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Diagnosing autism spectrum disorder (ASD) requires extensive clinical expertise and

training as well as a focus on differential diagnoses. The diagnostic process is

particularly complex given symptom overlap with other mental disorders and high

rates of co-occurring physical and mental health concerns. The aim of this study

was to conduct a data-driven selection of the most relevant diagnostic information

collected from a behavior observation and an anamnestic interview in two clinical

samples of children/younger adolescents and adolescents/adults with suspected ASD.

Via random forests, the present study discovered patterns of symptoms in the diagnostic

data of 2310 participants (46% ASD, 54% non-ASD, age range 4–72 years) using

data from the combined Autism Diagnostic Observation Schedule (ADOS) and Autism

Diagnostic Interview—Revised (ADI-R) and ADOS data alone. Classifiers built on reduced

subsets of diagnostic features yield satisfactory sensitivity and specificity values. For

adolescents/adults specificity values were lower compared to those for children/younger

adolescents. The models including ADOS and ADI-R data were mainly built on ADOS

items and in the adolescent/adult sample the classifier including only ADOS items

performed even better than the classifier including information from both instruments.

Results suggest that reduced subsets of ADOS and ADI-R itemsmay suffice to effectively

differentiate ASD from other mental disorders. The imbalance of ADOS and ADI-R items

included in the models leads to the assumption that, particularly in adolescents and

adults, the ADI-R may play a lesser role than current behavior observations.

Keywords: machine learning, random forest, autism spectrum disorder, clinical characteristics, differential

diagnosis behavioral aspects, ADOS, ADI-R, Goldstandard

INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental disorder whose symptoms emerge in
early development, are present in multiple contexts and persist over the lifespan. Over time, ASD
has shifted from a “childhood condition” with associated challenges in language and intellectual
functioning, to a wider concept of ASD including individuals with only mild symptoms or who
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do not show symptoms until later in life (1). Amongst other
reasons for increasing prevalence rates in all age groups
(2), this adjustment in the ASD concept leads to increasing
numbers of individuals undergoing ASD assessment with major
implications for clinical services. Current approaches mainly
extend diagnostic methods designed for use in childhood to
adulthood, leaving the evaluation of adult diagnostic methods
“an urgent research priority” [(3), p. 11]. We thus investigated
diagnostic data from adolescents and adults in comparison to
data from children and younger adolescents to extend current
knowledge on adults’ characteristic ASD symptoms.

The current diagnostic gold standard includes two essential
components: a direct observation of behavior by an experienced
clinician (Autism Diagnostic Observation Schedule, ADOS)
(4, 5) and an anamnestic interview with caregivers (Autism
Diagnostic Interview, Revised, ADI-R) (6). Both instruments are
assumed to contribute additively to the clinical judgment and
to lead to a consistent and rigorous application of diagnostic
criteria (7, 8). The ADOS is conducted through a one-to-one
interaction and provides direct information on current ASD
symptoms. It is complemented by the ADI-R, which provides
information on early development, focusing mainly on the time
period between 4 and 5 years of age. Due to the lengthy nature
and required in-depth training for both instruments, the usage
of this gold standard is confined to specialty clinics that usually
struggle with limited personnel capacities and long waiting lists
for diagnostic appointments.

Despite a wealth of studies investigating ASD symptoms
in toddlers and children, knowledge on behavioral ASD
characteristics, as assessed by ADOS and ADI-R, that may be
specific to adulthood and that differentiate ASD from other
mental disorders is still sparse. Results of previous studies
show difficulties of the ADOS and ADI-R to discriminate
between diagnostic groups with overlapping symptoms such
as schizophrenia (9, 10) or personality disorders (11, 12).
Although ASD is considered a lifelong condition, developmental
changes further complicate recognition of symptoms in adults
(13). Symptoms and impairments vary much more strongly in
adolescence and adulthood than in childhood and the diagnosis
of ASD in adulthood can rely much less on “prototypes” (14).

In addition to observation of current behavior, the diagnosis
of ASD relies on knowledge of developmental history, thus
the clinician needs access to valid information via caregivers,
early medical or school records, which may be increasingly
difficult to retrieve with the increasing age of the individual with
suspected ASD (15). The ADI-R may furthermore be subject
to retrospective recall biases or may be affected by inaccurate
caregiver memory, particularly if the caregiver was not concerned
about their child’s behavior in earlier childhood (16). This is
reflected by low agreement between diagnoses based on ADI-R
and those based on ADOS, particularly for older and atypical
cases (7, 17–21).

