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Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by

compulsive alcohol seeking and disrupted brain function. In individuals with AUD,

abstinence from alcohol often precipitates withdrawal symptoms than can be life

threatening. Here, we review evidence for nutritional ketosis as a potential means to

reduce withdrawal and alcohol craving. We also review the underlying mechanisms

of action of ketosis. Several findings suggest that during alcohol intoxication there is

a shift from glucose to acetate metabolism that is enhanced in individuals with AUD.

During withdrawal, there is a decline in acetate levels that can result in an energy deficit

and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester

elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and

brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol

withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and

clinical studies. Thus, nutritional ketosis may represent a unique treatment option for

AUD: namely, a nutritional intervention that could be used alone or to augment the effects

of medications.
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INTRODUCTION

Alcohol use disorder (AUD) is a chronic, relapsing disorder characterized by disrupted function
of brain circuits involved with reward, self-regulation, and emotion. During early abstinence or
acute withdrawal, patients with AUD often exhibit signs and symptoms of the alcohol withdrawal
syndrome (AWS), including intense alcohol craving, negative emotional states, restlessness, and
in severe cases, seizures and delirium tremens. Treatment with benzodiazepines is currently the
safest, most effective treatment for acute alcohol withdrawal, reducing the risk of serious symptoms
such as seizures (1, 2). However, there is risk of dependence on benzodiazepines, particularly
among patients with AUD, which precludes their use in this population beyond the period of acute
withdrawal (3). Although anticonsulvants have also been shown to be efficacious in treating AWS
and have less potential for dependence, these medications have a number of adverse effects (4, 5).
Thus, additional efficacious treatments are needed that have less dependence potential and adverse
effects than existing medications.
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Recent preclinical and clinical studies show beneficial effects
of a nutritional state of ketosis on alcohol withdrawal symptoms
(6–8). Ketosis is characterized by elevated plasma and brain levels
of ketone bodies (acetoacetate [AcAc], β-hydroxybutyrate [BHB]
and acetone) that can be induced by prolonged or intermittent
fasting, consumption of a low-carbohydrate, high-fat Ketogenic
Diet (KD), a nutritional Ketone Ester (KE) supplement, Medium
Chain Triglyceride (MCT) oils, or D-β-hydroxybutyrate (D-
BHB) ketone salts. Here, we review the literature on the
use of ketosis implemented using dietary interventions and
the rationale for its potential use as a treatment for AUD.
We also propose several mechanistic hypotheses based on the
extant literature.

NUTRITIONAL KETOSIS

Nutritional ketosis is a physiological state of energy consumption
that relies primarily on elevated concentrations of ketone bodies.
Ketone body concentrations can be elevated indirectly through
ketogenic diets and prolonged fasts to promote fatty acid
catabolism or directly through dietary supplementation with D-
BHB ketone salts or esters. In addition, MCTs offer another
potential avenue for supplementation via octanoic and decanoic
acids, which produce more ketones per unit of energy than
dietary fat (9, 10). A KD with a traditional 4:1 ratio of grams of
fat to grams of carbohydrates/protein (i.e., 80% calories from fat,
15% calories from protein and 5% calories from carbohydrates)
raises blood BHB levels up to 4.5mM (8), while D-BHB salts and
MCT oils elevate peak blood levels of BHB to around 0.5mM
(11, 12) and the D-BHB ketone ester raises BHB levels to ∼3.2
mM (13–15).

In the presence of insufficient carbohydrates, hepatic
catabolism of fatty acids from triglycerides increases ketone
body levels in plasma and brain, inducing a state of metabolic
ketosis. A KD shifts energy metabolism toward β-oxidation,
the mitochondrial aerobic catabolism of fatty acids into
acetyl-CoA (16), which can reduce the risk of seizures in
patients with epilepsy (17–21). In addition, KDs have shown
therapeutic effects in patients with Alzheimer’s disease (22)
and Parkinson’s disease (23), and have been proposed as a
potential therapeutic intervention for psychiatric disorders such
as autism spectrum disorder (24, 25), major depressive disorder
(26, 27), schizophrenia (28, 29), and bipolar disorder (30, 31).
However, patient adherence to KDs, particularly those that most
tightly restrict carbohydrate content (32), is limited by their
poor palatability.

