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Why is psychiatry unable to define clinically useful biomarkers? We explore this question

from the vantage of data and decision science and consider biomarkers as a form of

phenotypic data that resolves a well-defined clinical decision. We introduce a framework

that systematizes different forms of phenotypic data and further introduce the concept

of decision model to describe the strategies a clinician uses to seek out, combine, and

act on clinical data. Though many medical specialties rely on quantitative clinical data

and operationalized decision models, we observe that, in psychiatry, clinical data are

gathered and used in idiosyncratic decision models that exist solely in the clinician’s

mind and therefore are outside empirical evaluation. This, we argue, is a fundamental

reason why psychiatry is unable to define clinically useful biomarkers: because psychiatry

does not currently quantify clinical data, decision models cannot be operationalized and,

in the absence of an operationalized decision model, it is impossible to define how a

biomarker might be of use. Here, psychiatry might benefit from digital technologies that

have recently emerged specifically to quantify clinically relevant facets of human behavior.

We propose that digital tools might help psychiatry in two ways: first, by quantifying

data already present in the standard clinical interaction and by allowing decision models

to be operationalized and evaluated; second, by testing whether new forms of data

might have value within an operationalized decision model. We reference successes from

other medical specialties to illustrate how quantitative data and operationalized decision

models improve patient care.
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Biomarkers are crucial to medical science, so much so that
even the U.S. Congress has sought to define them. The
National Institutes of Health (NIH) defines a biomarker as “a
characteristic that is objectively measured and evaluated as an
indicator of normal biologic processes, pathogenic processes,
or pharmacologic responses to a therapeutic intervention” (1).
The U.S. Congress and Food and Drug Administration (FDA)
further defined a biomarker as “a physiologic, pathologic,
or anatomic characteristic or measurement” that “includes a
surrogate endpoint” (2) that indirectly reflects a primary disease
process. So defined, identifying and applying a biomarker
in clinical practice requires that a bottom-up knowledge of
pathophysiology converge and meaningfully interact with a
clinician’s top-down evaluation of phenomenology. A biomarker,
therefore, presupposes that pathophysiology interact with
phenomenology, thereby allowing clinicians to apply physiologic
tools to the diagnosis and treatment of a patient’s disease.

Though the American Psychiatric Association has regularly
published consensus reports outlining promising biomarkers (3),
the way clinicians diagnose and treat psychiatric disease remains
largely unchanged. Outside of neurodegenerative conditions,
no psychiatric disorder requires or has available a quantitative
biomarker to establish a diagnosis, stage the progression of
illness, guide the selection of treatment, or evaluate the impact
of treatment (65).

Here, we suggest that the failure to define useful biomarkers
rests in part on diagnostic procedures that, in their current
form, cannot be fully operationalized. In turn, we argue that
psychiatry’s inability to operationalize clinical decision results
from a reliance on imprecise, qualitative data and on data-
gathering procedures that are unique to each clinician. Though
this failure further suggests the need for advances in our bottom-
up understanding of pathophysiologic mechanisms, here, we
focus primarily on improving the clinician’s top-down evaluation
and diagnosis. To explicate this view, we define a series of basic
concepts and build upon these concepts to show why biomarkers
remain elusive in psychiatry and how we might proceed.

PHENOTYPES AND DECISION MODELS,
DEFINED

Broadly speaking, a phenotype encompasses any observable
characteristic, from an individual’s molecular and biochemical
properties to their repertoire of possible behaviors (4).
In psychiatry, clinically relevant phenotypes are generally
conceptualized as symptoms and signs (see Figure 1) (5).

Symptoms are reported by the patient (e.g., “I feel hot.”) and
rely on a patient’s ability to sense, interpret, and convey their
personal experience. Conversely, signs can be qualitatively or
quantitatively observed, e.g., skin that is qualitatively “warm to
the touch” can be quantified as 39◦C. In the case of a qualitative
sign, the sensor is the clinician’s eyes, ears, or fingers; the clinician
senses and summarizes the data at hand by noting that the skin
is “warm to the touch.” In the case of a quantitative sign, the
sensor is an instrument designed to measure the phenomenon
of interest; e.g., a thermometer records that the skin is 39◦C.

A biomarker is a quantitative sign that, as stated above,
captures some aspect of biology that is salient to health or
disease. Broadly speaking, there are two classes of biomarkers:
descriptive and treatment. Descriptive biomarkers screen for
disease or stage disease progression (see Table 1). Treatment
biomarkers inform therapeutic interventions that, based on their
relationship to pathophysiology can be palliative, modifying, or
curative. Because a biomarker’s overall goal is to inform clinical
reasoning, to the NIH’s definition we add that a biomarker must
help resolve a well-defined clinical decision within what we will
call a “decision model” (33).

We introduce the term “decision model” to describe the series
of strategies and policies that a clinician uses to evaluate a patient
and craft a treatment plan (33). These strategies and policies
can be acquired explicitly through instruction (whether clinical
training or review of scientific literature) or implicitly through
clinical experience. As the term suggests, a decision model
informs a clinician’s decision about how to seek out, combine,
and act on clinical data. Within a decision model, phenotypic
data inform hypotheses of how those data interrelate and guide
the clinician’s thoughts and actions during the exam, the purpose
of which is to decide how best to intervene with treatment (6).
Therefore, a decisionmodel is fluid, evolving continuously as new
data become available.

Clinical data can be assessed based on their reliability and
utility; put differently, data are not equally reliable or useful.
Symptoms are subjective, being a patient’s expression of their
personal experience. Signs are objective, being observed either
by a clinician or by an instrument designed for that purpose
(7). The reliability of a symptom or a sign depends on how
accurately it captures a given phenomenon; in the case of a
patient, how faithfully he reports his personal experience; in
the case of a clinician, how skillfully she senses “warm to the
touch” and a thermometer’s calibration to degrees Celsius. To
be of value within a decision model, data must be reliable and
useful. A clinician might observe that a patient has freckles
however this datapoint is unlikely to be useful in a decisionmodel
for schizophrenia; the number of freckles, therefore is unlikely
to serve as a useful biomarker for schizophrenia staging or
treatment. How reliably a biomarker answers a clinical question
can be further assessed in terms of sensitivity, specificity, and
accuracy. What makes a biomarker clinically valuable will be
further discussed in a separate section, below, however, it is worth
noting that once a biomarker has met acceptable criteria for
reliability, it might transition to a standard clinical test that in
addition relies on the accuracy, range of error, and uncertainty of
the assay, instrument or clinical tool.