These considerations hold important implications for the
assessment of ASD in later adolescence and adulthood, as
instruments based on what is known about childhood ASD
may not be as sensitive to impairments relevant to diagnosis in
older individuals. It is thus essential to further understand what

the core diagnostic features are and how they are best assessed
in adulthood. One recent attempt to identify patterns of core
information for a diagnostic decision makes use of machine-
learning methods investigating the ADOS (22–24), the ADI-
R (25, 26) or other sources of information, such as screening
instruments or home videos (27, 28). The combination of ADOS
and ADI-R data has not yet been studied. The aim of the present
study was the characterization of those items from the combined
ADOS and ADI-R that perform best in classifying ASD vs. non-
ASD in subsamples of children and younger adolescents (ADOS
module 3 and ADI-R data) and adolescents and adults (ADOS
module 4 and ADI-R data). Furthermore, we aimed to investigate
whether classifiers including the core diagnostic features yield
better discriminative power than classifiers including only
information from the ADOS, and whether reduced subsets of
diagnostic features may be sufficient to validly classify ASD and
non-ASD cases.

MATERIALS AND METHODS

Participants
The presented project is part of the ASD-Net, a large consortium
for the research on ASD (29). To assemble a representative
sample of individuals who seek an investigation of ASD, the
presence of a clinical suspicion of ASD was the general inclusion
criterion. The sample incorporates N = 2,307 cases of children,
adolescents and adults. ADOS data were available for N =

2,288 individuals and ADI-R data were available for N = 1,258
individuals. Analogous to clinical practice, the data set was
divided into two subsamples based on the patients’ expressive
language level and chronological age, suiting the chosen ADOS
module: Module 3 for children and younger adolescents (average
age: 10.2, average IQ: 99.15); Module 4 for adolescents and
adults (average age: 26.8, average IQ: 102.13). The two data
sets were investigated separately and are henceforth labeled
children/younger adolescents (ADOS Module 3 with associated
ADI-R data) and adolescents/adults (ADOS Module 4 with
associated ADI-R data). All subjects were classified as ASD or
non-ASD cases based on best-estimate clinical (BEC) diagnosis
according to ICD-10, comprising a comprehensive clinical
investigation with physical examination, medical history-taking,
assessment of intellectual ability, ADOS, ADI-R and differential
diagnostic examination.

An ASD diagnosis was determined in 46% (N = 1,073) of the
sample, of which 40% (N = 433) had comorbid disorders. Despite
an initial suspicion of ASD,N = 1,234 individuals received either
a diagnosis of a mental disorder other than ASD (N = 898)
or no mental disorder, but developmental delays (N = 336).
This non-ASD group represents a well-balanced clinical group,
comprising different mental disorders as well as individuals
without mental disorders but with some symptoms of ASD
(“autistic traits”), but no complete fulfillment of ASD criteria.
Participants’ characteristics are presented in detail in Table 1.
Further details on the psychopathology of both subsamples are
provided in the Supplementary Tables 1, 2.

Participants’ data were collected retrospectively from the
medical records of the respective clinic (retrospective chart
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TABLE 1 | Sample characteristic for the two subsamples of children/younger adolescents (ADOS module 3 and associated ADI-R data) and adolescents/adults (ADOS

module 4 and associated ADI-R data).

ASD Non-ASD t-test

N M (SD) N M (SD) t df p ES

Children/younger adolescents

Age 558 10.43 (2.87) 805 9.92 (2.64) −3.39 1,361 0.001 0.18

IQ 438 100.8 (20.1) 519 97.5 (27.6) −2.11 955 0.035 0.13

IQ-Level 474 3.09 (.86) 737 3.09 (.87) −0.020 1,209 0.984 0.01

SA 547 9.76 (4.06) 802 3.14 (3.49) −32.01 1,347 0.000 1.78

RRB 547 1.44 (1.36) 802 0.31 (0.61) −20.75 1,347 0.000 1.15

SA+RRB 547 11.20 (4.59) 802 3.45 (3.67) −34.33 1,347 0.000 1.90

Adolescents/adults

Age 515 26.27 (11.2) 429 27.41 (12.2) 1.49 942 0.13 0.09

IQ 227 104.78 (22.6) 150 99.49 (22.4) −2.23 375 0.027 0.24

IQ-Level 472 2.87 (.78) 389 2.92 (.71) 0.926 859 0.355 0.06

SA 513 9.83 (4.23) 426 3.93 (3.69) −22.79 937 0.000 1.50

RRB 513 1.53 (1.33) 426 0.58 (.85) −12.78 937 0.000 0.84

SA + RRB 513 11.36 (4.94) 426 4.51 (4.13) −22.78 397 0.000 1.49

IQ, intelligence quotient; IQ-Level, IQ-level according to ICD-10 categories; SA, social affect domain (ADOS); RRB, restricted and repetitive behaviors domain (ADOS); SA + RRB, total

scores from the ADOS algorithms.

review) and analyzed anonymously. The procedure was approved
by the local ethics committee (Az. 92/20) and due to the
retrospective nature of data collection and analysis based on
anonymized data, the need for informed consent was waived
by the ethics committee. All methods were performed in
accordance with the relevant institutional and international
research guidelines and regulations.