The nutritional supplement (R)-3-hydroxybutyl (R)-3-
hydroxybutyrate (Ketone Ester; KE) is a safe (13, 33), effective,
and commercially available method (e.g., DeltaG R©, TdeltaS R©,
Orlando FL) for inducing ketosis. KE has been shown to stabilize
brain networks, thereby protecting the hypometabolic, aging
brain (34), increasing physical endurance in athletes (35)
and improving indices of cognition in preclinical and clinical
models of Alzheimer’s Disease (36–38). Several advantages of
ketone supplementation, specifically with D-BHB, over the
traditionally used KD have been described. Within 30min of its

administration, KE (which is commercially available in a slightly
bitter but palatable liquid) induces levels of plasma ketone bodies
similar to those observed after 2 weeks of KD, with the effects
maintained for 4–5 h with no further dietary manipulation
(8, 15). Although KEs anecdotally are more effective in fasted
states, their use, in contrast to KDs, does not require drastic
carbohydrate restriction (39). Finally, KEs directly increase
plasma ketone body levels, circumventing potential alcohol-
induced inhibition of AMP-activated protein kinase (AMPK), a
master regulator of ketogenesis (40, 41).

EFFECTS OF NUTRITIONAL KETOSIS ON
ALCOHOL WITHDRAWAL

Preclinical and clinical research provide evidence that KD-
induced nutritional ketosis is a feasible strategy for mitigating
the debilitating effects of alcohol withdrawal. Dencker et
al. (6) measured the effect of a KD on signs of alcohol
withdrawal in a rodent model of alcohol dependence. They
found that, compared to regular chow, a KD attenuated muscular
rigidity and irritability in alcohol-dependent rats during
alcohol detoxification. However, despite previous evidence that
exogenous ketone supplementation has anxiolytic effects in the
elevated plus maze test (36, 42), this study showed no significant
effect of the KD on anxiety-like behavior as measured either
by the elevated plus maze test or locomotor activity (6). One
potentially confounding factor in the study was that the KD
decreased body weight, with the alcohol-dependent rats on the
KD showing the greatest weight loss (6). The rats in the Dencker
et al. (6) study were fed a KD or regular chow ad libitum.
Therefore, the KD may have been less appetizing or more
satiating then the regular chow, which could help to explain the
greater weight loss in rats fed that diet. Studies that control for
caloric intake are necessary to understand the interaction of KD
with alcohol on weight loss.

In a randomized, blinded, placebo-controlled nutritional
intervention in inpatients with AUD who were undergoing
detoxification, during the first week of withdrawal a KD reduced
benzodiazepine use more than a standard diet (50% calories
from carbohydrates, 15% calories from protein, and 35% calories
from fat) (8). Although withdrawal symptoms measured with the
Clinical Institute Withdrawal Assessment—Alcohol revised did
not differ between diet groups, patients in the standard American
control diet received more benzodiazepines than patients treated
with the KD. In the brain, the KD elevated levels of the metabolic
markers acetone, AcAc, and glutamate and decreased choline
and myo-inositol, metabolites linked to neuroinflammation (8).
Correlations between low plasma BHB levels and greater social
impairment, depression, and brain white matter alterations
in patients with AUD also support the clinical relevance of
BHB (43).

Patients who are seeking treatment for AUD often present
with poor nutritional status and low appetite (44). Recently,
Bornebusch et al. (7) retested the effect of a KD diet on
alcohol withdrawal symptoms in mice, which included a KE-
treated cohort. In two separate experiments, the researchers
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tested a “ketosis throughout” cohort, in which ketosis was
induced during alcohol administration and abstinence, and a
“ketosis after” cohort in which ketosis was induced only during
abstinence. The KD diet reduced handling-induced convulsions
and anxiety-like behaviors only in the ketosis throughout group,
whereas a KE alleviated these withdrawal symptoms in both
groups. Moreover, oral administration of 3-hydroxybutyrate
alleviated tremor but not muscular rigidity in alcohol-dependent
rats (45). This is important because adherence with a KE is
greater than that observed with the KD. Although oral D-
BHB supplements appear to have a positive therapeutic effect in
alleviating withdrawal symptoms in animal models, studies are
needed to elucidate the specific symptoms that are reduced and
whether oral D-BHB supplements have similar effects on AWS in
patients with AUD.