Decision models can be assessed based on their efficacy and
efficiency. An effective decision model will improve a patient’s
clinical state. Because clinical work is temporal in nature (i.e.,
ineffectively treated disease states can progress and worsen),
efficiency is an important value for a decision model. The
efficiency of a decision model can be assessed by how much time
and data gathering are required to reach an optimal decision.
Assuming that two decision models are equally effective, a
decision model that requires 5min to gather 10 datapoints is
more efficient than one that requires 20min to gather 100. The
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FIGURE 1 | Biomarkers are quantified phenotypes relevant to a decision model. This nested plot shows that subjective symptoms and observable signs are

phenotypes. Signs can be observed with qualitative or quantitative methods. A quantitative observable sign requires the use of an instrument to measure the data of

interest. A biomarker is a quantitative observable sign that has some bearing on a given decision model. In this case, we are trying to evaluate a 30-year-old man who

reports he is “hot and shaky.” A clinician might observe his habitus and record that the man’s skin is “warm to touch.” Quantitative observable signs might include his

age and the presence of the PKD1 gene. Our clinical goal is to understand and treat his report of “hot and shaky,” therefore, within our decision model, his age and

PKD1 gene status are not necessarily relevant. His temperature and WBC are relevant because they have direct bearing on our decision model. Note that a

phenotype can change over time as one’s genes interact with the environment: the symptoms and signs of a bacterial infection are phenotypes that emerge only

during the illness. Further note that while some phenotypes may change year-to-year or even moment-by-moment, the autosomal dominant mutation at the PKD1

gene on chromosome 16 will not change. PDK, Polycystic Kidney Disease; yo, year-old; T, temperature; C, Celsius; WBC, White Blood Count (reported as × 103/µL).

TABLE 1 | Types of biomarkers.

Class Purpose Goal Example

Descriptive Screening Indicate a possible disease process Fever→motivates further workup

Staging Indicate disease stage (without explicitly informing treatment) Creatinine→kidney disease progression

Therapeutic Palliative Inform treatment that does not act on pathophysiology Painful metastatic cancer→morphine

Modifying Inform treatment that modifies pathophysiology Hypertension→Anti-hypertensive

Curative Inform treatment that cures pathophysiology HER-2 positivity→Herceptin MRSA→Vancomycin

importance of these criteria will become clearer, below, as we
discuss formalizing and optimizing decision models.

The interaction of subjective symptoms, observable signs,
and biomarkers within a decision model can be illustrated with
a simple example: a patient presents to an emergency room
reporting “I have the worst headache of my life.”

The patient’s symptom report serves as the first datapoint
in the clinician’s decision model for evaluating and treating the

patient’s headache. The clinician will populate her decisionmodel
with hypothetical causes of experiencing the “worst headache
of my life” (e.g., subarachnoid hemorrhage, migraine, infection)
and will use her decision model to systematically eliminate or
confirm hypotheses by selectively soliciting other symptoms and
signs. Data from the patient about when the headache began and
whether they’ve had similar headaches or recent head trauma will
no doubt be paired with data observed by the clinician looking for
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focal neurologic deficits or measurements of temperature, blood
pressure, electrolyte, and other laboratory panels. Together, these
data will guide the clinician’s headache decision model.

Viewed from a Bayesian perspective (8, 9), a clinician begins
with a prior belief or an a-priori probability that a given disease
best explains the available data based on the patient’s report,
clinical appearance, or disease prevalence in that clinical setting.
By selectively searching for and building in additional data to
her overall decision model, the clinician continuously updates
the likelihood that these data can be best explained by any
specific disease. As she updates these likelihoods, she decreases
her uncertainty about how to treat the patient.

Technically speaking, this is a process of Bayesian belief
updating that underwrites most forms of data assimilation and
uncertainty quantification in the life and physical sciences—
sometimes referred to as evidence accumulation (10–14). As we
will see below, this process of belief updating can be cast in terms
of converting a prior belief (before seeing any clinical data) into a
posterior belief (after seeing the data), in a principled fashion [for
a more technical example of Bayesian statistics, see (15)].

Data do not have equal utility within a decision model. In
an emergency room patient who reports “worst headache of my
life,” the presence of fever is causally non-specific. Put differently,
fever is weakly specific for multiple causes of disease. Fever
might prompt a clinician to collect additional types of data,
such as an analysis of cerebrospinal fluid or blood. These data
are also weakly specific for a given disease cause, but as weakly
specific data accumulate, the additive effect is to increase the
overall likelihood of one hypothesis over competing hypotheses.
For example, if a cerebrospinal fluid analysis show high levels
of glucose, white blood cells and protein, these data suggest
that the person’s headache is caused by a bacterial meningitis.
Should a cerebrospinal fluid culture identify a specific type of
bacterial infection, a clinician might treat this condition with an
antibiotic drug that has known efficacy against that bacteria. In
this example, the clinician combined multiple forms of weakly
specific data within her decision model to converge on an
appropriate treatment. The process of selectively combining
weakly specific though complimentary datapoints and of moving
from subjective symptom to observable signs to treatment is at
the heart of the medical enterprise.

Technically, this process is beautifully described in terms
of the principles of optimal Bayesian design (16); namely, the
clinician gathers data that she believes will most efficiently resolve
her uncertainty about competing hypotheses and, overall, about
how to act to treat her patient. In machine learning, this is
known as the problem of active learning; namely, finding the
next data point that is maximally informative in relation to beliefs
about how the data were caused (12). In the neurosciences, this
is known as active inference; namely, responding to epistemic
affordances offered by different diagnostic avenues (17). The key
problem addressed by these approaches to diagnosis is that the
best data to solicit is determined by the beliefs or hypotheses
currently entertained by the clinician, which is to say, by the
clinician’s current decision model. In other words, only if the
clinician must decide whether a bacterial meningitis might have
caused her patient’s specific phenotype (comprising: “headache,”

fever, etc.), will she order a cerebrospinal fluid culture to test
this hypothesis. A cerebrospinal fluid culture is not the indicated
diagnostic procedure across decision models, but it is a useful test
based on the data that the clinician has already assimilated.

In short, data are not of equal utility to all decisions within a
larger decision model. The presence of a fever might be relevant
to prompt further workup, but not immediately relevant to
antibiotic selection. Data have utility only within the context
of a specific clinical decision (18, 19). Only in rare cases do
single datapoints or single forms of data independently resolve
clinical decisions.

