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Artificial intelligence (AI) in healthcare aims to learn patterns in large multimodal datasets

within and across individuals. These patterns may either improve understanding of

current clinical status or predict a future outcome. AI holds the potential to revolutionize

geriatric mental health care and research by supporting diagnosis, treatment, and clinical

decision-making. However, much of this momentum is driven by data and computer

scientists and engineers and runs the risk of being disconnected from pragmatic issues

in clinical practice. This interprofessional perspective bridges the experiences of clinical

scientists and data science. We provide a brief overview of AI with the main focus on

possible applications and challenges of using AI-based approaches for research and

clinical care in geriatric mental health. We suggest future AI applications in geriatric mental

health consider pragmatic considerations of clinical practice, methodological differences

between data and clinical science, and address issues of ethics, privacy, and trust.

Keywords: machine learning, deep learning, psychotherapy, older adults, technology, depression, natural

language processing, personalized medicine/personalized health care

INTRODUCTION

Artificial intelligence (AI) learns patterns in large multimodal datasets both within and across
individuals (1) to help improve understanding of current clinical status [e.g., calculating a risk
score for heart disease (2)] or predict a future outcome [e.g., predicting daily mood fluctuations
(3)]. Such technology is increasingly critical and opportune in our digital healthcare revolution.
Advances in technology, such as the ubiquity of smartphones, other wearables, and embedded
sensors, in addition to the emergence of large datasets (e.g., electronic health records) have altered
the landscape of clinical care and research. AI approaches can dynamically interpret such complex
data and generate incredible insight to potentially improve clinical methods and results. AI holds
the potential to revolutionize geriatric mental health care and research by learning and applying
such individualized predictions to guide clinical decision-making. Specifically, AI can contribute to
the proactive and objective assessment of mental health symptoms to aid in diagnosis and treatment
delivery to suit individual needs, including long-term monitoring and care management.

The big promise for AI in mental health care and research—largely due to its reliance on big
data—is to facilitate understanding of what works for whom, and when. However, much of this
momentum is driven bymachine learning experts (e.g., data and computer scientists and engineers)
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and runs the risk of being disconnected from pragmatic issues
in clinical practice. In this piece, we bring the perspectives of
clinician-scientists in clinical geropsychology (BNR andMS) and
geriatric nursing (OZ) to bear on expertise in AI and data science
(AP). We provide a brief overview of AI in mental health with
the main focus on possible applications and challenges of using
AI-based approaches for research and clinical care in geriatric
mental health.

CLINICAL APPLICATIONS OF AI

The field of geriatric mental health focuses on both normal
and pathological aging from a biological and psychological
perspective; this encompasses acute and chronic physical
illness, neurodegeneration and cognitive impairment, andmental
disorders in people aged 65 and older. Research and clinical
applications within geriatric mental health focus on both care
delivery and the evaluation, diagnosis, prevention, and treatment
of such disorders. The appeal of such AI-enabled technology
to advance geriatric mental health care is 2-fold. First, AI
technologies hold the potential to develop precision models

TABLE 1 | Overview of artificial intelligence (AI) technologies with relevance to geriatric mental health.

Type of AI

technology

Definition Clinical example

Machine learning (ML) A family of statistical techniques that allow computer programs to

make predictions and decisions based on past data.

Supervised A type of machine learning that uses labeled datasets to “train”

algorithms. For example, a dataset includes a label for cognitive

impairment (cognitively impaired or not). The model learns on a set

of training data, then the algorithm is tested on unlabeled data to

ensure its accuracy in classifying the target variable.

Modeling a variety of clinical, lifestyle, and sociodemographic

factors to help predict cognitive function in older people; clinicians

could use this non-invasive screening method to decide whether

or not a patient warrants further in-depth cognitive assessment (4).

Unsupervised A type of machine learning based on analyzing unlabeled data to

discover hidden patterns or data groups. The algorithm is not

provided with a label thus, subject-matter experts must evaluate

the data output to ensure its usefulness. Unlabeled data are

sorted into groups or patterns to identify the underlying structure

of the data.

Identifying high likelihood of dementia in population-based surveys

(5).

Deep learning (DL) A subfield of machine learning; deep learning models use

computer programs called artificial neural networks to discover

latent relationships in complex, raw data. DL algorithms develop

multiple hierarchical layers of data representation and learn

complex underlying patterns.