EFFECTS OF NUTRITIONAL KETOSIS ON
ALCOHOL CRAVING, CONSUMPTION AND
SENSITIVITY

There is evidence that KD and KE reduce appetite and food
intake (15, 46) and rodent studies have shown that nutritional
ketosis reduces alcohol intake. Rats maintained on a 9-week
KD followed by an 8-week regular chow diet self-administered
less alcohol than those with no previous exposure to KD (i.e.,
mean history of KD = 30.8 ± 4.3 reinforcers/30min vs. regular
Chow = 48.3 ± 6.3) (8). Thus, a history of a KD deescalated
alcohol consumption in alcohol-dependent rats (8). Although the
authors initially aimed to study alcohol self-administration in rats
on a current KD, the large group difference in blood alcohol levels
as a function of the KD was a confounder. Specifically, rats on
a current KD showed blood alcohol levels that were less than
five-fold elevated following alcohol vapor exposure, an effect not
seen with a regular chow diet (8). Although this suggests that
a KD could interfere with alcohol metabolism, potentially due
to altered activity of alcohol dehydrogenase (ADH) or aldehyde
dehydrogenase (ALDH) enzymes in the liver, the hypothesis
requires testing.Mice exposed to a 7-day KD showed a lower level
of alcohol self-administration than those given a standard diet
(i.e., mean KD= 0.51± 0.04 g/kg vs. standard diet= 1.04± 0.08
g/kg) (47). Together, these findings suggest that both current KD
and a history of KD lower alcohol consumption in rodent models
of alcohol drinking and dependence. However, more research is
needed to investigate the effects of a KD on alcohol consumption
when differences in blood alcohol levels are accounted for and to
assess the effects of a KD and other means of inducing ketosis on
acetaldehyde/acetate levels and ADH/ALDH enzyme activity.

We are not aware of human studies that show the effects
of nutritional ketosis on alcohol metabolism, tolerance, or
consumption. However, in an inpatient clinical trial testing the
effects of KD on AWS signs and symptoms during detoxification,
3 weeks of KD were associated with lower subjective ratings
of alcohol “wanting” and alcohol craving (at the level of a
trend) than an isocaloric standard (control) diet (8). A functional
magnetic resonance imaging component of the study also showed
that during the 3-week treatment period, there were greater

brain dorsal anterior cingulate cortex responses to alcohol visual
cues in the KD group than the isocaloric control diet group,
which may indicate enhanced control of alcohol craving in the
KD group. In individuals with obesity, a 4-month KD lowered
food craving and craving for alcohol (46). Interestingly, although
alcohol alone did not increase plasma BHB in healthy volunteers,
alcohol combined with a KD elevated BHB nearly 8 times more
than the KD alone (48). A potential mechanism for these effects
could be that elevated acetate concentrations resulting from
alcohol catabolism compete with BHB as fuel for the tricarboxylic
acid (TCA) cycle, resulting in higher BHB levels in plasma.

Clinical trials are currently underway (NCT04616781;
NCT03255031; NCT03878225) that assess the effects of
nutritional ketosis on alcohol consumption, metabolism, and
tolerance in AUD and to explore potential mechanisms of action
of the dietary manipulation.

POTENTIAL MECHANISMS OF ACTION
FOR THE THERAPEUTIC EFFECTS OF
KETOSIS IN ALCOHOL USE DISORDER

Low Glucose Utilization/High Acetate
Metabolism
Glucose is the brain’s primary fuel source in meeting its intensive
energy demand. However, temporal variations in the brain’s
energy demand and supply necessitate alternative additional
fuel sources to meet its metabolic and energy challenges.
Circulating ketone bodies (AcAc, BHB and acetone) provide
metabolic fuel the supply of which can be elevated through
carbohydrate fasting-induced hepatic catabolism of fatty acids
or exogenous supplementation. Passing through the brain blood
barrier and entering the mitochondria of cells in the brain
through monocarboxylate transporters, BHB is metabolized into
AcAc and then into acetyl-CoA, which feeds into the TCA
cycle (Figure 1). Studies of D-BHB supplementation have shown
benefits of providing ketones as an alternative to glucose as
an energy source for the brain. Some of these benefits include
a elevation in the nicotinamide adenine dinucleotide (NAD)
redox state (NAD+/NADH) (49, 50), which is important for
mitochondrial function, an increase in the free energy for ATP
synthesis in neurons (49, 51, 52), and furnishing the cell with
acetyl-CoA and citric cycle intermediates (53). These findings
lend support to the therapeutic potential of nutritional ketosis in
pathologies characterized by glucose insensitivity by providing an
alternative energy substrate.