Measures
The ADOS is an internationally used diagnostic instrument
that consists of four modules to be administered on the
basis of the individual’s level of expressive language and
chronological age and the appropriateness of assessment
materials and a module for toddlers (5). Each module provides
different tasks, including playful elements and activities as
well as verbal tasks intended to provide the examiner with
information about social, communicative, play and stereotyped
behavior. All modules provide a scoring algorithm comprising
subsets of 11 items for modules 3 and 4 that have been
identified as diagnostically most relevant. The ADI-R is a
structured anamnestic clinical caregiver interview that mostly
focuses on ASD-related symptoms at the age of 4.0–5.0
years (6). The diagnostic algorithm is organized into three
behavioral domains: qualitative abnormalities in reciprocal social
interaction; qualitative abnormalities in communication; and
restricted and repetitive behavior (RRB). The interview contains
93 items of which 37 are used in the classification algorithm.

Data Preparation
ADOS codes are basically indicative of symptom severity by
coding increasing severity via codes of 0, 1, 2, and 3. Certain
ADOS codes additionally contain information about peculiar or
abnormal behavior via codes of 7 or 8. Following the ADOS

manual instructions, we remapped 7 and 8 codes to 0 and codes
of 3 were recoded to 2. All ADOS items were included in the
machine-learning procedure. For ADI-R, data preparation and
recoding were carried out similarly. Only the 37 algorithm items
were included in the analysis without domain D (Abnormality of
Development Evident at or Before 36 months), as these items do
not address symptomatology of ASD. A list of all included items
and their abbreviations can be found in Supplementary Table 3.

Machine Learning
Previous classification studies have applied a multitude of
machine-learning techniques. We chose a random forest (RF)
which is robust against noise, outliers and overlapping target
classes (which may well be the case in our BEC set of
data) (30) and can very well be used to identify the most
important features among all features available in the data
set (31). The random forest consists of a collection of tree-
structured classifiers constructing a multitude of decision trees
at training time. Each decision tree yields a class prediction
considering a random subset of features, and the consensus vote
of all the trees (“the forest”) forms the final classification (30).
To address the above-mentioned research questions, we built
random forests with (a) the combination of ADOS and ADI-
R data and (b) ADOS data alone. Modeling was performed
for the two subsamples of children/young adolescents and
adolescents/adults separately.

To validate each model’s accuracy, a portion of 25% of the
data set was left out during algorithm training and served as
a validation data set. During the creation of the models, a 20-
fold cross-validation was applied using 95% of the data for
training and 5% for testing. Missing values were treated as
valid values, i.e., all cases were used for the computations of
the training and the test models. The level of significance was
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TABLE 2 | Performance of the machine-learning models on the test set and the previously unseen validation data set for the two subsamples of children/younger

adolescents (ADOS module 3 and associated ADI-R data) and adolescents/adults (ADOS module 4 and associated ADI-R data).

Sample No. of features AUC

test

ACC

test

Sens.

test

Spec.

test

Youden’s

J

AUC

blind

ACC

blind

Sens.

blind

Spec.

blind

McNe

Children/younger ADOS + ADI-R combination

adolescents All 65 features 0.91 0.88 0.89 0.82 0.54 0.94 0.87 0.92 0.81 1

11 features (optimal model)

(7 ADOS, 4 ADI-R)

0.90 0.87 0.88 0.79 0.48 0.93 0.85 0.93 0.78 0.81

7 features (minimal model)

(6 ADOS, 1 ADI-R)

0.86 0.84 0.86 0.80 0.51 0.80 0.82 0.85 0.79 0.11

ADOS alone

All 28 features 0.93 0.89 0.92 0.86 0.41 0.92 0.85 0.90 0.80 1

7 ADOS features (optimal

model)

0.92 0.88 0.89 0.88 0.42 0.90 0.82 0.82 0.83 0.01

9 ADOS features (minimal

model)

0.92 0.88 0.89 0.88 0.41 0.90 0.82 0.88 0.81 0.15

Adolescents/adults ADOS + ADI-R combination

All 68 features 0.87 0.88 0.83 0.90 0.62 0.83 0.74 0.83 0.66 1

8 features (optimal model)

(6 ADOS, 2 ADI-R)

0.83 0.83 0.84 0.81 0.62 0.77 0.70 0.79 0.62 0.20

7 features (minimal model)

(5 ADOS, 2 ADI-R)

0.84 0.86 0.85 0.83 0.61 0.79 0.68 0.83 0.53 0.08

ADOS alone

All 31 features 0.83 0.84 0.86 0.82 0.52 0.90 0.82 0.90 0.74 1

5 ADOS features (optimal

model)

0.85 0.83 0.84 0.82 0.52 0.85 0.75 0.87 0.63 0.01

8 ADOS features (minimal

model)

0.82 0.82 0.90 0.73 0.46 0.78 0.73 0.90 0.58 0.34

No. of features, number of features entered in the model; AUC, area under the curve; ACC, accuracy; Sens., sensitivity; Spec., specificity; J, Youden’s Index; McNe, McNemar level of

significance—each model tested against the whole set of available features in the combination of ADOS, and ADI and ADOS, respectively. The “optimal model” represents the model

with optimal relation of model performance and complexity. The “minimal model” represents the model with the least number of variables that does not significantly differ from the

full-feature model as asserted by the McNemar test.

set at p ≤ 0.05. For each set of data an optimal model was
chosen according to the area under the ROC curve (AUC).
Utilizing the Youden Index, which incorporates sensitivity and
specificity, the optimal threshold (where the AUC is at its
maximum) was identified. The Youden Index is a way of
summarizing the performance of a diagnostic test evaluating its
discriminative power (32). The index was calculated for each
threshold of the ROC curve, and the point where it achieved
a maximum is referred to as the “optimal” threshold. At this
particular threshold, the models’ accuracy (ACC), sensitivity
and specificity were evaluated and are presented as indices of
model quality.