A trial in India used deep learning to predict depression among

older adults and had a high prediction accuracy (97.2%) based on

sociodemographic variables and morbidity (sleep difficulties,

mobility difficulty, hearing, and visual impairment) (6).

Natural language

processing (NLP)

Natural language processing (NLP) aims to comprehend human

language by extracting word features (such as syntax, grammar,

and semantic meaning) from text and transcribed speech. It holds

much potential in mental health research and care, where text

(e.g., electronic health records [EHRs]) and speech (e.g.,

psychotherapy session content) are key real-world data sources.

Using speech features (e.g., speech fluency, prosody, duration) to

detect late-life depression (7).

Computer vision Computer vision is used to detect and classify objects. The model

imposes a grid-like structure on images and learns key features,

such as edges and curves, to build a unique model to recognize

similar objects.

Extracting gait features from video recordings of older adults with

dementia (“human pose estimation”) to predict future falls (8).

Reinforcement

learning

Deep reinforcement learning (RL) is a form of adaptive learning

that rewards desired outcomes (behaviors) and penalizes

undesirable or unwanted outcomes. Such algorithms learn to

sense and interpret the right and wrong actions in an environment

and train through trial and error.

Helping providers by editing written therapeutic exchanges to

increase the level of expressed empathy, a critical component of

therapeutic conversations (9).

that are both personalized and conceivably more accurate
than traditional clinical care using vast amounts of real-world
multimodal data about patients, including the influence of
environmental and other risk and protective factors. Secondly,
technology in general has long been heralded as a means to
overcome traditional access barriers of cost, time, distance, and
stigma, all of which are relevant for older adults. While a
thorough review of AI is beyond the scope of this Perspective,
relevant machine learning (ML) and deep learning applications
[including natural language processing (NLP)] of AI are
presented in Table 1. Interested readers are directed to other
reviews for more in-depth descriptions of AI in mental health
(10–13). We briefly review three clinical domains relevant to

geriatric mental health care below and subsequently suggest

specific areas where AI can assist clinical care (see Figure 1).

Assessment, Symptom Recognition, and
Diagnosis
A major issue in geriatric mental health care and research

is accurate classification of a disorder. Many mental health
conditions, including late-life depression, go undetected and
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FIGURE 1 | Clinical opportunities for artificial intelligence in geriatric mental health care.

untreated (14). When symptoms are recognized, diagnosis
primarily relies on subjective recollections of symptoms, which
leads to a considerable amount of diagnostic variability and
may be subject to patient recall bias (15). Moreover, differential
diagnosis can be particularly challenging in older adult patients
with multimorbidities or when considering conditions with
overlapping symptoms. A compelling application of AI is
accurately predicting who needs mental health treatment before
someone realizes they need it—or, before symptoms become
too burdensome—by tracking early cues related to a change
in an individual’s daily behavior. One of the most ubiquitous
opportunities is personal sensing, which converts the huge
amount of sensor data collected by our phones (or other
wearable devices) into clinically meaningful information about
behaviors, thoughts, and emotions to make inferences about
clinical status and/or disorders (16). These data sources can be
rich and multimodal, encapsulating sleep, social interaction, and
physical activity, to name a few features. Such data may serve as
objective measures for hallmark symptoms (e.g., fatigue and sleep
disturbances) in the diagnosis of depression in older adults (17).

A small but growing body of literature has begun to
apply AI approaches to geriatric mental health assessment
and diagnosis, largely in the context of depression (10) and
neurocognitive impairment (11). For example, language ability
and processing—including spontaneous speech—is often an

early affected cognitive domain in the course of dementia,
especially Alzheimer’s disease, and has been proposed as a
target for early recognition and diagnosis (18). However,
traditional methods of early recognition and diagnosis often
produce significant overlap with “normal” cognitive functioning
among older adults, and thus have reduced clinical utility in
early detection (19). AI techniques such as NLP may detect
speech features (e.g., acoustic features such as pause duration
and emotion) that are sensitive to cognitive decline and may
better differentiate those with early impairment than traditional
neuropsychological assessment (19, 20).