Substantial research has examined the metabolomic and
bioenergetic effects of alcohol on the brain. Acute alcohol
administration changes the brain’s energetics, decreasing glucose
metabolism while increasing the metabolism of acetate, a
metabolite of alcohol (54). This alcohol-induced shift in
brain energetics appears to be accentuated in AUD patients
who, during sobriety, show higher brain acetate metabolism
(55, 56) and lower brain glucose metabolism (54, 57) than
non-alcohol dependent controls. These findings suggest that
a shift from glucose to acetate metabolism persists beyond
acute intoxication in individuals with AUD (Figure 2). During
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FIGURE 1 | (A) Hepatic metabolism of ethanol and fatty acids and ketogenesis are shown. (B) Non-hepatic metabolism of D-BHB, acetate, and glucose in the

cytosol and mitochondria converge on acetyl-CoA which enters the tricarboxylic acid (TCA) cycle. Within neurons, acetoacetate and D-BHB are transported into the

mitochondria via monocarboxylate transporters. Abbreviations: TCA Cycle, tricarboxylic acid cycle/the citric acid cycle/Kreb’s cycle; D-BHB, D-β-Hydroxybutyrate;

NAD(H), nicotinamide adenine dinucleotide; SCOT, 3-ketoacid CoA transferase; ACAT, acetyl-CoA acetyltransferase; I, NADH ubiquinone oxireductase; II, succinate

dehydrogenase; III, CoQH2-cytochrome c reductase; IV, cytochrome c oxidase; ATP Synthase, FOF1 ATP synthase; PDC, pyruvate dehydrogenase complex.

alcohol detoxification, when acetate supplies are low, this could

lead to a central energy deficit that could contribute to the

AWS and associated neurotoxicity (56) (Figure 2). The energy

substrate deficit can be alleviated by increasing plasma ketone

concentrations. Indeed, nutritional ketosis induced by a KD or
oral D-BHB (ketone salts) decreased brain glucose metabolism,
assessed with fludeoxyglucose ([18F]FDG-PET) and increased
brain acetate metabolism, with [11C]acetoacetate binding in
healthy controls (12, 58). However, aging may influence this
effect, as Roy et al. (59) showed both elevated brain [18F]FDG
and [11C]acetoacetate in aging rats after KD.

Brain studies in Alzheimer’s disease can provide a useful

parallel for AUD, as both diseases are associated with reductions

in the global cerebral metabolic rate of glucose, which is estimated

at 20–25% (60, 61). Reduced glycolytic flux and uptake (62)

could help to explain this hypometabolism. Ketogenic diets

and ketone supplementation have been shown to be protective
in in vitro neuronal cell models (63) and benefits in clinical
trials of Alzheimer’s Disease (37, 64–66). Nutritional ketosis
induced by the administration of MCT supplements has been
shown to improve memory (67), and to double brain AcAc
consumption in individuals with Alzheimer’s disease, thereby
increasing total brain energy metabolism without affecting brain
glucose utilization (68). The relationship between plasma ketones
and brain ketone uptake was the same in individuals with

Alzheimer’s Disease as in healthy young adults (58), indicating
that there is intact AcAc utilization in Alzheimer’s Disease. Thus,
there is a potential for interventions that elevate circulating
ketone bodies, primarily the administration of D-BHB, to be
useful in treating pathologies characterized by impaired glucose
metabolism and supply such as Alzheimer’s Disease and AUD.

Imbalances in Glutamate and GABA
AWS is characterized by a general hyperexcitability of the
central nervous system (69). The amino acids glutamate and γ-
aminobutyric acid (GABA) are respectively the major excitatory
and inhibitory neurotransmitters in the brain. Although alcohol
initially inhibits excitatory effects by glutamate transmission
and facilitates the inhibitory actions of GABA, chronic alcohol
exposure results in compensatory changes in these amino
acid transmitter systems that are opposite those seen with
acute exposure and may contribute to alcohol withdrawal (70).
There have been contradictory findings on brain glutamate
concentrations in AUD from proton magnetic resonance
spectroscopy (1H-MRS) studies. Glutamate levels in the nucleus
accumbens (71) and thalamus (72) have been shown to be
elevated in individuals with AUD compared to non-dependent
controls. However, glutamate levels in the anterior cingulate
cortex have been reported to be higher (73), lower (74, 75)