Our approach comprised four consecutive steps. First, to
create a hierarchy of importance for the features, the RF
permutation-based feature importance scores were used, based
on 20 RFs consisting of 400 decision trees each. A 20-fold cross-
validation was run on the training data. By saving every run’s
importance hierarchy, each features rank was identified. In a
second step, a training of reduced feature models for 1 to n
sets of features ({1},{1,2},{1,2,3}. . . {1,2,. . . n}) was undertaken,
entering features to the model according to their place in
the feature importance ranking—where n is the number of
all features in the data set. To examine the optimal number

of features, the resulting n models were compared by using
both AUC and balanced accuracy (ACC) given the Youden
Index determined in the prior cross-validation process during
training. This represents the one point on the ROC curve
for which the distance to the chance line is maximal and
thus leads to the best classification result that is least likely
to happen by chance. The point also represents the class
boundary and is thus integrated in the subsequently created
models as the threshold for decision-making. After computing
the AUC and balanced ACC for the n models, yet another
hierarchy ordering these results was established, based on the
idea of information criteria, such as Akaike (AIC) and Bayesian
information criterion (BIC) to determine the best performing
model: Each model’s classification performance (AUC) and
its number of features were scaled to the unit interval, then
weighted and summed, resulting in an individual score for each
model. In order to identify simple models with still sufficient
classification performance, we emphasized less complex models
in a 2:1 ratio (i.e., w1∗AUC + w2∗complexity where w1 =

0.35 and w2 = 0.65). Reduced feature models were then ranked
according to their weighed scores and the best performing model
(simple but with good performance) could be identified as the
“optimal model.”
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TABLE 3 | The optimal number of features for the combined data (ADOS +

ADI-R) for children/younger adolescents (ADOS module 3 and associated ADI-R

data) and adolescents/adults (ADOS module 4 and associated ADI-R data) (upper

row left and right).

Chirdren/younger adolescents

ADOS + ADI-R

Adolescents/adults

ADOS + ADI-R

1. Quality of social overtures (ADOS)

2. Speech abnormalities associated

with autism (ADOS)

3. Facial expressions directed to

examiner (ADOS)

4. Amount of reciprocal social

communication (ADOS)

5. Stereotyped/idiosyncratic use of

words or phrases (ADOS)

6. Conversation (ADOS)

7. Reciprocal conversation (ADI-R)

8. Insight into typical social situations

and relationships (ADOS)

9. Imitative social play (ADI-R)

10. Interest in children (ADI-R)

11. Showing/directing

attention (ADI-R)

1. Facial expressions directed to

examiner (ADOS)

2. Unusual eye contact (ADOS)

3. Quality of social responses (ADOS)

4. Speech abnormalities associated

with autism (ADOS)

5. Descriptive, conventional,

instrumental or informational

gestures (ADOS)

6. Showing/directing attention (ADI-R)

7. Pointing to express interest (ADI-R)

8. Quality of social overtures (ADOS)

Chirdren/younger adolescents

ADOS

Adolescents/adults

ADOS

1. Amount of reciprocal social

communication

2. Stereotyped/idiosyncratic use of

words or phrases

3. Conversation

4. Quality of social overtures

5. Facial expressions directed to

examiner

6. Insight into typical social situations

and relationships

7. Descriptive, conventional,

instrumental or

informational gestures

1. Quality of social responses

2. Comments on other’s

emotions/empathy

3. Quality of social overtures

4. Amount of reciprocal social

communication

5. Unusual eye contact

The optimal number of features for the behavior observation (ADOS) for Children/Younger

Adolescents (ADOSModule 3 and associated ADI-R data) and Adolescents/Adults (ADOS

Module 4 and associated ADI-R data) (lower row left and right).

In a third step, we tested the reduced-feature models on
the hitherto unseen validation data set with regards to their
classification performance. The fourth step was the comparison
of the predictive performance of the reduced-feature models.
We used the McNemar test, a non-parametric statistical test
for paired comparisons, which can be applied to compare the
performance of two machine-learning classifiers (33). All models
including n + 1 features were evaluated regarding differences in
classification error rates compared to the full-feature model. We
then identified (a) the “optimal model,” comprising the optimal
number of features against the “full-feature model” for both
databases (combined ADOS and ADI-R data, and ADOS data
alone), respectively. This was complemented by (b) the search of
a “minimal-feature model,” which contained as many features as
needed to exceed the p= 0.05 threshold of significant differences
in classification error rates compared to the “full-feature-model.”