On this view, biomarkers have a special (epistemic) value
because they resolve uncertainty under a particular decision
model. The value of a biomarker is not in identifying a disease
in isolation from other clinical data; but rather, a biomarker
operates within and updates an existing decision model and,
therefore, collaborates with other clinical data to decrease the
overall uncertainty of a well-defined course of action.

CANDIDATE BIOMARKERS: ASSOCIATIVE
AND PREDICTIVE

Webroadly consider associative and predictive biomarker studies
and we evaluate whether and how they could operate within
decision models in psychiatry (65).

Associative biomarker studies rely on classic null-hypothesis
tests to compare group means of a given parameter and,
therefore, associate that parameter with a disease group. An
example is whether brain structure in a group of depressed
patients differs from a group of non-depressed controls (20) or
whether genetic variants of the serotonin transporter gene differ
in depressed and non-depressed patients who have experienced
life stressors (21, 22). Other work has attempted to trace the
emergence of depression by collating independently collected
genetic, cellular, and whole-brain imaging datasets (23). So
far, associative biomarkers have offered little clinical utility in
psychiatry; the statistical methods upon which they are based are
formulated at the group or population rather than the individual
level. Associative biomarkers can be actionable on the individual
level, but they must first be evaluated in new individuals and
separate cohorts as a predictive biomarker. One example is the
North American Prodromal Longitudinal Study risk calculator,
which associated phenotypic variables (e.g., cognitive deficits
and symptom profiles) with the risk of transitioning from
clinical high risk to psychosis (24); this study is currently
being evaluated in new individuals and separate cohorts as a
predictive biomarker.

Predictive biomarker studies use specialized methods to
identify values (whether quantitative or subjective) within a
dataset, which, in combination, predict a desired variable such
as a diagnosis or clinical outcome (25). For example, machine-
learning models trained on a large group can be validated
and applied to individuals (26). A supervised machine-learning
model sieves through many candidate variables to identify
which are most predictive of a disease-related target variable.
An example is a recent supervised machine-learning study
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that identified a pattern of life experiences, neurobiological
differences, and personality traits that were predictive of
binge drinking in 14-year-olds (27). An unsupervised machine-
learningmodel looks across a similarly large number of candidate
features to identify patterns that can then be assessed for common
properties. Unsupervised machine-learning models are said to
be unbiased and data-driven because they do not require data
to be labeled a priori or a user to specify an outcome of
interest. For example, a recent unsupervised machine-learning
study identified three co-occurring symptom clusters across
patient self-report and clinician-rated symptom scales that were
associated with response to antidepressant and/or cognitive
behavioral therapy (28, 29).

There is notable variability across the features and
target variables currently explored in psychiatric biomarker
development: subjective symptoms (patient self-report or
behavioral trait scales) are often paired with quantitative
observable signs (brain imaging, genetics, age). These features
and target variables, in turn, are often evaluated within the
context of a psychiatric diagnosis (see Box 1), which is largely
based on subjective symptoms. The variability in features and
target variables, therefore, could in part be explained by the
field trying to define an unknown clinical landscape: because it
is unclear how to best conceptualize psychiatric disorders, it is
further unclear which data might afford the greatest utility in
understanding them.

Notwithstanding the wide range of data across studies,
the data evaluated in individual biomarker studies is narrow.
Most studies associate a single form of data (e.g., genetic or
neuroimaging or symptom assessment) with diagnosis. Even
complex machine-learning studies that combine multiple forms
of data are relatively narrow compared to the range of data a
clinician routinely gathers. Although machine learning studies
may provide novel insights into mental illness, they often fail to
replicate and, thus far, have failed to guide clinical practice.

This is not surprising; single datapoints or even single forms of
data rarely resolve a clinical course of action, even when the range
of possible courses of action is known and well-described (e.g.,
because the common types of infection and treatment are known,
there was a much smaller number of possible clinical decisions
in our “hot and shaky” patient than for a given psychiatric
patient, wherein the landscape is not known). Furthermore,
there is a growing appreciation of the limitations of machine
learning in terms of “explainability” and difficulties establishing
the predictive validity of a simple set of biomarkers. With the
exception of machine learning procedures based upon generative
models (e.g., variational auto encoders or generative adversarial
networks), most schemes suffer from the poor generalization,
predictive validity, and overfitting that go hand-in-hand with an
overly parameterized deep learning network.

To put it more plainly, associative biomarker studies suffer
from the fallacy of classical inference, wherein an overpowered
group identifies a candidate biomarker with a high statistical
significance but with an effect size that is very small and
essentially disappears at the single subject level. Meanwhile,
predictive biomarker studies can overfit the parameters of their

BOX 1 | Diagnostic Foraging.

Attempts to classify psychiatric disease have primarily focused on subjective

symptoms and qualitative, observable signs. The Diagnostic Statistical

Manual and International Classification of Disease use expert consensus

to classify mental illnesses into binary disease categories based on

combinations of subjective symptoms and observable signs (30, 31).

Biomarker development has no doubt been stymied by an unavoidable

corollary of combinatorial diagnostic groups: the sheer number of possible

symptom combinations meeting criteria. For example, a recent commentary

on the ethical implications of machine learning in psychiatry computed

that there are 7,696,580,419,045 unique sets of symptoms that meet

criteria for schizophrenia as defined in the Structured Clinical Interview

for DSM-5 (SCID-5) (32). Similarly, because there are at least 488,425

ways to be diagnosed with a major depressive episode based on DSM-

4, such top-down phenotypic imprecision was likely a reason that the

first treatment-selection biomarker trial did not succeed (33). Though top-

down combinations of symptoms have, in other disciplines, converged

with bottom-up pathophysiology (e.g., the pill-rolling tremor, masked facies,

festinating gait, and stooped posture that are pathognomonic of Parkinson’s

Disease and substantia nigra degeneration) sometimes they have not

(e.g., dropsy). Practically, it would appear difficult to bridge bottom-up

pathophysiology and seven trillion symptomatically dissimilar schizophrenias.

Other strategies suggest that behavior might be more accurately captured

by considering multiple dimensions of a disease (e.g., mood state) (34)

along a continuum. Yet other studies suggest that the very act of

diagnosing is poorly framed and that an individual’s symptom profile

might be better captured with a single dimension, such as “p” (35). The

Hierarchical Taxonomy of Psychopathology is an attempt to quantitatively

define constellations of co-occurring signs, symptoms, andmaladaptive traits

and behaviors that might prove useful to clinical assessment and treatment

(6, 36).