Treatment and Treatment Monitoring
The shortage of geriatric mental health specialists (21) and
barriers to treatment seeking among older adults (22–24) mean
that patients with mental health needs are often delayed in
obtaining treatment, if they receive treatment at all. As it stands
in current clinical practice, access to evidence-based treatment is
often limited (25), and when implemented, treatment decisions
are often guided by trial and error. Ongoing assessment is also
crucial to assess effectiveness of treatment, butmay be overlooked
or untenable in routine practice, rendering ineffective treatment
decisions. As AI aims to predict who needs mental health
services, the next compelling application of such technology will
be to answer the question of “What works for whom, and when?”
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A promising application of AI for mental health, inspired by
precision medicine, is to identify subgroups of patients with
similar symptom expressions and outcomes to guide treatment
decisions, commonly referred to as “subtyping” (26). Once
treatment is initiated, AI could also help clinicians monitor
response to treatment and symptom trajectory, such as through
passive recording of behavioral data using wearable sensors.

Another example to optimize treatment is to quickly mobilize
tailored supports using just-in-time adaptive interventions.
These adapt the type, timing, and intensity of treatment based on
the individual’s need at the moment and context they most need
the support (27). Such efforts in geriatrics include computational
modeling based on smartphone data to target health behavior
change (i.e., low physical activity and sedentary behavior) in older
adults (28). These models use sensor data to monitor health
states with the goal of delivering personalized interventions to
mitigate behavioral and psychological factors that contribute to
health risk.

Intelligent voice assistants, virtual health agents, and
conversational agents (e.g., chatbots) are designed to reduce
health care system burden (29) and improve patient autonomy
and self-management (30). While mainstream conversational
agents have yet to be tested with older adults, preliminary
evidence suggests that older adults are comfortable self-
disclosing with other conversational agents (19). It is conceivable
that such AI may one day be used to support “aging in place,”
such as allowing older adults to complete remote assessments for
routine monitoring. Researchers are also prototyping AI-based
“smart homes” to support safety and independence among older
adults and individuals with disabilities and chronic conditions
(31). However, ongoing engagement is required for AI to assist
with long-term monitoring or treatment delivery. For example,
while intelligent voice assistants such as Amazon’s Echo have
the potential to support independence among older adults, users
may discontinue such products if they do not realize benefits or
experience challenges using such devices in shared spaces (32).

Clinical Decision-Making, Provider Training
and Support
AI may free up time for the clinician to implement treatment
decisions and focus on other therapeutic targets (e.g., client
rapport) where the application of current AI technologies has
been ineffective (33). AI-based data collection and harmonization
may streamline patient flow, automate assessments, monitor
longitudinal trajectories and outcomes, reduce paperwork, and
monitor medication(s) and potential contraindications (34),
thus freeing providers to practice the “human” elements of
mental health care. AI may also be used to train mental
health professionals. This is particularly relevant to the current
geriatric workforce shortage (21). Examples include virtual
patient simulations to train and evaluate clinical skills (e.g.,
asking proper diagnostic questions) (35) and NLP to analyze
the quality of engagement between a therapist and a patient
in a psychotherapy session (36). However, limitations to this
technology remain; this work found models only modestly

predicted patient-rated alliance from psychotherapy session
content (36).

CHALLENGES AND OPPORTUNITIES

Now we want to highlight some challenges and propose how
AI solutions can be applied to real-world problems in geriatric
mental health care and research. We suggest the AI community
partners with clinician-researchers and care teams (including
nursing staff, providers, and caregivers), and vice versa, in order
to make most relevant the potential of such technology. This is
particularly germane to issues of geriatric mental health care.

Unique Challenges in Geriatrics
Aging is a complex process that involves interconnected changes
spanning cellular to psychological to sociocultural processes,
the results of which present unique challenges when working
in geriatrics. First, older adults are less likely than younger
adults to receive accurate diagnosis and treatment for mental
health issues (37), and barriers are greater among racially
and ethnically diverse older adults compared to their non-
LatinoWhite counterparts (23).Workforce shortages, specifically
lack of providers with competencies in the specific needs of
older adults, contribute to these issues (21). Older adults also
present with greater comorbidity, chronicity, and complexity
than their younger adult counterparts; acute and chronic physical
health conditions, medication use, and cognitive, sensory,
or functional impairments can all complicate the detection
and diagnosis of a mental health condition. Additionally, the
variation in manifestation of mental health symptoms and
treatment responses in older adults affects timely and accurate
diagnosis. For example, an enduring finding in geriatric mental
health care is that older adults with depressive symptoms are
less likely than younger adults to present with sadness and are
more apt to endorse anhedonia (loss of interest or pleasure),
apathy, and somatic symptoms such as fatigue, diffuse aches and
pain, or malaise (38). Somatic symptoms of late-life depression
also overlap with symptoms of chronic disease, potentially
obscuring or complicating diagnosis of mental health conditions.
Moreover, older adults may be poor utilizers of mental health
services if they are uncertain whether their symptoms are due
to psychological problems or normal aging (39). Thus, AI holds
promise to capture real-world behavioral data to aid in the
recognition and diagnosis of mental health conditions in older
adults. The majority of the literature points to applications
of AI among younger adults (often college-aged convenience
samples). Next steps are to prototype, train, and validate AI
approaches on data from diverse respondents, including older
adults, to capture the specific clinical needs and heterogeneity in
the population.

