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Objective: Cigarette smoking might accelerate cognitive impairment; however, this has

never been investigated using human cerebrospinal fluid (CSF). We conducted this

study to investigate the association between cigarette smoking and cognitive impairment

through metal ions in CSF.

Methods: We obtained 5-ml CSF samples from routine lumbar puncture procedures in

patients undergoing anterior cruciate ligament reconstruction before surgery in China. A

total of 180 Chinese males were recruited (80 active smokers and 100 non-smokers). We

measured specific cigarette-related neurotoxic metal ions in CSF, including iron, copper,

zinc, lead, aluminum, and manganese. Sociodemographic data and history of smoking

were obtained. The Montreal Cognitive Assessment (MoCA) was applied.

Results: Active smokers had fewer years of education (11.83 ± 3.13 vs. 13.17 ±

2.60, p = 0.01), and higher age (33.70 ± 10.20 vs. 29.76 ± 9.58, p = 0.01) and body

mass index (25.84 ± 3.52 vs. 24.98 ± 4.06, p =0.03) than non-smokers. Compared to

non-smokers, active smokers had significantly higher CSF levels of iron, zinc, lead, and

aluminum and lower MoCA scores (all p < 0.05). Average daily numbers of cigarettes

smoked negatively correlated with the MoCA scores (r = −0.244, p = 0.048). In young

smokers, CSF manganese levels negatively correlated with MoCA scores (r = −0.373,

p = 0.009).

Conclusions and Relevance: Cigarette smoking might be associated with male

cognitive impairment, as shown by lower MoCA scores and higher levels of CSF iron,

zinc, lead, and aluminum in active smokers. This might be early evidence of cigarette

smoking accelerating male cognitive impairment.
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INTRODUCTION

Evidence suggests that cigarette smoking might accelerate brain
aging (1). Metals found in cigarette smoke have been known to
accumulate in tissues and fluids (2, 3), such as iron, copper, zinc
aluminum, manganese and lead (4, 5). Metal accumulation in the
nervous system could lead to heavy metal toxicity and accelerate
cognitive impairment (6–8). Neurodegeneration, characterized
by cognitive impairment, is the most common manifestation of
heavy metal toxicity (9).

Increasing evidence suggests that dysregulation of
iron, copper, and zinc homeostasis contributes to several
neurodegenerative diseases (10, 11). Iron is involved in many
fundamental biological processes in the brain, including oxygen
transport, DNA synthesis, and mitochondrial respiration.
Iron accumulation might be an essential factor contributing
to neurodegenerative processes such as Alzheimer’s disease
(AD) (12). Copper is an active oxidation-reduction metal, as is
iron, and both share toxicological consequences (13). Elevated
copper levels may result in the generation of reactive oxygen
species (ROS), DNA damage, and mitochondrial dysfunction
(14). Disruption of the tightly regulated copper homeostasis
in the brain can result in severe neurological malfunction and
neurodegeneration. Studies suggested that the pathogenesis of
neurodegenerative disorders such as AD involves an imbalanced
copper homeostasis in the brain (15–17). Zinc’s primary role
is to stabilize the structure of several proteins, including
signaling enzymes at all levels of cellular signal transduction and
transcription factors. Excess zinc levels promote ROS production
in the mitochondria, disrupting activities of metabolic enzymes,
and activating apoptotic processes (18). Disruption of zinc
homeostasis has been associated with AD (19).