None of these taxonomies references a quantitative biomarker or attempts

to define a quantitative threshold for separating a disease state from a non-

disease state. As in the case of blood pressure, as the field moves toward

greater understanding such a threshold will likely change, however, in the

absence of quantitative measures, such a threshold cannot be evaluated and

refined.

model to a given dataset; therefore, even though a predictive
biomarker might explain a large amount of the variance,
this model is useless in a novel clinical population. Although
cross-validation techniques are meant to help minimize the
likelihood of overfitting (25, 37), many datasets are unique,
so cross-validating on an independent but similarly unique
dataset does not truly demonstrate generalizability or resolve the
overfitting problem (38). Grounding biomarker studies in clinical
practice and making utility within a decision model a necessary
component of biomarker development, therefore, might prove
helpful. These technical considerations bring us back to the
question of value: what gives a biomarker value and which data
offer the most value to a decision model?

WHAT GIVES A BIOMARKER CLINICAL
VALUE?

Biomarkers have value if they help clinicians better describe
or better treat disease within a larger decision model (see
Table 1). Unfortunately, many candidate biomarkers attempt to
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describe disease solely in terms of diagnosis, a pursuit that has
been complicated by a lack of consensus about the best way
to diagnose psychiatric diseases (see Box 1). Indeed, it is an
understandably complex (if not impossible) task to develop a
biomarker for schizophrenia when there are over 7.6 trillion
unique combinations of symptoms that each meets diagnostic
criteria for schizophrenia (32).

For a biomarker to have value, it should guide clinical
decision independent of diagnosis. In medicine, descriptive
biomarkers can help screen for or stage a disease. Meanwhile,
therapeutic biomarkers can guide clinical decision toward
palliative, modifying, or curative treatments.

Palliative therapeutic biomarkers identify treatments that
suppress the downstream manifestations of a disease: for
example, an opioid might be prescribed for pain related to
metastases from a HER-2 positive cancer. Palliative therapeutic
biomarkers are broadly applicable across diseases because they
are not related to any specific pathophysiology; opioids relieve
pain related to many pathophysiologies and so a biomarker
indicating that an opioid is an appropriate clinical course of
action would be applicable to many diseases. Because they do
not treat but rather suppress the expression of pathophysiology,
many current psychiatric treatments fall in this category. For
example, hydroxyzine might suppress the panic of someone
with generalized anxiety disorder, but it is unlikely that panic
is related to dysregulation of the histaminergic system. Or
furthermore, antipsychotics and antidepressants are broadly used
across psychiatric diseases because they most likely suppress the
downstream effects of (rather than modify) pathophysiology.
Fortunately for our patients, the majority of psychiatric therapies
require little or no understanding of pathophysiology because
they target downstream mechanisms that are found broadly
across disorders.

Modifying and curative therapeutic biomarkers identify
subsets of patients that share a pathophysiology, allowing them
to be paired with treatments that target that pathophysiology.
While modifying treatments temporarily (dependent on the
duration of action), a curative treatment eliminates or reverses
the pathophysiology. Such therapeutic biomarkers apply to a
progressively narrower patient population because they would
identify, in essence, a subset of a larger population that, in
the absence of a biomarker, would appear clinically similar.
For example, blood pressure is a valuable biomarker because
without it, a clinician might not know to prescribe an otherwise
well-appearing patient an anti-hypertensive.

Themore deep our knowledge of bottom-up pathophysiology,
the more specific the possible treatment and the less likely the
associated biomarker is to be broadly applicable to the larger
population. Put differently, the rarer a given pathophysiology is,
the less likely a therapeutic biomarker is to provide actionable
insights to the vast majority of patients. For example, research
suggests that within the larger category of schizophrenia, there
are the very rare Mendellian risk genes (e.g., 22q11 or GRIN2A)
and the relatively more common (though still quite rare)
polygenic common risk loci (39). Should treatments be identified
for each specific pathophysiology, it seems unlikely that they
would be applicable to the larger population of “schizophrenia,”

for which there are ∼7.6 trillion possible combinations of
symptoms and signs (32). Likewise, testing any biomarker for a
specific schizophrenia pathophysiology on a sample drawn from
∼7.6 trillion possible schizophrenias lacks face validity and is
unlikely to yield positive or reproducible conclusions. Such prima
facia logic suggests the need for greater phenotypic precision
within operationalized decision models; in other words, for more
serious consideration of the clinical data and how these data are
integrated to articulate specific decisions.

Overall, the need for top-down biomarkers will grow in
importance as our knowledge of bottom-up pathophysiology
advances. In other words, as we deepen our understanding of the
complex pathophysiology underlying phenomena of psychiatric
disease, we anticipate a series of treatments that modify or
cure a mechanistically precise pathophysiology. Identifying
patients who could benefit from such modifying or curative
treatments will require biomarkers that operate within clinical
decision models. A primary task facing psychiatry, therefore, is
determining which data offer the most value to a decision model.

Consider that a standard psychiatric interview gathers
information about a patient’s biologic, psychologic, and
social history (40). A clinical evaluation might yield
thousands of heterogenous datapoints that can range from:
a patient’s observable behavior; their reported narrative and
symptomatology; results from clinical tests like blood work,
urine toxicology, electrocardiogram; reports from family
members, legal authorities, or other healthcare providers; the
patient’s socioeconomic status; and how these data change over
time. Any of these data might have utility within a decision
model, depending on the clinical setting and the clinician’s
training and experience.

Sifting through clinical data to operationalize decision models
that can be tested and optimized has always been a fundamental
complexity of medicine. Historically, successful strategies to
develop decision models and biomarkers have been firmly rooted
in physiology or in epidemiology.

BIOMARKER DEVELOPMENT
STRATEGIES: PHYSIOLOGY AND
EPIDEMIOLOGY

A biomarker bridges bottom-up pathophysiology and top-down
phenomenology. Two strategies to biomarker development have
been based in physiology and epidemiology (65). The physiology-
based strategy can be considered a bottom-up approach wherein
understanding the pathophysiology of a well-defined decision
model leads to an understanding of how to clinically intervene.
The epidemiology-based strategy can be considered a top-down
approach where, in the absence of a well-defined decision model,
identifying common phenomena that precede a defined clinical
outcome leads to a better understanding of disease and, therefore,
to identifying useful therapeutic targets. We explore both below.

