis shows what is considered a typical
“unfavorable” metabolic profile, with higher levels of metabolites
comprising mostly fatty and sugar acids. This type of profile is
seen among individuals with metabolic syndrome (64), which
has been associated with depression (31). Notably, the abundance
of the metabolites uric acid, urea, erythronate, and glyoxylate
are identified as lower in one PPDS cluster and higher in the
other compared to the controls, again indicating different PPD
subtypes in need of further investigation.

The control participant, who presented a pathological
metabolic profile, was excluded from the sensitivity analyses
as a consequence of having a very diverse profile compared
to the rest of the controls. However, we could not confirm
any pathology recorded in her medical records. Along with the
two metabolically different subgroups of PPDS samples, two
“metabolically healthy” depression-positive cases (samples 19
and 35, see Figure 1A) were identified from our multivariate
analyses. One was the PPDS participant without any previous
depressive episodes, thus she may not have yet developed a
relevant metabolic fingerprint. The other participant was the

PPDS participant with the lowest EPDS score in both 6 wpp
(EPDS= 12) and 10 wpp (EPDS= 6), hence she had the mildest
depressive symptoms and metabolic profiling classified her with
the controls at 10 wpp. These results support the hypothesis that
not all PPDS cases have the same pathophysiology (53), and only
some have a distinct metabolic signature.

Moreover, five of the women with PPDSs at 6 wpp did not
present depressive symptoms at 10 wpp; two of these samples
were found in the first cluster, whereas the other three in
the second. It is unclear whether loss of symptoms depends
on the location where the EPDS is answered [at the research
laboratory (10 wpp) or at other location (6 wpp)], or whether the
symptoms were mild and mostly resolved within 10 wpp. These
findings highlight the importance of standardization of the time
of diagnosis and sample collection.

Five metabolites, glycerol, threonine, 2-hydroxybutanoic acid,
erythritol, and phenylalanine, were identified as positively
significant in both PPDS clusters and the overall comparison
between PPDS and control profiles. These five were not included
in neither the panel of metabolites previously identified by Lin
et al. (42) nor the findings of Zhang et al. (43), but all five
have some association with oxidative stress conditions: one of
the areas of interest in research of PPD (22). Glycerol, an
alcohol released into the bloodstream when stored fat is used
in the energy metabolism, has been shown in animal studies
to induce oxidative stress (65). Threonine, an essential amino
acid important for the nervous system, is transferred across
the blood brain barrier and is converted to glycine. Glycine
metabolism is one of the pathways found to be altered in rat
models of depression (66), and animal studies have reported
that accumulation of threonine affects the neurotransmitter
balance (67). The early indicator of insulin resistance, 2-
hydroxybutanoic acid (68), can be catabolized from threonine
(69). Alterations in threonine and the threonine catabolism
intermediate 2-hydroxybutanoic acid indicate perturbations
in the serine/threonine metabolism associated with oxidative
stress. Increased levels of 2-hydroxybutanoic acid have been
observed in women with antenatal depression (33). Erythritol
is a sugar alcohol used as a food additive and naturally
found in fruits. Central adiposity, included as a factor in the
definition of the metabolic syndrome (70), is associated with
increased levels of erythritol (71). Furthermore, animal studies
have shown erythritol to induce oxidative stress (72), and
increased erythritol levels in the depressed patients could be a
response to increased oxidative stress. Phenylalanine, a precursor
of the neurotransmitters dopamine and norepinephrine, has
been shown to increase oxidative stress in rats (73). When
accumulated in the body, phenylalanine is causatively associated
with neuropsychological dysfunction and depressed mood (74).

The strict inclusion criteria implemented in this study provide
a homogenous, generally healthy (apart from depression) study
group with no extremes concerning age or BMI. Analyses of
background characteristics showed no differences between the
controls and the PPDS group aside from days from parturition
until blood collection, EPDS scores, and use of antidepressants,
suggesting otherwise comparable study groups. Time of blood
sample collection (10 wpp) is considered as a stable time period
in terms of hormonal levels (75). As time-of-day variation of
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metabolic rates has been observed (76, 77), a strength of this
study is that all samples were collected during themorning hours.
Furthermore, as seasonal variations in metabolic profiles have
been observed in women with antenatal depressive symptoms
(33), the inclusion of only summer births should be seen
as a strength of the study, eliminating any seasonal effect
biases. This, of course, has an impact on generalizability of
the results, and future studies including the winter months
are merited. Furthermore, standardized collection of material
for metabolomic studies is crucial, and the samples collected
in this study came from women who were fasting overnight
as recommended (78).

Our results further support multivariate statistical and data
mining methods as a state-of-the-art approach to analyze
the omic profiles of complex pathophysiologies, such as PPD
(79, 80), and the importance of interpreting the differential
biomolecules in the context of interconnected pathways
and not as isolated individual biomarkers. Furthermore,
our results provide some suggestions about the underlying
pathophysiology. However, the complexity and heterogeneous
pathophysiology of perinatal depression complicate the
discovery of metabolic biomarkers. Future studies need to
be implemented in larger cohorts, including patients with
severe clinical depression, with consistently defined subgroups
with respect to symptom onset, lifestyle, and comorbidities
(81). Moreover, integration of different omics is desirable for
comprehensive molecular phenotyping.

LIMITATIONS

There are some limitations to the current study. Because
of strict inclusion criteria, the sample size was relatively
small. Furthermore, sampling has been limited to older than
average and more educated women. The generalizability of the
conclusions requires broader sampling.

CONCLUSION

In this exploratory metabolomics study, we were not able
to define a unique metabolic profile of women with PPDSs.
However, we identified two clusters of women within the
PPDSs presenting different profiles. One cluster appeared to
have altered kidney function, whereas the other showed a
metabolic syndrome–related profile, both previously associated
with depression. These findings need to be further validated in
future larger studies. As depression is a heterogeneous diagnosis
with different symptoms associated with different metabolic
pathways, our results support the need to continue examining
potential distinct patient groups within the PPD spectrum.
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