Manganese is essential for human development and brain
function. Excessive manganese levels are neurotoxic, as they
disrupt mitochondrial function and induce oxidative stress
(20). Chronic manganese exposure produces a cellular stress
response that leads to neurodegenerative changes (21, 22). Mass
spectrometry studies demonstrated that aluminum crosses the
blood-brain barrier and accumulates in a semipermanentmanner
(23). Oral administration of aluminum to AD mice induced an
increase in the amount of amyloid beta-protein and its deposition
in plaques and aluminum to induce neurofibrillary degeneration
and promote the appearance of tangle-like structures resembling
AD patients (24). Also, aluminum exhibits an affinity for
phosphates, therebymaking DNA, RNA, and ATP perfect targets,
affecting gene expression (6). A basic cellular and animal study
elucidated the toxic actions of lead within the central nervous
system (25). Lead has also been shown to induce latent changes
in the aging brain and has been implicated in the pathogenesis of
neurodegenerative diseases, particularly AD (26). Lead exposure

Abbreviations: CSF, cerebral spinal fluid; AD, Alzheimer’s disease; MCI,

mild cognitive impairment; CNS, central nervous system; HDL, high-density

lipoprotein; LDL, low-density lipoprotein; ALT, alanine aminotransferase; CHO,

cholesterol; TG, triglyceride; GGT, gamma-glutamyl transferase; AST, aspartate

aminotransferase; BMI, body mass index; MoCA, Montreal Cognitive Assessment;

ANCOVA, Analysis of covariance; SD, standard deviation; IQR, Interquartile

Range.

in childhood could increase neurodegenerative disease risk in
adulthood (25).

Components of cigarette smoke rapidly enter the brain in
several ways and may cause the accumulation of these metal
ions. Metal toxicity is associated with several neurodegenerative
diseases, depending on levels of metal ions in the brain (27, 28).
Nevertheless, the role of those metal ions in the association
between cigarette smoking and cognitive impairment has never
been reported. Therefore, this study was conducted to investigate
the association of cognition and metal ions levels in CSF of
cigarette smokers to further explore and support the effects of
cigarette smoking on cognitive impairment.

MATERIALS AND METHODS

Participants
Because there are few female subjects smokers in China,
180 Chinese males scheduled for anterior cruciate ligament
reconstruction surgery were recruited from September 2014
to January 2016 [method as described in the literature (29)].
Of these, 80 were active smokers, and 100 were non-smokers.
Sociodemographic data, including age, years of education, and
body mass index (BMI), were collected. Clinical data, including
a history of substance abuse and dependence, were obtained
according to self-report and confirmed by the next of kin
and family members. Exclusion criteria were as follows: (1) a
family history of psychosis or neurological diseases, or CNS
diseases determined by the Mini-International Neuropsychiatric
Interview; and (2) systemic diseases based on the medical history
and admitting diagnosis.

Participants who had never smoked and had no history of
substance abuse or dependence were assigned to the non-smoker
group. Active smokers were defined as those who consumed
half a pack of cigarettes (half pack = 10 cigarettes) or more
per day for more than 1 year. Smokers who smoked fewer
than 10 cigarettes per day were excluded. No participants had a
history of alcohol abuse or any psychiatric disorders, according
to the Diagnostic and Statistical Manual of Mental Disorders, 4th
Edition. All subjects were all independent without kinship. Active
smokers were further grouped into younger smokers (n = 59,
<40 y/o) and elder smokers (n = 21, ≥40 y/o), according to
the literature (30). Based on World Health Organization criteria,
active smokers were divided into moderate smokers (n = 46,
>10 and <20 cigarettes per day for more than 1 year) and heavy
smokers (n = 34, ≥ 20 cigarettes or more per day for more than
1 year. The maximum in this study was 40 cigarettes per day).

The present study was approved by the Institutional Review
Board of Inner Mongolian Medical University and performed in
accordance with the Declaration of Helsinki. Written informed
consent was obtained from all subjects.

Assessments, Biological Sample
Collection, and Laboratory Tests
Smoking-related habit variables were obtained from active
smokers, including age at smoking onset, years of cigarette
smoking, average daily amount of cigarette smoking, and
maximum daily amount of cigarette smoking. Cognition was
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TABLE 1 | The differences of clinical characteristics between non-smokers and active smokers.