The paragon of physiology-based biomarkers is the discovery
of molecular disease markers in oncology. For centuries, cancer
diagnosis and treatment were based on a decision model that
was heavily weighted by where in the body the cancer was

Frontiers in Psychiatry | www.frontiersin.org 6 September 2021 | Volume 12 | Article 706655

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Barron et al. How Psychiatry Can Develop Biomarkers

FIGURE 2 | Physiology-based (bottom-up) and epidemiology-based (top-down) approaches to biomarker development can define useful decision models. Decision

models converge top-down clinical phenomena with bottom-up pathophysiology. In oncology, a physiology-based investigation indicated that HER-2 positivity in a

cancer of the breast could be treated with Herceptin. In cardiology, the Framingham Heart Study’s epidemiology-based approach showed that smoking behavior (a

top-down phenomenon), hypertension and high cholesterol were risk factors for cardiovascular disease. In psychiatry, it remains unclear how to define and

operationalize decision models to approach clinical phenomena with pathophysiology and therefore, which data will be most helpful within these larger decision

models (LDL, low-density lipoprotein).

located. A patient might arrive in clinic describing symptoms
of itching and tenderness over their breast. On their physical
exam, a clinician might then note redness and lumps within
the breast tissue, observable signs of advanced cancer. Cancer
within the breast tissue was called “breast cancer” and was
treated differently from cancer found elsewhere in the body. This
decision model appeared straightforward, but treating cancer
was capricious: two patients with breast cancer might have very
different responses to the same treatment. The advent of tools to
identify cell type and, subsequently, to create molecular tumor
profiles that could probe the pathophysiology of cancer led to
the discovery of the BRCA-2 and HER-2 gene mutations, which
in turn showed that “breast cancer” was in fact a heterogenous
mosaic of tumors (41). Moreover, molecular assays showed that
mutations seen in some types of breast cancers were found
in ovarian and prostate cancers. Such evidence demonstrated
that a tumor’s molecular profile could guide treatment selection.
Today, cancers of the breast are routinely assayed for the HER2
molecular marker, which is directly associated with responsivity
to Herceptin chemotherapy (42). Thus, HER2 is a biomarker that,
in combination with other data guides a highly defined decision
model toward effective treatment, as illustrated in Figure 2.

Exemplars of epidemiology-based biomarkers are blood
pressure and blood lipid level. In combination with smoking,
blood pressure and blood lipid levels are surrogate and
modifiable risk factors of cardiovascular disease (CVD) (43, 44).
President Franklin Delano Roosevelt’s death from CVD led to
the organization of the FraminghamHeart Study in 1948 (44). At

the time, little was known of CVD. Because little was known, it
was unclear which data might be helpful in diagnosing, staging,
or treating CVD; in other words, it was not clear how to define
a useful decision model in CVD. Clear-cut clinical outcomes
like a myocardial infarction were deemed invariably fatal and,
without instruments to detect them, were diagnosed generally
on autopsy (44). At that time, emerging research suggested
the utility of electrocardiograms for diagnosing a myocardial
infarction and for measuring blood lipids to predict MI risk.
It was quite unclear which blood pressure was considered
“normal” [at the time, the standard for normal systolic blood
pressure was one’s age plus 100 (43)]. Notwithstanding these
knowledge gaps, the Framingham Heart Study’s designers
investigated all these seemingly disparate threads of evidence.
In fact, they identified eighty phenotypic traits and measured
them in 5,200 people. Over time, the Framingham Heart Study
observed that cholesterol level, blood pressure, and smoking
status formed a decision model that was associated with CVD
at the population level (44). On the individual level, combining
cholesterol level, blood pressure, and smoking status into a
mathematical model of CVD led to the Framingham Risk
Score (45), which described someone’s risk of CVD given the
magnitude of each measure (see Figure 2). The Framingham
Risk Score subsequently generalized to novel populations
(46, 47). Even though the decision model was identified at the
population-level, the Framingham Risk Score is widely used
by clinicians to guide treatment for individual patients and has
guided decades of drug development (45) (https://www.mdcalc.
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com/ascvd-atherosclerotic-cardiovascular-disease-2013-risk-
calculator-aha-acc). Blood pressure and blood lipid levels are
therefore biomarkers that, in combination with smoking status,
form a decision model that guides clinical action by suggesting
lifestyle modifications and pharmacologic treatments.

And yet, the presence of a cancer or a myocardial infarction
is a binary distinction for disease: you either have it or
you do not. But the line between health and disease is not
always obvious, particularly for disorders of emotion, thought,
and behavior (4). In psychiatry, the assumption that health
and disease are discrete categories is being replaced by the
observation that phenotypes present across a population are
shifted toward extremes in disease (48). Similarly, observations
that individual phenotypes can vary greatly across a population
have led to the view that there is no universally optimal (or
“healthy”) profile of brain function (4). Though a distribution of
continuous phenotypes might erode confidence in the possibility
of categorical diagnoses in psychiatry, this has not been the case
in other specialties: hypertension is parameterized as a range of
blood pressures. Continuous phenotypes have the added value of
expressing magnitude, which could be especially relevant given
the multifactorial nature of psychiatric disease and the possibility
that a decision model might draw probabilistically on multiple
forms of (continuously measured) biomarkers.

Weakly specific and weakly sensitive biomarkers can guide
clinical action if the decision model and, crucially, the decision
in question is sufficiently well-defined. HER-2 gene positivity
indicates that the drug Herceptin may be helpful in treating a
very specific form of cancer. HER-2 positivity, therefore, resolves
a specific treatment decision in a specific decision model: HER-
2 does not resolve the treatment decisions in a “hot and shaky”
patient or in a torn anterior cruciate ligament, or even in
the selection of alternatives to Herceptin in a HER-2 positive
breast cancer. Similarly, identifying risk factors for CVD guides
clinicians to measure, trace, and then target those factors with
treatment. HER-2 and CVD risk factors therefore are biomarkers
that inform specific, well-defined treatment decisions within
larger, well-defined decision models.

Framing clinical decision from a Bayesian perspective
illustrates that, to be “fit for purpose,” a biomarker must operate
within a well-defined decision model to: (1) provide the clinician
data they cannot currently access; (2) guide the collection of
additional data; (3) uniquely resolve a well-defined treatment
decision; (4) provide a convergence between top-down clinical
phenomenology and bottom-up pathophysiology. Accordingly,
we argue that operationalizing decision models in psychiatry is
crucial if researchers hope to offer a biomarker to inform optimal
decision-making (49).