Frontiers in Psychiatry | www.frontiersin.org 4 November 2021 | Volume 12 | Article 781668

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Mahajan et al. Ketosis for Alcohol Use Disorder

FIGURE 2 | Schematic overview of the shift from high acetate utlization to low brain acetate avaliability with slow recovery of brain glucose metabolism in chronic AUD

during detoxification. This shift is hypothesized to produce a central energy deficit that could contribute to alcohol withdrawal symptoms and associated neurotoxicity.

or unchanged (71, 72, 76) in AUD individuals during early
withdrawal compared to non-dependent controls.

Glutamate in the cingulate of AUD patients was inversely
correlated with the number of heavy drinking days in the 14
days preceding the MRS scan (76). Additionally, the number of
drinking years but not drinks per day was associated with higher
concentrations of glutamate and glutamine (Glx) in AUD. Mon
et al. (75) concluded that sobriety may normalize glutamate levels
over the course of abstinence. GABA levels in plasma (70) and
cingulate cortex (77) have been shown to be low during acute
alcohol withdrawal. Moreover, initially low cingulate GABA
levels may normalize within 3 days of last alcohol intake but only
in treatment-naïve individuals with more severe AUD (77). Thus,
more research is needed to better understand the dynamics of
brain glutamate and GABA in individuals with AUD.

Glucose metabolism through the TCA cycle is both the main
source of energy to the brain and the main source of carbon for
the synthesis of glutamate and GABA (78, 79). In a murine model
with reduced brain-specific pyruvate dehydrogenase activity,
reduced flux through the TCA cycle reduced the glutamate
content of the brain and elicited epileptiform discharges, which
were ameliorated by acetate administration (80). A recent study
in a mouse model of Alzheimer’s Disease (triple transgenic
Alzheimer’s 3xTgAD, which shows reduced brain glucose
utilization) showed higher hippocampal glutamate and α-
ketoglutarate (a precursor of glutamate) in animals who received
a KE diet compared to regular chow and a positive correlation
between glutamate and α-ketoglutarate levels in both groups (50).
Thus, nutritional ketosis appears to furnish mitochondria with
TCA cycle substrates (38), as evidenced by the finding that a 4-
month KD elevated glutamate and glutamine in young adult rats
(81). Although patients with epilepsy did not show differences
from controls in posterior cingulate cortical glutamate measures,
patients’ elevated glutamate concentrations predicted short-term

freedom from seizures, supporting the clinical relevance of
glutamate concentrations in epilepsy (82). This underscores the
need to elucidate the mechanism(s) underlying the association of
KD-induced changes in glutamate with brain excitability.

Vesicular glutamate transporters (VGLUT) are required for
packaging and exocytotic release of glutamate. VGLUT is
inhibited by AcAc and BHB through a competitive interaction
with the VGLUT allosteric activator Cl− (83). A decrease
in the concentration of glutamate per vesicle from VGLUT
inhibition reduces glutamatergic activation, thereby dampening
excitation. BHB and AcAcmay also dampen neuronal excitability
via their effect on K+/ATP channels, having been shown to
reduce the spontaneous firing rate of substantia nigra pars
reticulata neurons in vitro (84). This effect was abolished by
the genetic or metabolic elimination of metabolically sensitive
K+/ATP channels (84). In a recent study, acetone and BHB
acted as inhibitors of glutamate at NMDA receptors (85). In
addition, D-BHB and acetoacetate reduced neuronal death and
changes of neuronal membrane properties in rat neocortical
neurons subjected to glutamate excitotoxicity (86). Further,
calorically restricted KD increases the expression of glutamic
acid decarboxylase, the enzyme responsible for the conversion
of glutamate to GABA (87), in the brain which increases the
conversion of glutamate and thereby reduces excitation. Thus,
there is conflicting evidence and potential mechanistic roles
of glutamate in the context of AUD and further elucidation
is needed with a particular emphasis on intracellular versus
extracellular changes.