Social, environmental, and familial contexts are important
considerations in geriatric mental health. Caregiving is one such
relevant factor. Persons with chronic or life-limiting disease–
often older adults—require progressively extensive attention
and assistance with activities of daily living. This care is often
provided by family members or other unpaid caregivers. AI
technologies may better prepare and support caregivers in their
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tasks. A systematic review of 30 studies (40) described a range
of assistive AI devices designed to facilitate caregiving, such
as support with dressing or handwashing or detecting falls.
However, the review noted that most studies were descriptive
or exploratory, offering very limited evidence of such technology
to date.

Social factors such as social isolation and loneliness may
also exacerbate mental health issues; indeed, a recent federal
report highlighted the epidemic of social isolation and loneliness
among older adults (41). AI could be used to both assess and
offer supports for loneliness. For example, a proof-of-concept
study used NLP to identify loneliness among U.S. community-
dwelling older adults based on speech from qualitative interviews
(42). Importantly, this study attempted to understand sex
differences in the reporting of such a complex psychological
construct—something with which clinicians may struggle. As
with much of the AI applications to date in geriatric mental
health, the authors note that future work will need larger, more
diverse samples and to incorporate multimodal data streams to
improve the predictions. In any case, AI supports designed for
older adults will need to address not only psychological and
biological/medical factors, but social and environmental factors
to be most relevant.

The term “older adult” encompasses a wide range of the
lifespan and includes diverse individuals from various birth
cohorts; racial/ethnic, cultural and socioeconomic backgrounds;
and functional abilities. As healthcare in general, and AI
opportunities specifically, relies on technology, there is concern
that older adults will be left out of such a digital health
revolution. Even though many members of the “young-old” (65–
74 years) and older cohorts may be accustomed to smart devices
and other technologies, older adults are often left out of the
design and marketing of such innovations (43). Sensory issues,
ranging from tremors to limited vision, may also impede the
use of conventional technological devices designed for users with
normative abilities.When innovations aremarketed toward older
people, they often reflect a pathological view of aging and are
limited to support for emergencymonitoring (e.g., fall detection).
Our call to action is that AI developers leverage a user-centered
perspective, including diverse older adults with a range of health-
related quality of life, during the design and evaluation (44) to
uncover such technology’s viability and fit-for-purpose in the
target population.

Methodological, Practical, and Other
Challenges
Given the pursuit of such rapid and novel innovation, not all AI
developments will readily translate to clinical or other real-world
settings. While not exhaustive, we outline a few key challenges
in an attempt to bridge data science with clinical science in
geriatric mental health and suggest next steps in addressing
such challenges.

First, there has been a paradigm shift away from traditional
experimental studies that typify mental health research to rapid
innovations in AI (13). The empirical approaches familiar to

clinicians—namely hypothesis testing and reliance on evidence-
based practice—are potentially at odds with the proof-of-
concept, hypothesis-generating demonstrations that characterize
much AI research to date. The innovations propelling AI
forward are often tested on small samples to demonstrate
proof-of-concept (40); however, this runs the risk that ML
models will be overfit, leading to spurious findings and lacking
generalizability to new data sources. External validation of the
model (that is, testing in new datasets) is essential to improve
prediction, yet only three of 51 studies in a recent review
of ML in psychotherapy research did so (45). When large
datasets are available, they are often prone to bias arising from
differential recruitment, attrition, and engagement over time
(46). Importantly, adults over the age of 60 are those least
represented in digital health study samples, and such studies
rarely reflect the racial/ethnic and geographical diversity of the
U.S., limiting the validity of findings (46). Moreover, researchers
from non-health science fields may use different reporting
norms than clinician scientists, resulting in missing key pieces
of information, including participant demographics and other
aspects of methods (e.g., location of data collection) (40), which
limit inferences and generalizability.