OPERATIONALIZED DECISION MODELS

Psychiatry lacks operationalized decision models. This does
not mean that psychiatry has no decision models. We reason
that individual clinicians successfully treat individual patients
by forming their own decision models that then guide data
collection and treatment selection. In other words, psychiatrists

treat patients by acting on idiosyncratic decision models. What
psychiatry lacks is a way to formally describe an idiosyncratic
decision model, thereby allowing it to be shared, evaluated, and
optimized in terms of efficacy and efficiency. In machine learning
and cognitive science, the process of optimizing a decision or
generative model1 is known as structure learning or—in statistics
—(Bayesian) model selection and is one of the most important
and difficult problems in the field (50–55).

Consider what happens when a clinician receives this one-line
report on an intake form: “a 50-year-old man with schizophrenia
is speaking to his dead girlfriend.” This sentence serves as the
first piece of information that, based on her clinical training,
forms her preliminary decisionmodel. If the clinician knows only
that a man is speaking to his dead girlfriend, her preliminary
decision model might include several hypotheses: e.g., normal
or pathologic grieving, intoxication, withdrawal, trauma, or
some other “organic” brain disease perhaps even a bacterial
meningitis. Knowing that the patient is a 50-year-old man with
schizophreniamakes a primary psychosis more likely and so what
is required from a Bayesian perspective is data to eliminate the
less likely but more serious hypotheses that require immediate
intervention (e.g., delirium tremens from withdrawal) and to
confirm a more likely hypothesis (schizophrenia). A series of
standardized laboratory tests—a urine toxicology, breathalyzer,
complete blood count, or blood electrolytes—would help rule
out the less likely albeit more serious and easily treatable disease
hypotheses. The clinician values these tests because the reliability
(sensitivity, specificity, accuracy, range of error, and uncertainty)
of the assays upon which they are based are regularly monitored
and calibrated.

From a Bayesian perspective this is the problem of optimum
Bayesian design (12, 16) or, active (Bayesian) inference (56, 57):
the clinician uses standardized laboratory tests to eliminate less
likely hypotheses to render the “true” disease hypothesis—and
therefore the treatment decision—more certain or precise. And
yet, if the clinician wanted to increase her confidence that
the 50-year-old man indeed has schizophrenia, there are no
standardized clinical tests she could perform. The clinician would
simply ask her patient whether he experienced specific negative
or positive symptoms of schizophrenia and for how long.
During this conversation, the clinician would carefully observe
the patient’s demeanor, dress, affect, behavior, and thought
process, looking for signs of schizophrenia such as blunted affect,
disheveled appearance, and disorganized thought process. As
the clinician accumulates more data, her relative certainty of a
primary psychosis might increase—and her uncertainty about
how to treat the patient would resolve. In sum, her decision
model helps her organize and seek out new data, guiding her to
a decision.

Framing clinical decisions with Bayesian inference allows
the decision model itself to be made explicit and optimized.
The clinician’s decision model and implicit prior beliefs can, in

1Namely, a model that generates consequences from causes; in our setting, a model

that generates signs, symptoms, and biomarkers from the right kind of psychiatric

nosology. Inverting a generative model is the same as inferring the diagnosis, given

the observable or measurable consequences of a psychiatric condition.

Frontiers in Psychiatry | www.frontiersin.org 8 September 2021 | Volume 12 | Article 706655

https://www.mdcalc.com/ascvd-atherosclerotic-cardiovascular-disease-2013-risk-calculator-aha-acc
https://www.mdcalc.com/ascvd-atherosclerotic-cardiovascular-disease-2013-risk-calculator-aha-acc
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Barron et al. How Psychiatry Can Develop Biomarkers

principle, be operationalized by mapping backwards from her
final decision to the data that preceded it. In other words, it
is possible to make an objective inference about the clinician’s
subjective inference by defining which decision model would
make her ultimate decisions the most likely. This approach has
already been established at the level of proof of principle in
computational psychiatry, where the focus is to infer the prior
beliefs of experimental subjects and, ultimately, patients using
their behavioral responses to various stimuli and economic games
(15, 19). However, the same procedures can, in principle, be
applied to the psychiatrists using their diagnostic and treatment
responses. Note the subtlety of this approach; namely, treating
psychiatrists as expert Bayesian inference machines and reverse
engineering the decision models that underwrite their diagnostic
skills. The idea here is to operationalize decision models by
making them explicit—by identifying the decision model that
best explains the diagnostic behavior of one psychiatrist or
another. As sentient creatures, with theory of mind, we do this all
the time: for example, one can often infer what another person
is thinking by watching where they are looking in a particular
context. The notion here is that it could be mathematically
applied to the diagnostic behavior of psychiatrists.

Operationalized decision models allow performance to be
measured within and across individuals. Measuring how one
clinician operates over time might identify decision efficacy and
efficiency that, as expected by behavioral economists, varies with
the time of day, the clinician’s mood or whether they’ve eaten
lunch or had their coffee (58). Model comparison further allows
two clinicians’ decision models to be formally compared by how
efficiently they guide data discovery and by how effectively they
arrive at a treatment decision which benefits the patient, which is
further measured by clinical data.

In the case of our 50-year-old man, we could operationalize a
decision model that excludes intoxication, withdrawal, or other
“organic” brain diseases. This process can be operationalized
because each value within a laboratory test is quantified and
can therefore be mathematically modeled. We could not,
however, operationalize a decisionmodel that confirms a primary
psychosis because the symptoms and signs of schizophrenia
upon which a diagnosis of schizophrenia is based are not
quantified (see Table 1). Because the symptoms and signs are not
quantified, the accuracy, range of error, and uncertainty of any
specific datapoint cannot be ascertained, further complicating
their inclusion in an operationalized decision model.

Symptoms cannot be quantified because, by definition, they
are the patient’s personal experience that, in turn, relies on
the patient’s cognitive ability to sense, interpret, and report
that experience. The reliance on self-report assumes that the
relevant drivers of behavior are accessible linguistically to the
reporter. But people are unaware of many of the drivers of
their behavior (something called anosognosia) and, further,
some forms of behavior (e.g., habits) are not represented by
linguistic circuits in the way that goal-directed behaviors are and,
therefore, remain difficult or impossible to articulate (59, 60).
Although some symptoms are only detected by a patient’s report
(e.g., hallucinations), a reliance on self-report is problematic: in

psychiatry, we often rely on a patient’s perception of reality to
diagnose disorders of reality perception.