Variables Non-smokers (n = 100) (Mean ± SD) (Median, IQR) Active smokers (n = 80) (Mean ± SD) (Median, IQR) p

Age (years) 29.76 ± 9.58 (27.50, 14.75) 33.7 ± 10.20 (31.50, 15.25) 0.01*

Education (years) 13.17 ± 2.60 (15.00, 4.00) 11.83 ± 3.13 (11.00, 7.00) 0.01*

BMI (Kg/m2) 24.98 ± 4.06 (24.22, 4.73) 25.84 ± 3.52 (26.18, 4.91) 0.03*

Systolic pressure (mmHg) 129.88 ± 12.87 (130, 16.75) 127.81 ± 13.87 (128.50, 19.25) 0.34

Diastolic pressure (mmHg) 75.12 ± 9.52 (76.5, 29) 76.31 ± 11.57 (77.00, 14.75) 0.51

HDL (mmol/L) 1.28 ± 0.33 (1.25, 0.30) 1.23 ± 0.28 (1.18, 0.27) 0.44

LDL (mmol/L) 2.66 ± 0.73 (2.66, 0.83) 2.65 ± 0.64 (2.63, 0.71) 0.88

ALT (U/L) 30.47 ± 23.08 (25.50, 9.00) 31.95 ± 22.99 (28.00, 15.75) 0.62

CHO (mmol/L) 4.72 ± 0.95 (4.69, 0.99) 4.79 ± 0.85 (4.75, 1.00) 0.60

TG (mmol/L) 1.85 ± 1.09 (1.61, 1.13) 1.76 ± 1.21 (1.50, 0.86) 0.17

GGT (U/L) 40.90 ± 31.26 (30.00, 26.75) 48.59 ± 47.07 (30.50, 35.50) 0.38

AST (U/L) 21.59 ± 9.49 (20.00, 8.00) 20.59 ± 7.38 (20.00, 9.75) 0.71

MoCA 26.77 ± 1.91 (27.00, 2.00) 25.70 ± 2.39 (26.00, 2.75) 0.003*

CSF iron (µmol/L) 11.24 ± 1.72 (11.15, 2.53) 14.59 ± 1.22 (14.60, 1.80) <0.001*

CSF copper (mg/L) 0.68 ± 0.09 (0.67, 0.12) 0.68 ± 0.07 (0.68, 0.11) 0.91

CSF zinc (µmol/L) 11.19 ± 1.33 (11.04, 2.13) 12.14 ± 1.58 (12.96, 2.26) <0.001*

CSF lead (µg/L) 120.05 ± 13.04 (121.64, 20.38) 139.13 ± 12.02 (137.23, 15.97) <0.001*

CSF aluminum (µmol/L) 0.88 ± 0.09 (0.90, 0.12) 0.93 ± 0.09 (0.94, 0.11) <0.001*

CSF manganese (nmol/L) 0.0307 ± 0.0061 (0.033, 0.009) 0.0288 ± 0.0059 (0.029, 0.010) 0.038*

HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALT, alanine aminotransferase; CHO, cholesterol; TG, triglyceride; GGT, gamma-glutamyl transferase; AST, aspartate

aminotransferase; MoCA, Montreal Cognitive Assessment; CSF, cerebral spinal fluid; SD, standard deviation; BMI, body mass index; IQR, Interquartile range.

All data were reported as mean ± SD using Mann-Whitney sum tests and median with IQR. *p <0.05.

assessed using the Montreal Cognitive Assessment (MoCA), a
brief cognitive screening tool with high sensitivity and specificity
for mild cognitive impairment (MCI), using a cutoff score of 26,
with those scoring 25 or below being suspected of having MCI
(31). The MoCA is a tool to differentiate healthy cognitive aging
fromMCI (32).