The efficacy of a KD in preventing or reducing seizures
in epilepsy (88) may have direct relevance to alcohol
withdrawal, which can be complicated by seizures. The following
mechanism(s) have been proposed for the reduction of seizures
by a KD: (1) restoring glutamatergic neurotransmission and
enhancement of GABA synthesis, (2) circumventing glycolysis
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and providing Acetyl-CoA for the TCA cycle through fatty
acid oxidation, (3) stimulating ATP-sensitive K+ channels,
and (4) inhibiting voltage-dependent Ca2+ channels (78, 89).
However, seizures are uncommon in AUD patients undergoing
detoxification, partly because benzodiazepines, which are widely
use to manage the AWS, have anticonvulsant activity (90). A
KD may reduce overall neuronal excitability, mitigating the
severity of alcohol withdrawal symptoms and reducing the
need for benzodiazepine treatment during acute withdrawal.
Thus, rodent studies are needed to investigate the effect of a
KD on alcohol-induced seizures, as these would inform efforts
to prevent alcohol withdrawal-induced seizures in patients
(90). However, it is unclear how the hypothesized reductions
of neuronal excitability with KD would associate with brain
glutamate concentrations.

Hormonal Regulation
Ghrelin is a homeostatic hormone that stimulates human
appetite, having effects opposite to those of leptin (91, 92).
Endogenous peripheral ghrelin levels decrease during alcohol
drinking and increase during alcohol abstinence (93–99). Studies
have shown that genetic or metabolic reductions in ghrelin
levels decrease alcohol intake (100, 101). In addition, higher
ghrelin levels are associated with greater self-reported craving
(97, 98, 101, 102), longer and more intense subjective responses
to alcohol (103), and activation of the bilateral insulae (104)
and ventral striatum (105) as measured with functional magnetic
resonance imaging during alcohol cue exposure. Higher levels
of ghrelin and activation of the ghrelin receptor stimulate the
cholinergic-dopaminergic reward link, which has implications
for the reinforcing effects of ghrelin in AUD (106). In healthy
volunteers, a single administration of a KE was associated with
decreased self-reported hunger and plasma ghrelin levels than the
ingestion of isocaloric dextrose (15).

Although there is some indication that KD may suppress
ghrelin levels (see review by Roekenes and Martins (107)), there
are some inconsistencies in the literature (108–111). Leptin and
peptide YY have effects opposite to ghrelin, in that they promote
satiety (112, 113). A KD has been shown to increase serum
peptide YY levels (114), though it has also been shown to decrease
leptin levels (115, 116).

Fibroblast growth factor 21 (FGF21) is a hormone of hepatic
origin whose targets include white and brown adipose tissue,
the hypothalamus, and the hindbrain (117, 118). A KD has
been shown to increase the concentration of FGF21 in murine
models (119, 120), but this effect was not seen in humans (121–
123). Nevertheless, in humans, FGF21-based pharmacotherapy
decreased body weight (124) and variation in the FGF21 gene has
been associated with macronutrient preference (carbohydrate,
fat, and protein) (125). Moreover, FGF21 administration reduced
a preference for alcohol in mice and for sweets in mice and
monkeys (126). Therefore, FGF21 may be a key factor involved
in the effects of ketosis on alcohol preference and warrants
further investigation.

Glucagon-like peptide 1 (GLP1) is an intestinal hormone
that enhances insulin secretion, inhibits glucagon secretion,
and decreases gastric motility (127). There is some clinical

evidence that the concentration of GLP-1 is increased in
response to high fat KDs (109, 128), although experiments in
cell culture have yielded contradictory evidence (129). GLP-
1 receptor activation by GLP-1 agonists suppresses the effects
of alcohol on the mesolimbic dopamine system and decreases
alcohol consumption and operant self-administration (130–
135). However, the GLP-1 receptor agonist Exendin-4 failed to
attenuate morphine conditioned place preference or remifentanil
self-administration (132). In addition, there is limited evidence
that GLP-1 receptor agonists affect cocaine consumption (136,
137). Taken together, GLP-1 receptor activation induced by
increased GLP-1 levels produced by a KD could serve as a
suppressor of alcohol intake. Further research is needed to
establish the role of the KD effect on circulating GLP-1 levels.