Observable signs also rely on clinical inference. Two clinicians
can observe the same patient and might disagree about whether
the patient’s thought process was “disorganized.” And even if
two clinicians agree that the patient’s thoughts are “disorganized,”
there is no measure for how disorganized. Furthermore, because
there is no empirical way to demonstrate how each clinician’s
brain detected the disorganization in the patient’s speech
(i.e., which specific words, phrases, or string of ideas in the
patient’s speech led each clinician to conclude the speech was
disorganized), it is difficult to determine whether two clinicians
agree on what “disorganized” means or whether two clinicians
believe the patient’s speech was disorganized for the same reason.
Essentially, because we do not have direct access to the raw
data a clinician solicits during her clinical exam, we cannot
use model inversion to identify her data discovery procedure.
An unfortunate corollary of this problem is that, right now,
if a clinician attempts to treat a patient’s disorganized speech
with, say, an antipsychotic, there is no way to objectively
ascertain whether and how much the disorganization changes
with that treatment.

In sum, in the absence of quantified clinical data, we cannot
operationalize how a clinician arrives at a treatment decision or
how to modify treatment as the decision model updates. And
in the absence of a clearly defined decision model, it is quite
unclear where a biomarker might be of use. This means that the
prerequisite to defining a biomarker to formalize decisionmodels
is to first develop quantitative phenotypes. We describe how this
might proceed in two stages, below.

PRACTICAL STAGES OF PHENOTYPING
AND DECISION MODELING

Before a biomarker can inform clinical decision, that clinical
decision process must itself be explicitly formalized and
evaluated. Put differently, we argue that a precondition
to biomarker development is that clinically salient data
be rigorously quantified and that clinical decisions be
operationalized and evaluated based on those data (61).
Only when both preconditions are met can statistical analyses be
performed to determine which data are the most useful for which
decisions. And yet it remains unclear for psychiatry which data
might be the most useful to acquire and analyze.

Psychiatry is in a conundrum comparable to where the
designers of the Framingham Heart study found themselves in
the late 1940’s: we have multiple disparate lines of thinking
about the causes of mental illness that are now only beginning
to coalesce into tenable hypotheses (62). Promising analyses of
even the largest samples with supposedly promising statistical
power and high statistical significance have repeatedly failed
on the individual level (26, 63, 64). Though this failure is
often attributed to the high phenotypic variability of psychiatric
patients, it is worth noting again that clinicians nevertheless
successfully recognize salient data and treat psychiatric illnesses
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TABLE 2 | Digital phenotypes are quantitative observable signs.

Qualitative data Quantitative data

Subjective symptoms Observable signs

Patient report Clinician observation Digital phenotypes

What’s on your mind? Search history, social media

What’s your typical day like?

How active are you?

How much sleep do you usually get?

Actimetry, geolocation

Are you a social person?

How are your relationships?

Call/text logs, social media profile

How’s your mood throughout the day?

Affect, appearance, attitude Facial action unit motion and fluidity analysis

Affect, speech, thought content,

thought process

Semantic analysis, natural language processing, vocal

acoustics

Psychomotor behavior Head box analysis

This table illustrates how commonly assessed qualitative data like subjective symptoms reported by patients and observable signs observed by clinicians can be quantified as digital

phenotypes. Quantitative data has the added value of being able to operate within Bayesian decision models.

on the individual level by applying their own idiosyncratic
decision models.

Broadly speaking, as a field, we feel confident that facets
of a patient’s biological, social, and psychological history are
relevant to the behavioral expressions of mental illness that
we treat (40). Yet behavior itself remains a vague and poorly
defined phenomenon. Behavior—whether reported by patients
or observed by clinicians—is not objectively measured in
a way comparable to the molecular assays, blood tests, or
electrocardiograms prevalent in other medical specialties. Here,
psychiatry might benefit from digital technologies that have
recently emerged specifically to quantify human behavior. We
reason that digital tools might help psychiatry in two stages: stage
1 would quantify data already present in the standard clinical
interaction and allow decision models to be operationalized and
evaluated; stage 2 would explore whether other forms of data not
currently used in the clinical evaluation might have value within
an operationalized decision model.

Stage 1 would quantify clinical data and operationalize the
decision models currently employed in clinical practice (see
Table 2). Before moving ahead to define new forms of data or
combinations of data that might be relevant to clinical work
(as described in stage 2), the field should instead quantify those
behaviors and operationalize those decisions that we already
agree are clinically relevant as rigorously as possible.

Stage 1 would involve creating video and audio recordings of
clinical interactions and using digital tools to measure the data a
clinician already solicits during her exam (65). A video recording
can be separated into visual data and audio data. Visual data
can be processed to label different parts of the body, allowing
the speed, acceleration, fluidity, and coherence of movement to
be measured. Facial expression can be quantified by measuring
how different facial action units coordinate over time (66); not
necessarily to label emotional state, but rather to measure how an
individual’s unique repertoire of facial expression changes over
time. Body language—both the patient’s and the clinician’s—can
be quantified as the relationship of the head to the shoulders,

torso, and legs throughout the clinical interview (67). Voice data
can be analyzed for its acoustic properties to measure how often a
patient takes a breath, how many syllables they utter per second,
how their intonation changes over time (68). Speech can be
transcribed and measured using tools that can define semantic
and psycholinguistic content (69–71). In essence, the mental
status exam can, in theory, be measured with digital tools (66).

Practically, if a clinician was evaluating a “50-year-old man
with schizophrenia is speaking to his dead girlfriend,” she would
proceed with her exam as usual except a video would record
her interaction. Such a recording would capture the same data
she is sensing with her eyes and ears except it will now be
digitally. A host of mathematical tools can be applied to this
digital data. In addition, the clinician’s decision model can be
inferred and formalized using Bayesianmethods described above.
Crucially, different decision models—whether from two different
clinicians or from the same clinician at different timepoints—can
be compared and optimized using the same Bayesian methods,
thereby leading to decision models that are more efficient and
effective. Once the data and decision models clinicians currently
use have been formally evaluated, new forms of data can
be evaluated.