We recorded levels of high-density lipoprotein (HDL),
low-density lipoprotein (LDL), alanine aminotransferase test
(ALT), cholesterol (CHO), triglyceride (TG), gamma-glutamyl
transferase (GGT) and aspartate aminotransferase (AST) which
came from routine tests of the subjects to evaluate physical
condition on admission. These peripheral metabolic marker
levels were measured in the morning on the second hospital day
after an overnight fasting period using a biochemistry analyzer
(HITACH 7600, Hitachi Co., Tokyo, Japan).

Lumbar puncture is part of standard clinical procedure for
patients undergoing anterior cruciate ligament reconstructive
surgery in China. A licensed anesthetist performed a lumbar
puncture in the morning before surgery, and a 5-ml CSF sample
was obtained via intrathecal collection followed by immediately
frozen at −80◦C for storage. It takes <1 h to complete the entire
anterior cruciate ligament reconstruction operation. The time
from hospitalization to surgery was a maximum of 2 days.

Analyses were performed to measure CSF levels of iron,
copper, zinc, lead, aluminum and manganese by atomic
absorption spectrophotometry (33). Laboratory technicians were
blinded to clinical data.

Statistical Analysis
The normality of all variables was assessed using the Shapiro–
Wilk test. Only the distribution of zinc, cooper, systolic
pressure, and diastolic pressure were normally distributed
(all p > 0.05). Consequently, the Mann-Whitney rank sum
test was used (Table 1). The normality of the residuals from
these models was assessed using the Shapiro–Wilk test. The
homoscedasticity of residuals of the variances was verified
using Levene’s test; the residuals were all equally distributed
(p > 0.05), except iron (p = 0.007). Therefore, analysis of
covariance (ANCOVA) was used to compare differences in
raw biomarkers between groups (Tables 2, 3). Multi-collinearity
among covariates was estimated using tolerance and the variance
inflation factor (VIF), using cutoffs thresholds for tolerance
of <0.1 and VIF >10 (34). Partial correlation analysis was
performed to test the correlation between smoking habit
variables and MoCA and between smoking habit variables and
metal levels.

All statistical analyses were performed using IBM SPSS
Statistics for Windows, Version 22.0 (IBM Corp., Armonk, NY,
USA). Figures were created using GraphPad Prism version 8
(GraphPad Software Inc.). Since the variables under study might
be heavily inter-dependent, especially the metals, and a possible
effect worthy of further study did not wish to be missed in an
exploratory context (35), therefore the Bonferroni correction was
not conducted in the present study. All tests were two-sided, and
the significance threshold was set at p < 0.05.
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TABLE 2 | The differences of MoCA and metal levels between non-smokers and active smokers.

Object Mean differences 95% CI η
2
p F p

MoCA 0.656 0.010, 1.302 0.023 4.02 0.047*

CSF Iron (µmol/L) −3.089 −3.740, −2.437 0.350 87.61 <0.001*

CSF Copper (mg/L) −0.036 −0.086, 0.014 0.012 2.00 0.159

CSF Zinc (µmol/L) −1.604 −2.252, −0.856 0.100 17.92 <0.001*

CSF Lead (µg/L) −11.436 −18.059, −4.813 0.067 11.63 0.001*

CSF Aluminum (µmol/L) −0.054 −0.102, −0.005 0.029 4.83 0.029*

CSF Manganese (nmol/L) 0.000 −0.003, 0.004 0.000 0.03 0.859

ANCOVA, analysis of covariance; CI, confidence interval; η2p , partial eta squared values; MoCA, Montreal Cognitive Assessment; BMI, body mass index.

ANCOVA was used to calculate the differences between two groups; Age and education were treated as covariates of the differences of MoCA scores. The differences of the metal’s

levels were calculated with age, BMI, education, and other metals as covariates; Mean differences is the mean of non-smokers minus the mean of active smokers. *p < 0.05.

TABLE 3 | The differences of CSF biomarker levels between subgroups in active smokers.