Evidence suggests that alcohol dependence is associated with
dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis
and extrahypothalamic glucocorticoid signaling as well as other
stress (e.g., corticotropin-releasing factor [CRF]) and anti-stress
(e.g., neuropeptide Y) systems (138). However, the few available
studies of the effects of ketosis on the HPA axis and other
stress systems have yielded contradictory findings. For example,
in one rat study, neither a KD nor a ketone supplementation
diet affected plasma levels of adrenocorticotropic hormone or
corticosterone (139). In another study, both KD and MCT
increased HPA axis activity (140). Interestingly, in female but not
male rats exposed to chronic mild stress, a KD prevented stress-
related blood corticosterone and hypothalamic NPY expression;
this effect was not accompanied by altered CRF mRNA
expression (141). Furthermore, continuous microinjection of D-
BHB into the prefrontal cortex attenuated the effects of a chronic
unpredictable stress on depression-like behavior and HPA axis
activity (142). More research on the effects of ketosis on stress
systems is needed.

Nicotinamide Adenine Dinucleotide (NAD+)
NAD+ is present in all living cells and plays a vital role
in cellular metabolism as a coenzyme for redox reactions,
including those required for mitochondrial energy production.
NAD+ decreases with age (143, 144) and lower NAD+ levels
are associated with neurodegenerative and neuropsychiatric
disorders including Alzheimer’s Disease and schizophrenia (145).
Although individuals with AUD have low liver concentrations of
NAD+ (146), it remains to be determined whether their brain
NAD+ concentrations are affected by chronic heavy alcohol
consumption. Because NAD+ and pyruvate are implicated
in both the oxidation of alcohol (147, 148) and in the
metabolic effects of fasting (149), it is possible that these
compounds mediate the clinical efficacy of nutritional ketosis
in AUD. An intravenous infusion of NAD+ during alcohol
or opioid withdrawal attenuated both craving and withdrawal
symptoms (150). A 7-Tesla magnetic resonance spectroscopy
study in healthy volunteers showed that ketone supplementation
elevates the concentration of NAD+ in the brain (151). Mice
who received dietary supplementation with KE had higher
cortical and hippocampal free cytosolic [NAD+]/[NADH] than
mice fed a control diet (50). A KD also increased cellular
concentrations of NAD+ (152), along with concentrations of
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Sirt1, Parp-1, and 8-hydroxy-2
′
-deoxyguanosine, which could

improve brain health by increasing resilience to DNA damage
and oxidative stress (153). However, the effects of ketone
modulation of NAD+ in patients with AUD and its clinical and
cognitive effects are unstudied. Because nucleotide coenzymes
and their corresponding oxidizing forms are compartmentalized
and bind at a subcellular level, their measurement and the
interpretation of the results require great care to ensure
accuracy. For example, from fed, freeze-clamped, rat liver
the calculated free cytoplasmic [NAD+]/[NADH] from lactate
dehydrogenase was approximately 200 times higher than the ratio
calculatedmeasured using total concentrations of the coenzymes.
Conversely, the free cytoplasmic [NADP+]/[NADPH] from
isocitrate dehydrogenase was ∼20 times lower than the ratio
calculated from measured total respective amounts (149).

D-β-Hydroxybutyrate as a Signaling
Molecule
In addition to its direct action in mitochondrial metabolism,
D-BHB may exert therapeutic effects as a signaling molecule.
D-BHB has been suggested to have direct involvement in
epigenetic regulation due to its ability to act as an inhibitor
of class 1 histone deacetylases (HDAC) that increases global
acetylation levels in a dose-dependent manner (154). During
withdrawal from chronic alcohol, anxiety-like behaviors were
correlated with an increase in HDAC activity and a decrease
in H3/H4 acetylation, but the behaviors could be reversed
with the HDAC inhibitor trichostatin A (155). Furthermore,
alcohol withdrawal-induced hyperalgesia was attenuated by
the HDAC inhibitor suberoylanilide hydroxamic acid (156).
In addition, the anxiolytic-like responses to acute alcohol
administration were associated with increased histone acetylation
and HDAC inhibition in the amygdala (155, 157). In vitro
application of D-BHB also increased the expression of FOXO3,
MnSOD, CAT, and MT2, genes that encode oxidative stress
resistance factors (154). Bolstering this mechanism, various
studies have demonstrated D-BHB’s neuroprotective effect
against oxidative stress (158–160). In humans, alcohol is
processed by ADH enzymes into acetaldehyde, which produces
unstable free radicals like hydrogen peroxide and superoxide
(161, 162). Furthermore, chronic alcohol consumption depletes
mitochondrial glutathione, a potent antioxidant (163). Thus, D-
BHB may be unique in its capacity to respond to epigenetic and
oxidative stress changes that occur during AUD.