RESULTS

For an overview of the model’s performances and the
comparisons of the respective features refer to Table 2. Table 3
gives an overview of the features selected by the classifier.

ADOS in Combination With ADI-R Data in
Children/Younger Adolescents
By utilizing the importance hierarchy shown in
Figure 1A (larger versions of the figures can be found in
Supplementary Figures S1–S4), RFs for 1 to n features were
calculated and tested. The model output from the test set
including all 65 features shows an ACC of 0.88, with 0.89
sensitivity and 0.82 specificity. For independent validation of
the classifier, its performance on the validation data set was
computed showing a stable performance, with an ACC of 0.87
and 0.92 sensitivity and 0.81 specificity. The feature selection vs.
performance curve in Figure 1B shows that only few features
contribute strongly to the class prediction, whereas others seem
to have very little predictive value. The model including 11
features showed optimal performance in the validation set:
The ACC is 0.85, with 0.93 sensitivity and 0.78 specificity. This
model includes seven features from the ADOS and four from
the ADI-R. McNemar’s test for differences in classification
error rates showed no advantage of the full-feature model (65
features) over the 11-feature model (χ2

= 0.06, p = 0.81).
The optimal model included the following features: Quality
of Social Overtures (ADOS), Speech Abnormalities Associated
With Autism (ADOS), Facial Expressions Directed to Examiner
(ADOS), Amount of Reciprocal Social Communication (ADOS),
Stereotyped/ Idiosyncratic Use of Words or Phrases (ADOS),
Conversation (ADOS), Reciprocal Conversation (ADI-R),
Insight Into Typical Social Situations and Relationships
(ADOS), Imitative Social Play (ADI-R), Interest in Children
(ADI-R), Showing/Directing Attention (ADI-R). This already
reduces the feature set, however as Figures 1A,B1 suggest,
there might be even more potential for a reduction in the
coding systems. We thus searched for the minimal model,
whose prediction error is statistically equal to the full-feature
model. McNemar’s test showed that a seven-feature model
was the one with the least number of features that did not
differ from the full-feature model in the validation set (χ2

= 2.50, p = 0.11; ACC = 0.82, sensitivity= 0.85, specificity
= 0.79).

ADOS in Combination With ADI-R Data in
Adolescents/Adults
A feature selection for the combined ADOS and ADI-R data was
performed, resulting in an overall ranking of feature importance
shown in Figure 2A1. Again, RFs for 1 to n features were

1The values have been rescaled for visual interpretability. With 0 being the average

scaled decrease of accuracy, a variable is decreasing themodel’s accuracymore than

average if it is greener (more positive), meaning it is more important to keep it

in the model, and decreasing the model’s accuracy less than average the more red

(more negative) it is, meaning the variable can be omitted without loss greater than

average to the model’s performance.
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FIGURE 1 | The upper panel shows the overall ranking of feature importance for all features from ADOS and ADI-R data combined for Children/Younger

Adolescents (A). The figure depicts the ADOS and ADI items on the y-axis and on the x-axis its corresponding importance score, measured in mean decrease in

accuracy. The lower panel (B) shows the mean AUC plotted against the number of model features from ADOS and ADI-R combined during model building (training,

testing and validation of the classifiers) for Children/Younger Adolescents. A list of all included features and their abbreviations can be found in

Supplementary Table 3.
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FIGURE 2 | The upper panel shows the overall ranking of feature importance for all features from ADOS and ADI-R data combined for Adolescents/Adults (A).

The figure depicts the ADOS and ADI items on the y-axis and on the x-axis its corresponding importance score, measured in mean decrease in accuracy (see text

footnote 1). The lower panel (B) shows the mean AUC plotted against the number of model features from ADOS and ADI-R combined during model building (training,

testing and validation of the classifiers) for Adolescents/Adults. A list of all included features and their abbreviations can be found in Supplementary Table 3.
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calculated and evaluated in the validation data set. The full-
feature model, including the combination of 31 ADOS items and
37 ADI-R algorithm items showed an ACC of 0.88 and 0.83
sensitivity and 0.90 specificity in the training set. Validating the
full-feature model in an independent validation data set yielded
an ACC of 0.74, with 0.83 sensitivity and 0.66 specificity. The
mean AUC increases when more features are used for training,
but soon reaches a classification performance that does not
further improve with more features (see Figure 2B). We thus
examined performances of reduced feature models with eight
features (identified as the optimal number of features by the
Youden Index) in the validation set, yielding an ACC of 0.70,
with 0.79 sensitivity and a specificity of 0.62. The following
features were identified: Facial Expressions Directed to Examiner
(ADOS), Unusual Eye Contact (ADOS), Quality of Social
Responses (ADOS), Speech Abnormalities Associated With
Autism (ADOS), Descriptive, Conventional, Instrumental or
Informational Gestures (ADOS), Showing/Directing Attention
(ADI-R), Pointing to Express Interest (ADI-R), Quality of
Social Overtures (ADOS). Statistical comparison via McNemar’s
tests showed no advantage of the full-feature model over the
eight-feature model (χ2

= 1.66, p = 0.20). The minimal
model contained seven features (ACC = 0.68, sensitivity =

0.83, specificity = 0.53) and did not differ from the full-
feature model regarding classification error rates (χ2

= 3.16,
p= 0.08).