Objects Younger/elder smokers (n = 59/21) Moderate/heavy smokers (n = 46/34)

Mean differences 95%CI p Mean differences 95%CI p

MoCA −0.037 −2.418, 2.343 0.975 1.605 −0.147, 3.357 0.072

CSF Iron (µmol/L) 0.606 −0.717, 1.928 0.364 0.701 −0.268, 1.671 0.153

CSF Copper (mg/L) −0.009 −0.092, 0.073 0.820 0.004 −0.058, 0.065 0.905

CSF Zinc (µmol/L) −0.352 −2.123, 1.420 0.693 0.210 −1.116, 1.536 0.753

CSF Lead (µg/L) −2.854 −15.916, 10.208 0.664 −5.610 −15.197, 3.976 0.247

CSF Aluminum (µmol/L) −0.069 −0.169, 0.030 0.167 −0.038 −0.113, 0.038 0.319

CSF Manganese (nmol/L) −0.005 −0.012, 0.001 0.114 −0.002 −0.007, 0.003 0.386

CSF, cerebral spinal fluid; MoCA, Montreal Cognitive Assessment; ANCOVA, analysis of covariance; CI, confidence interval.

ANCOVA was used to calculate the differences between two groups; Age, education, metals, and smoking habits were treated as covariates of the differences of MoCA scores. The

differences of metals levels were calculated with BMI, education, metals, and smoking habits as covariates; Mean differences is the mean of younger/moderate minus the mean of

elder/heavy smokers, respectively.

RESULTS

Demographic and Clinical Characteristics
Compared to active smokers, non-smokers had significantly
more years of education (13.17 ± 2.60 years vs. 11.83 ± 3.13
years, p = 0.01) and lower BMI (24.98 ± 4.06 vs. 25.84 ± 3.52
kg/m2, p= 0.03), and were younger (29.76± 9.58 years vs. 33.7±
10.20 years, p= 0.01). There were no differences between groups
for other sociodemographic and clinical characteristics (Table 1).
There were no significant correlations between BMI and metal
levels and between age and metal levels in each group (all p >

0.05, Supplementary Material 1).

Cognition and CSF Metals
Using ANCOVA with age and education of years as covariates,
the MoCA scores of non-smokers were significantly higher.
Using ANCOVA with age and education as covariates, CSF
levels of iron, zinc, lead, and aluminum were significantly
higher in active smokers (all p < 0.05) (Table 2; Figure 1). No
correlation was found between metal ions, age and MoCA scores
in either group.

Correlation and Difference in Active
Smokers
Stepwise multiple regression analyses of six metals showed that
no variable was removed frommodels (all tolerance>0.5 andVIF

<3). Age was removed from models in active smokers (Table 3)
since collinearity of age with age at smoking onset and years of
cigarette smoking (both tolerance <0.1 and VIF >30).

We calculated the correlation between smoking habit variables
and MoCA, and smoking habit variables and the metals.
Considering collinearity of age with age at smoking onset
and years of cigarette smoking (both tolerance <0.1 and VIF
>30), average daily amount of cigarette smoking was negatively
correlated with MoCA scores (r = −0.244, p = 0.048) with
years of education and other smoking habits as covariates. With
BMI, years of education, smoking habits, and other metals as
covariates, there were no correlations between smoking habits
and metal levels (all p > 0.05).

Active smokers were grouped into younger smokers (n = 59)
and elder smokers (n = 21); 46 were moderate smokers, and 34
were heavy smokers. No differences were observed in CSF metal
levels between younger and elder smokers or between moderate
and heavy smokers (p > 0.05) with BMI, education, metals,
and smoking habits as covariates. Compared to heavy smokers,
there was a trend of higher MoCA scores in moderate smokers
(p = 0.072) adjusted for age, years of education, metals, and
smoking habits.

Figure 2 shows that CSF manganese levels negatively
correlated with MoCA scores in young smokers (r = −0.373,
p = 0.009) adjusted for years of education, BMI, other metals,
and smoking habits.
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FIGURE 1 | The differences of biomarkers in cerebral spinal fluid (CSF) between groups. (A) The differences of iron levels; (B) the differences of zinc levels; (C) the

differences of lead levels; (D) the differences of aluminum levels. *p < 0.05.