When it comes to implementation of AI, clinicians may
override algorithm-based recommendations, or patients may
be wary of algorithm-recommended treatment. Although
computational modeling is a powerful tool to sift through
predictors to develop complex algorithms, the “black box”
of such computations may be off-putting to clinicians who
have long relied on their own clinical reasoning to drive
decision-making, or who may not fully understand the statistical
models (47). Moreover, algorithm recommendations may not
fully incorporate all clinical considerations, including patient
restrictions or preferences. A major pitfall of using AI for mental
health care—geriatric or otherwise—is that such systems will
sometimes be wrong, resulting in patient harm. For example,
a patient with a depressive disorder may be misclassified
and not treated. While such error happens in human-based
decision making, it will be important to build in safeguards
when implementing such AI systems at scale (e.g., transparency
around computational inferences and classification; routine
clinician assessment to augment such AI classification for greater
reliability; development of other safety nets in healthcare).
Finally, even if we could use AI to accurately predict clinical state
or worsening of a patient via sensor data or other algorithmic
prediction, what would a clinic or individual clinicians actually
do with such data? A clear bridge between developing and
implementing such predication-based models is developing
appropriate clinical workflows and interventions to address
such predictions.

Data scientists must also partner with clinicians and clinical
scientists to ensure that data features are meaningful and valid
for older adults (16). In our own work using ML to model daily
variation in depressive symptoms based on mobility data, we
were unable to access raw mobility data from the proprietary
sensor software and translate such data into meaningful variables
(48). We also ran into issues with intra- and interindividual
variation in phone usage patterns—data are only as robust as
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the degree to which users use the device (3, 48), which may
vary between older and younger adults. More work is needed
to understand older adults as unique users of devices, such as
smartphones, rather than simply extrapolating assumptions from
younger users. Finally, sensors and other multimodal sources
of data may detect incredible variability in clinical states and
behavioral markers. However, for practical utility, AI models
need to be trained to differentiate features that are clinically
relevant—that is, diagnostic—from transient mood states. This
will again require models based on large and diverse samples of
older adults to ascertain features associated with geriatric mental
health conditions.

One cannot tread into the topic of AI without running into
discussion of ethics, structural inequalities, privacy, and trust
issues. A full discussion of these topics is beyond the scope of
this paper but has been discussed elsewhere (49–51). Briefly,
these will be critical issues to consider as the innovation of
data science meets the practical applications of clinical work.
For example, what are the bioethical considerations if an AI
algorithm recommends a particular intervention, which the
clinician decides against it, and the patient decompensates?
Or, conversely, where does liability lie if a patient dies after a
clinician deploys an algorithm-recommended treatment (52)?
It is also crucial to acknowledge that racial, gender, and ageist
biases and discrimination are deeply embedded in healthcare—
and as a result, in the AI systems that learn from such
data sources. When unchecked, the inferences drawn from
such technologies are likely to perpetuate systemic injustices
in healthcare. These may result from bias and a lack of
transparency in developing algorithms, such as using training
data from a preponderance of young White men or using
flawed proxy variables to calculate risk scores (53). Such bias
is then further maintained in how providers respond to such
algorithmic predictions. Thus, understanding and preventing
the root causes for bias in AI systems must be a priority
to monitor and mitigate such consequences. Privacy concerns
among users of various technology-based assessments and
interventions has also been a central theme arising in research
from our group (54–56). Trust may vary as a function of
who is conducting the research—for example, trust in internet-
based research is higher (and participants more likely to share
their data) when the research is conducted by university
researchers compared to private companies (55). Building
trustworthiness of AI in geriatric mental health care and
research will rely on reconciling some of the issues discussed
above—namely, explainability (the ability to understand or
describe how a model arrived at its prediction), transparency

(clear and transparent methodology), and generalizability

(related to methodology; exhaustive testing and validation of
models) (57).

CONCLUSION

AI holds promise for more accurate diagnosis and personalized
treatment recommendations, yet the field is nascent with no
established pathway for integration into routine clinical care. A
recent market research survey found that healthcare providers
remain highly skeptical of consumer technology, remote data
collection, and the integrity of such data (58). Moreover,
development and implementation of such technology must
incorporate clinicians, patients, and caregivers as key stakeholder
groups to build trust and adopt user-centered approaches that
address privacy and usability issues. We may be on the cusp of
a new era that will allow the full potential of AI to take hold in
mental health care broadly, and geriatrics specifically. However,
until clinicians join forces with data scientists, engineers, and
developers—and until such technology addresses the pragmatic
concerns that clinicians and patients face—we will only scratch
the surface of such potential for these technologies.
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