Stage 2 would evaluate whether forms of data not currently
used in clinical decision might add value at specified points in
larger decision models. As outlined in Table 1, relatively new
technologies such as aggregates of someone’s online search (72) or
social media history (73–77) might inform clinicians about how
a patient’s interests, self-esteem, or social relationships change
over time. Paired with geolocation data, actimetry tools offer
measurements for how active a patient is (78, 79), how much
they are sleeping, and how these both change over time (80, 81).
Daily call and text logs can provide a measure of a patient’s social
connectedness and engagement (82, 83). Furthermore, wearable
sensors that detect heartrate variability and skin conductance
during or between clinical encounters could provide a measure
of a patient’s stress response and how this response changes with
treatment (84).
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In addition, other forms of data that are not currently used
in clinical practice—such as genetic information or exposome—
could be more ably evaluated within an operationalized
decision model. Even though each datapoint might have
limited specificity and sensitivity in isolation, in combination,
they might have utility at a specific decision within a larger
decision model.

Rigorous measurements of behavior in the clinical setting—
and especially outside of it—can help psychiatrists obtain more
naturalistic and nuanced data, yet we acknowledge that it is
not clear which aspects of behavior, at what time frequency, or
for how long such data should be collected (85, 86). This is
analogous to the measurement of body temperature of our “hot
and shaky” patient treated with antibiotics; we would expect the
temperature to vary over the course of the treatment. However,
unless temperature is ascertained sufficiently frequently, there
is no way of objectively knowing the time scale of the
infection. Determining a suitable time scale (days, months,
years, or decades) is largely dependent on having access to
an operationalized decision model within which time scale has
utility. Sampling a patient’s temperature over the course of a day
or week might inform a specific decision like antibiotic selection
(e.g., if a patient remains febrile, it is likely an antibiotic is
ineffective against a given infection), but measuring temperature
over the course of a month would not.

PHENOTYPING, A PREREQUISITE TO
BIOMARKER DEVELOPMENT

The relatively nascent field of Deep Phenotyping aims to
collect data for large, longitudinal samples using standardized
and rigorous procedures (87). Multiple on-going, large-scale,
necessarily collaborative efforts are seeking to provide deep
phenotypes (88) that span genetic and epigenetic data to brain
imaging to digitized behavioral and online data (89, 90). Together
these data seek to measure—as much as possible—an individual’s
biologic, social, and psychologic profile.

Although it is unclear which types of data will prove the
most relevant, it is clear what we need to learn from these data:
how to quantify, monitor, and modify specific decision models.
The first step to modifying the course of any illness is to fully
characterize that illness as it develops from health, similar to
what the Framingham Heart Study has done for cardiovascular
illnesses (44, 61). It is worth noting that the Framingham Heart
Study did not discover physiologic concepts like cholesterol or
blood pressure; these were known prior to the initiation of the
study. Rather, the Framingham Heart Study motivated further
investigation of this physiology by connecting it to clinical
phenomenology, thus bridging bottom-up and top-down clinical
evaluation. Put differently, the identification and appreciation
of precise physiologic mechanisms underlying cardiovascular
illnesses came only after a precise clinical decision model was
defined and traced over time.

Likewise, the identification of the HER-2 biomarker
required a decision model based on clinical interview
(subjective symptoms), routine physical exam (observable

signs), mammography, and biopsy. Only with a carefully
defined phenotype was HER-2 able to add value to clinical
decision by converging bottom-up and top-down assessment
within a single, highly specific treatment decision: whether to
prescribe Herceptin.

Therefore, as psychiatry’s bottom-up understanding
of pathophysiology continues to evolve, our top-down
measurement and formalization of clinical phenomenology
will become ever more crucial if the two fields of inquiry are
to converge in meaningful ways. Though it is possible that the
individual genes or pathophysiological pathways underlying
clinical conditions will be associated with specific diagnoses or
subtypes, this seems unlikely to be broadly applicable—given
the diagnostic ambiguity across psychiatric diagnoses, the
multi-determined nature, and the unclear decisions a candidate
biomarker would address (91, 92). Operationalized decision
models informed by quantitative phenotypes appear to be a
way forward.

Endeavors of this scope and magnitude require significant
investments of time and resources. Yet it is worth bearing
in mind that the amount of time and resources required to
gather background information necessary to provide actionable
insights are an investment for future generations. Defining
clinical decision models to guide treatment in the presence of
disease have the added benefit of informing decision models to
guide prevention before that disease emerges.

For patients, history has shown that early diagnosis and
preventative treatment can alter certain disease trajectories,
thereby creating an enormous benefit across a population that
more than justifies the costly upfront investment (44). It is
true that the development of new technologies can increase the
proximal cost of healthcare delivery. At present, because the
vast majority of generic psychiatric medications are inexpensive
and offer palliative treatment to a broad category of patients, it
may be more economic and effective to broadly offer palliative
treatments than to deeply phenotype patients in an effort to
identify modifying or curative treatments that help only a relative
few (see Table 1). However, overall healthcare costs can be
decreased by more effectively identifying and treating illness
in the preventative stage (93). Overall, new technology (once
effective) can demonstrate which preventative health measures
might best promote health or reduces the economic burden
of illness by decreasing inpatient admission and increasing
public health and productivity. An additional added benefit of
technology is that its cost decreases over time, thus expanding
access to populations who previously had been unable to
benefit from the healthcare for reasons of cost, geographic,
or equity.

For researchers, laying a rigorous foundation for data
collection, synthesis, and modeling will produce a dataset that
can inform a multitude of studies, which (if the Framingham
Heart Study is any indication) can yield large and compounding
dividends for the scientific community. Although it is not clear
what time scale and data will prove to be the most beneficial for
psychiatry, what makes such an investment timely for behavioral
and mental health is the fact that the necessary tools and
techniques for such a study have only recently emerged.
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In summary, psychiatry has yet to develop and validate
biomarkers that improve clinical practice. This report represents
an attempt to step back and consider why our past efforts
to develop biomarkers have failed and to reframe our
efforts in terms of data and decision science. As our
bottom-up understanding of the pathophysiology of psychiatric
illnesses continues to evolve, our top-down measurement and
formalization of clinical phenomenology will become ever more
crucial if the two fields of inquiry are to converge in meaningful
ways. Step toward this convergence include first, rigorously
quantifying clinical data and operationalizing existent psychiatric
decision models and, second, evaluating where new forms of
data, including candidate biomarkers, might be of value. Our
hope is that making clinical decision explicit will reframe the
biomarking enterprise so it might impact clinical inference and,
in turn, improve the lives of our patients.
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