FIGURE 2 | The negative correlation of manganese levels with MoCA scores

in young smokers (r = −0.349, p = 0.012).

DISCUSSION

This is the first study to investigate the association of cigarette
smoking and cognitive impairment through metal ions of
CSF. We found that cigarette smoking might be associated
with cognitive impairment, as shown by higher levels of
iron, zinc, lead, and aluminum in CSF and lower MoCA

scores in active smokers than non-smokers. The average daily
amount of cigarette smoking was negative correlation with the
MoCA scores.

Cigarette smoke might accelerate aging and cognitive
impairment, including enhancing the risk of AD (36). Compared
to non-smokers, middle-aged male smokers experienced a faster
cognitive decline in global cognition and executive function (37).
Heavy smoking is associated with cognitive impairment and
cognitive decline in middle age (38). The differences in metal
ion levels also might suggest an association between cigarette
smoking and cognitive impairment.

Cigarette smoke can affect iron transporters (39); the
principal ingredient (nicotine) blocks iron uptake by inhibiting
iron release from transferrin and endocytosis (40). Brain iron is
abnormally elevated early in several neurodegenerative disorders
that impact memory, including AD (41). Studies reported
a role for iron in neurodegenerative disorders, including
increased iron levels in AD brains and iron involvement in
the process of aging (42, 43). Moreover, iron is considered
to accelerate cognitive impairment by inducing oxidative
stress, ferroptotic cell death, or inflammatory responses
(44). A recent cross-sectional study found a negative impact
of chronic tobacco smoking on adult neuropsychological
function, including alternating attention, working memory,
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short-term memory, long-term memory, processing accuracy,
and executive function (45). In the present study, consistent
with these previous studies, higher CSF iron levels and
lower MoCA scores in active smokers, and average daily
amount of cigarette smoking negative correlation with
MoCA scores showed that cigarette smoking promoted the
kind of change, suggesting cigarette smoking accelerating
cognitive impairment.

Metallothionein (MT) is a group of metal-binding proteins
in the blood-brain barrier. MT regulates the intracellular
homeostasis of zinc. Because the copper-MT binding constant
is much larger relative to zinc, MT exchanges zinc for copper
when excess copper is present to defend against the more
toxic copper (46). This phenomenon could explain the lack
of difference in CSF copper levels between our two groups.
A study showed that serum copper and zinc concentrations
were significantly higher in smokers than in non-smokers;
however, in rats, copper-zinc ratios in the liver, kidney, lung,
and brain were significantly altered by nicotine treatment
(47). This finding could partly explain higher CSF zinc levels
in active smokers in our study. Zinc homeostasis is altered
in aging, and there is deranged brain zinc homeostasis in
AD. Although there are controversial views regarding zinc
supplementation preventing AD pathology (48, 49), excessive
zinc intake can lead to degeneration of cognitive function
(50–52). This finding further suggests that higher CSF zinc
levels as a feature of cigarette smoking accelerating cognitive
impairment. Both iron and zinc have a higher binding affinity
to Aβ and can promote its aggregation. Increased neuronal
iron and zinc also bind to tau protein and facilitate the
formation of neurofibrillary tangles to accelerate cognitive
decline (6). Therefore, in conjunction with lower MoCA scores,
levels of both metal ions were higher in CSF of active
smokers, strongly suggesting the effects of cigarette smoking on
cognitive impairment.

Manganese is an essential metal required for human
development and brain function. Chronic overexposure
to manganese may promote potent neurotoxic effects,
including disrupting mitochondrial function and induction
of oxidative stress (53). However, manganese not only
competes with iron for the same binding protein transferrin,
but also compete with other metal ions for divalent metal
transporter DMT1 which non-selectively transports multiple
divalent metals (54). These findings might explain no
difference observed in CSF manganese levels between
two groups in our study. Chronic manganese exposure
can produce cognitive deficits in rats (55), children, and
young men (56), which makes the negative correlation of
manganese levels with MoCA scores in young smokers easy
to understand.