ADOS Data Children/Younger Adolescents
The same RF approach was carried out with ADOS data
of children/younger adolescents. First, a feature importance
hierarchy was established (see Figure 3A)1. In order to identify
the optimal number of features, RFs including 1 to n features
were trained and the models were evaluated in the validation
data set. As shown in Figure 3B, the mean AUC increases
when more features are used for training but soon reaches
a plateau. The model, including all 28 ADOS items, showed
an ACC of 0.89, with 0.92 sensitivity and 0.86 specificity.
Evaluated on the validation data set, performance of the classifier
dropped only slightly to an ACC = 0.85, with 0.90 sensitivity
and 0.80 specificity. The optimal number of features (Youden
Index = 0.405) was seven features from the ADOS. With only
seven features, the classifier achieved an ACC of 0.88, 0.89
sensitivity and 0.88 specificity in the test set and an ACC of
0.82, 0.82 sensitivity and 0.83 specificity in the validation set.
These seven features were identified: Amount of Reciprocal
Social Communication, Stereotyped/Idiosyncratic Use of
Words or Phrases, Conversation, Quality of Social Overtures,
Facial Expressions Directed to Examiner, Insight Into Typical
Social Situations and Relationships, Descriptive, Conventional,
Instrumental or Informational Gestures. Statistical comparison
of the models via McNemar’s test of differences between
classification error rates still showed the advantage of the
full-feature model over the seven-feature model (χ2

= 7.23,
p = 0.007). Only when nine features were used for the model
did the statistical comparison not yield a significant advantage
of the full full-feature model (χ2

< 2.1, p > 0.15). Thus, the

nine-feature model was identified as the minimal model (ACC=

0.82, sensitivity= 0.88, specificity= 0.81).

ADOS Data Adolescents/Adults
The hierarchy of features importance for 31 ADOS items is
presented in Figure 4A1. In the test set, the full-feature model,
including all 31 ADOS items, yielded an ACC of 0.84, 0.86
sensitivity and 0.82 specificity. In the validation set, the full-
feature model performed comparably well: ACC = 0.82, 0.90
sensitivity and 0.74 specificity. Figure 4B, depicting the relation
of the AUC and the number of features used for model
training, shows a set point for performance of the classifier
when up to eight features from the ADOS are used in model
training. The optimal number of features in Module 4 (Youden
index= 0.5205) is five, with an ACC of 0.83 and 0.84 sensitivity
and 0.82 specificity. In the validation set, an ACC of 0.75
with 0.87 sensitivity and 0.63 specificity was observed. The
optimal model included the following features: Quality of Social
Responses, Comments on Other’s Emotions/Empathy, Quality of
Social Overtures, Amount of Reciprocal Social Communication,
Unusual Eye Contact. Statistical comparison of the models via
McNemar’s test still showed the advantage of the full-feature
model over the five-feature model (χ2

= 7.62, p = 0.005). Only
when eight features were used for the model did the statistical
comparison not yield a significant advantage of the full-feature
model (χ2

< 1.1, p > 0.29, ACC = 0.73, sensitivity = 0.90,
specificity= 0.58).

DISCUSSION

Based on a well-characterized clinical population, the present
work strives to localize those diagnostic items from a clinical
behavior observation whichmost effectively differentiate between
groups of children, adolescents and adults with ASD, and
those with other mental disorders or developmental delays.
Based on a machine-learning strategy, we were able to show
that focusing attention on a few crucial behavioral aspects can
lead to classification performances that are just as good as
those using information from the full examination. For the
combined ADOS and ADI-R data, the classifier performed
optimally (pursuing highest accuracy with the least number
of features) using 11 features in children/younger adolescents
and eight features in adolescents/adults. For ADOS data alone,
similar results were observed: Classifiers containing seven
(children/younger adolescents) and five (adolescents/adults)
features achieved optimal performance. However, the reduced
ADOS-feature subsets representing the optimal models seemed
to be still inferior to the full examination, as post-hoc statistical
comparisons show. Only when two additional features were
used for model building in children/younger adolescents and
three features in adolescents/adults, did statistical comparisons
not yield significant predictive advantages of the full-feature
models over the reduced subsets of features. Nevertheless, our
findings further corroborate the hypothesis that a reduction
of complexity of the diagnostic procedure may be possible.
Although the abbreviation of the ADOS itself by simply reducing
the items seems not to be feasible, the current results may serve
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FIGURE 3 | The upper panel shows the overall ranking of feature importance for all features from ADOS data for Children/Younger Adolescents (A). The figure

depicts the ADOS and ADI items on the y-axis and on the x-axis its corresponding importance score, measured in mean decrease in accuracy (see text footnote 1).