Brain-derived neurotrophic factor (BDNF), a neurotrophin
that helps control neurogenesis, has been implicated in the
development of AUD (164–166). Although individuals with
current AUD had lower overall serum BDNF levels than
non-AUD controls (167), preclinical studies indicate that the
directionality of the BDNF change is brain region-specific (168,
169). Further, BDNF levels raise during alcohol withdrawal in
preclinical models (170), clinical populations (171–173), and
raise during withdrawal from other addictive drugs (174, 175).
Mechanistically, D-BHB enhances the expression of BDNF
through downstream targeting of CREB and acetylation of BDNF
promoters (176–178). While some clinical evidence points to

serum BDNF being significantly increased following adherence
to a KD (116, 179, 180), Vizuete et al. (181) found a KD decreased
striatal BDNF levels and had no effect on hippocampal levels
of BDNF in Wistar rats. The KD and D-BHB’s effect on BDNF
expression in the context of AUD warrants investigation.

D-BHB is a ligand of the hydroxyl carboxylic acid receptor
type 2 (Hca2) (182), a GPCR encoded by the Hcar2 gene
that mediates anti-inflammatory effects (183). In a rodent
stroke model, a KD and D-BHB separately rescued stroke-
induced neurological deficits but the effect was not seen
in Hcar2 knockout mice (Hcar2−/−; (184). These findings
reinforce the critical role of Hca2 as an intermediate for
D-BHB’s neuroprotective effects. In addition to lower
hepatic D-BHB levels in humans with alcohol-associated
hepatitis, D-BHB attenuated abnormalities in plasma ALT
levels, steatosis, and hepatic trigylceride levels induced
by the β-oxidation inhibitor etomoxir and alcohol (185).
The protective effect of D-BHB was not seen in Hcar2−/−

mice (185).
The NLR family pyrin domain containing 3 (NLRP3)

inflammasome complex is a predominately macrophagic
protein that mediates caspase-1 activation and the secretion
of proinflammatory cytokines in response to mitochondrial
dysfunction, ROS and more. Evidence suggests that the NLRP3
inflammasome complex is activated by alcohol consumption
(186, 187) and inhibited by D-BHB supplementation (188).
Although deficiencies of NLRP3 were shown to attenuate
alcohol-associated steatosis (189), a study showed that this
inhibition can increase the rate of hepatic damage (190),
suggesting that the NLRP3 inflammasome complex may be
protective during alcohol-induced hepatic damage. In vitro
inhibition of the NLRP3 inflammasome by D-BHB was
decreased by high insulin or high glucose, suggesting an
influence of the metabolic state of the cell (191). Finally, a single
dose of D-BHB clinically was shown to increase markers of
NLRP3 inflammasome activation blood cells (192); however,
this finding failed subsequent replication in patients with
obesity (193). Further research is needed to elucidate the role of
metabolic ketosis on the NLRP3 inflammasome in the context
of AUD.

CONCLUSION AND FUTURE DIRECTIONS

Preclinical and clinical research on the role of ketosis in the
signs and symptoms of the AUD/AWS suggest that such an
intervention could be useful as an adjunctive treatment. We
reviewed potential mechanisms of clinical action of ketosis, with
a particular emphasis on brain energy substrate utilization and
the glutamatergic/GABAergic systems. An existing limitation of
the proposed therapy is the potential of a KD to contribute
to the development of alcohol-associated ketoacidosis, which
occurs with some frequency in patients with AUD. Thus, clinical
trials of ketosis as a treatment may need to exclude participants
at increased risk of ketoacidosis and a history of ketoacidosis.
Younger patients may be more susceptible to symptomatic
hypoglycemia following adherence to a KD (194). The ingestion
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of ketone ester can also decrease blood glucose concentrations
(14, 139). In addition, sex differences in alcohol metabolism
and in the response to a KD warrant investigation (195–
197), as does variation in genes involved in alcohol and fat
metabolism (e.g., ADH, ALDH, FGF21) (120, 198–200). The
existing literature supports further examination of nutritional
ketosis as a therapeutic target for AWS and of the mechanistic
underpinnings of its effects. Moreover, key questions as to the
effects of nutritional ketosis on brain energetics in AWS, alcohol
tolerance, and AUD-associated brain hypometabolism remain to
be investigated.
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