There is increasing evidence supporting the notion of
aluminum’s involvement in hastening cognitive impairment,
which is thought to increase the incidence of neurological
diseases, including AD (57, 58). Epidemiological studies
showed that occupational exposure to aluminum was
associated with poor performance on cognitive tests (59).
Chronic exposure of animals to aluminum is associated

with evident deficits in learning and behavioral functions.
Aluminum in tobacco can be inhaled via a number of ways,
such as lung and oral epithelial tissues and accumulates
in the brain over time (60). Aluminum is not essential
for biological activities, and if accumulated in the brain,
it induces amyloid β accumulation (61). It is toxic to the
nervous system and induces irreversible cognitive impairment
(58). In our study, higher CSF aluminum levels with lower
MoCA scores were observed in active smokers than non-
smokers, further suggesting that cigarette smoking accelerates
cognitive impairment.

Cigarette smoking increases lead intake. Lead alters energy
metabolism and blocks the release of calcium frommitochondria
leading to the formation of ROS and apoptosis of the neuron
and disrupts the formation of synapses (62). Lead causes
significant adverse effects on the developing brain, including
cognitive and learning disabilities (63). Any fraction of lead
entering the brain cannot be neglected (64). Lead crosses the
blood-brain barrier (65) and preferentially accumulates in the
hippocampus and cerebral cortex in mice and humans (25) with
consequent cognitive deficits (66, 67). Total brain volume, the
volume of gray matter in the insula and cingulum, and white
matter volume in the parietal lobes were reduced in a group
of workers with chronic exposure to environmental lead (68).
This finding explains the decline in cognitive function caused
by lead toxicity. Therefore, the higher CSF lead levels and lower
MoCA scores in active smokers than non-smokers in our study
suggest that cigarette smoking accelerates cognitive decline in
several ways.

Additionally, in the present study, the mediation analysis has
been performed with smoking habits (X) as the independent
variable and the sample size of active smokers (n = 80)
was not enough to calculate the mediation effect efficiently,
therefore, although there were no mediation effects of metal
ions observed in our results, it is estimated that cigarette smoke
contains thousands of chemical compounds and toxins that are
deleterious to health (69), and there are the variety of toxic
heavy metals in tobacco (69), many literatures cited here have
shown that cigarette smoke increases the accumulation of metal
ions in tissues and fluids, that their abnormal accumulation
in the nervous system could lead to heavy metal toxicity
and multiple neurodegenerative diseases including cognitive
impairment, and that metal ions in tobacco could enter biological
tissues and organs through cigarette smoke. Moreover, our
subjects are all male Han people of northern China with
similar living habits and environment. Therefore, it cannot
be ruled out that cigarette smoke develops into a cognitive
problem through abnormal deposition of metal ions. Taking
together, higher levels of CSF iron, zinc, aluminum, and lead in
smokers might be associated with cigarette smoking accelerating
cognitive impairment.

There are some limitations to this study. First, CSF cannot
directly reflect pathological changes in neurons; nevertheless, it
represents biochemical changes in the brain. Second, subjects
recruited in this study had anterior cruciate ligament injuries and
were not an entirely healthy population, which might be seen
as a confounder when interpreting the results. Finally, if there
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were more subjects and female subjects, our findings might be
further supported.

CONCLUSION

Cigarette smoking might accelerate male cognitive impairment,
as shown by lower MoCA scores and higher CSF iron, zinc,
lead, and aluminum levels in active smokers. Higher levels of
CSF iron, zinc, aluminum, and lead in smokers might be early
evidence of cigarette smoking accelerating cognitive impairment.
These broaden our understanding of cigarette smoke exposure
associated with the development of neurodegenerative diseases.
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