The lower panel (B) shows the mean AUC plotted against the number of model features from ADOS during model building (training, testing and validation of the

classifiers) for Children/Younger Adolescents. A list of all included features and their abbreviations can be found in Supplementary Table 3.

Frontiers in Psychiatry | www.frontiersin.org 9 August 2021 | Volume 12 | Article 727308

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kamp-Becker et al. Rethinking Diagnosis in Autism

FIGURE 4 | The upper panel shows the overall ranking of feature importance for all features from ADOS data for Adolescents/Adults (A). The figure depicts the

ADOS and ADI items on the y-axis and on the x-axis its corresponding importance score, measured in mean decrease in accuracy (see text footnote 1). The lower

panel (B) shows the mean AUC plotted against the number of model features from ADOS during model building (training, testing and validation of the classifiers) for

Adolescents/Adults. A list of all included features and their abbreviations can be found in Supplementary Table 3.
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as a foundation on which training tools for clinicians could be
developed. These training tools ought to support the decision
of whether an individual with the suspicion of ASD needs to
be referred to a specialized institution for a comprehensive ASD
diagnosis, by drawing attention to the most relevant aspects that
best distinguish ASD from other mental disorders and “autistic
traits” in individuals without mental disorders.

Prediction performance of all selected models was lower in
adolescents/adults than children/younger adolescents, reflecting
the above-mentioned peculiarities of the adult sample that
comprises mostly high-functional older individuals, diagnosed
with ASD or other mental disorders rather late in life, who
showed increased comorbidity rates in the ASD group but
particularly the non-ASD (∼50% in the ASD group and∼80% in
the non-ASD group) which is in line with previous research (34).
But besides co-occuring symptoms, overlapping symptoms (of
mental or neurodevelopmental disorders) may also (negatively)
influence the performance of a classifier as class boundaries are
even more blurred when both groups share diagnostic signs.
Thus, the composition of both groups regarding symptoms
mental and neurodevelopmental disorders clearly hampers a
valid and reliable classification.

Comparison of the Combined Diagnostic
Instruments (ADOS and ADI-R) vs.
Behavior Observation (ADOS) Only
In children/younger adolescents, both classifiers from the
combined ADOS+ADI-R and ADOS alone (including the
optimal number of 11 and 7 features with only 4 and
1 ADI-R features, respectively) performed similarly well. In
adolescents/adults, the classifier built upon the ADOS alone,
performed even better than the classifier from ADOS+ADI-
R combined (which included only two ADI-R items). These
observations suggest that particularly for older adolescents and
adults, information about developmental history may play a
lesser role than current behavior observations. Although an
ASD diagnosis requires symptoms to be present from early
childhood onwards, it may be debated whether an anamnestic
interview with parents of caregivers, struggling to provide details
about early developmental time periods for adults, should be
considered part of a gold standard. Indeed, particularly in adults,
information on early symptoms are crucial and therefore a
case history provided by a third party is essential. However,
fine-grained anamnestic data might not be available, sufficiently
detailed or might be inaccurate due to the long time lag and
may thus be vulnerable to several biases (recall- or confirmation-
bias, halo-, contrast- or expectancy-effects, social desirability,
etc.) reducing the validity of retrospective statements (35–38).
According to the DSM-5, the examiner has to ensure that no
evidence for appropriate social or communicative abilities during
childhood exist as a report of normal and reciprocal friendships
or communicative non-verbal behavior in childhood would rule
out the diagnosis of ASD. Where informants, who were present
in childhood, are not available, or recall seems biased, clinicians
need to seek other informants, such as older siblings, relatives
or friends who knew the patient well as a child, school reports,

or—wherever possible—observations of informants who have
known the patient in adulthood. Although the present results
suggest that, particularly for adolescents/adults, the ADI-R may
be of minor importance compared to the ADOS, other studies
identified the ADI-R as an appropriate instrument to accurately
predict symptom severity for certain individuals (39).

Differences of Core Diagnostic Features
Between Children/Younger Adolescents
and Adolescents/Adults
Since certain behaviors or symptoms follow a particular
developmental course, the coupling of age and certain “core”
features may increase the capacity of clinicians to recognize
characteristic autistic behavior. In the present study we find
a few overlapping features between the age groups: ADOS:
“Facial Expressions Directed to Examiner” (EXPE), “Speech
abnormalities associated with autism” (SPAB), “Quality of
social overtures” (QSOV); ADI-R: “Showing and Directing
Attention.” Other aspects differ between the age groups:
While for adolescents/adults “Unusual Eye Contact” (EYE)
and “Comments on Other’s Emotions/Empathy” (EMO) are
important items, for children/younger adolescents these features
are less relevant, but “Stereotyped/ Idiosyncratic use of words
or phrases” (STER) and “Conversation (CONV) are more
important. An interesting result is, that developmental changes
are accompanied by changes in feature combinations, but in
every model non-verbal behavior—especially “Facial Expressions
Directed to Others”—plays an important role and ranks amongst
the six most important features. This is in accordance with
increasing evidence that individuals with ASD display facial
expressions less frequently and are less likely to share facial
expressions with others, especially in natural contexts (40). This
is also in line with prospective, longitudinal studies showing
that non-verbal behavior deficits in individuals with ASD are
stable over time (41) and are evident in normal-intelligence adult
patients with ASD (42).

The present findings also relate to results from previous
work by Bishop et al. (43), who conducted a factor
analytical study showing three differentiable subdimensions
of social-communication impairment in ASD: “‘Basic
Social-Communication’ behaviors (e.g., Facial Expressions,
Unusual Eye-Contact, Gestures etc.), ‘Interaction Quality’
(including more complex aspects of social-communication e.g.,
Conversation, Amount of Reciprocal Social Communication)
and ‘Restricted and Repetitive Behaviors’ (RBB).” The authors
conclude that while impairments in Basic Social Communication
reflect “core” impairments in ASD, they seem to be “remarkably
intact” in children without ASD (but with other disorders) and
thus contributed particularly well to the prediction of ASD (43).

In sum, our analyses indicate that more is not necessarily
better and that a reduction of the gold-standard diagnostic
procedure is possible. Different (age) groups may require
a particular focus on particular aspects of the overall
symptomatology leading to a particular combination of
features to assess. This is in line with several other studies
using different machine-learning techniques and finding slightly
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overlapping and different item constellations of features using
either ADI-R or ADOS data (22–24, 26). Due to the fact that
ADOS and ADI-R items are not independent from each other
and a multitude of information adding to different aspects
of behavior forms an overall picture of a patient—highly
dependent on the observer—results of all machine-learning
methods will be inevitably inconsistent. It has been argued that
administration times for ADOS and ADI-R cannot be reduced
due to the observational nature of the instruments that allow
for behavior coding independent of certain tasks and thus
making an abbreviation of the whole exam length impossible.
However, recent research results have shown that a much briefer,
unstructured social interaction, a home-video sequence or
even the reliance on written extracts of children’s medical and
educational records may well suffice for valid coding of abnormal
behavior associated with ASD (44–48).

Future research has to consider whether a reduced set of
items will lead to sufficiently reliable and valid diagnostic
decisions with regard to the question of whether the suspicion
of ASD is reasonable and the individual really needs specialized
examination. But also, a reduction of complexity would be
desirable as in clinical contexts and despite training and
supervision the diagnostic accuracy of ADOS and ADI-R coding
is still not particularly good (49–51). Based on our results,
we would recommend that the gold standard in diagnosing
ASD would include, in a first step, an abbreviated but valid
examination (with the reduced set of behavior observations) to
decide whether a “full standard examination” (including ADOS
and full ADI-R) is necessary or not. This could reduce waiting
times at specialized institutions and avoid delays in diagnosis and
in the delivery of therapies.

Strengths and Limitations
A major advantage of the present study lies within the well-
balanced data set from a large and well-characterized clinical
sample comprising various mental disorders. The current study
thus contributes to the identification of boundaries between ASD
cases and those cases that exhibit ASD-like symptoms that are,
however, based on different underlying conditions.

A major limitation is that the outcome criterion (BEC of
ASD vs. non-ASD) was not independent of the features used
for building the prediction algorithm, thus creating a certain
circularity. Although this research design may be criticized, there
is currently little to no alternative as there is no independent
external criterion replacing BEC. For a detailed discussion see
(12). We approached the circularity problem by relying on
clinical best-estimate diagnoses that included multiple sources
of information beyond ADOS and ADI-R and beyond a mere
classification based on ADOS and ADI-R cut-off scores.

Another limitation is the wide age range of the groups (with an
approximated normal distribution ranging from 4 up to 72 years)
and our sample consisted of male as well as female participants.
In a first step, we simply divided our data set into two subsamples
according to the chosen ADOS module. Future studies should
investigate differences in specific gender and age groups (i.e.,
children, adolescents, young, middle and late adulthood) as well

as in more specific clinical comparison groups (e.g., personality
disorders, anxiety disorders, other developmental disorders).

CONCLUSION

It is time to rethink the “gold standard” in diagnosing ASD,
as the combination of ADOS and ADI-R is a lengthy, time-
consuming procedure. After a widening of the diagnostic criteria,
the integration of the autism subtypes into the ASD category and
the lack of objective “ASD tests” or even objective (biological or
behavioral) markers, extensive experience and expertise is needed
to validly diagnose ASD. Together with an increasing number
of individuals demanding a diagnosis, this leads to increasingly
long waiting lists at specialized institutions. Our data support the
idea that in children, adolescents and adults with a suspicion of
ASD the diagnostic process can be organized more efficiently.
The current study identified reduced subsets of ADOS and ADI-
R items that may be particularly effective in differentiating ASD
from other mental disorders. Implementing these findings into
training tools that instruct clinicians to focus attention on specific
disorder-related aspects may facilitate the decision of whether
a patient needs to be referred to a specialized institution for a
comprehensive ASD diagnosis (including the complete ADOS
and ADI-R) or be closely examined for general developmental
delays or other mental disorders.
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