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The main characteristic of depression is emotional dysfunction, manifested by increased

levels of negative emotions and decreased levels of positive emotions. Therefore,

accurate emotion recognition is an effective way to assess depression. Among the

various signals used for emotion recognition, electroencephalogram (EEG) signal

has attracted widespread attention due to its multiple advantages, such as rich

spatiotemporal information in multi-channel EEG signals. First, we use filtering and

Euclidean alignment for data preprocessing. In the feature extraction, we use short-time

Fourier transform and Hilbert–Huang transform to extract time-frequency features, and

convolutional neural networks to extract spatial features. Finally, bi-directional long

short-term memory explored the timing relationship. Before performing the convolution

operation, according to the unique topology of the EEG channel, the EEG features

are converted into 3D tensors. This study has achieved good results on two emotion

databases: SEED and Emotional BCI of 2020 WORLD ROBOT COMPETITION. We

applied this method to the recognition of depression based on EEG and achieved a

recognition rate of more than 70% under the five-fold cross-validation. In addition, the

subject-independent protocol on SEED data has achieved a state-of-the-art recognition

rate, which exceeds the existing research methods. We propose a novel EEG emotion

recognition framework for depression detection, which provides a robust algorithm for

real-time clinical depression detection based on EEG.

Keywords: depression, emotion recognition, electroencephalogram (EEG), convolutional neural network (CNN),

long-short term memory network (LSTM)

1. INTRODUCTION

The recognition of emotion is a major research direction of affective computing, which
had been widely used to detect depression (1, 2). Emotion is crucial to the quality
and scope of human daily experience (3). With the development of the brain–computer
interface (BCI) and the advancement of artificial intelligence, the recognition of emotions
based on EEG signals has become an active research topic of emotion recognition.
EEG signals contain a large amount of information related to emotions and have the
characteristics of high time resolution, and are not effortless to disguise (4–6), which
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shows tremendous advantages in the field of real-time emotion
recognition. Accurate and real-time judgment of human
emotional state through some technical means has great
application value in many areas, for example, driving fatigue
detection (7), depression monitoring (8), and real-time
monitoring of critically ill patients (9).

The relationship between EEG and emotion has been reported
in past studies. Brain regions implicated in emotional experience
include the orbitofrontal cortex, insular cortex, and anterior and
posterior cingulate cortices. The amygdala is involved in linking
perception with automatic emotional responses and memory (3).
The activation of the amygdala seemed to be more related to
negative emotions, and the relative activation of the right frontal
lobe correlated with negative emotions (such as fear or disgust)
(10). Precisely, fear corresponds to the amygdala (11), anger is
related to the orbitofrontal cortex and anterior cingulate cortex
(12), sadness occurs in the amygdala and right temporal pole
(13), and disgust is produced in the anterior insula and anterior
cingulate cortex (14). In addition, the power of the alpha band
and the asymmetry between the cerebral hemispheres relates to
emotions (15–17), the changes in the gamma band connects with
happiness and sadness, and the reduction of alpha waves on
different sides of the temporal lobe correlates with joy and sorrow
(left side is sad, happy on the right) (18, 19).

Extracting emotion-related features to make larger the
distance between classes and smaller the distance within classes is
helpful to solving cross-database problems. Emotion-related EEG
signal feature extraction methods include time domain [such
as Hjorth extraction activity, mobility and complexity of EEG
signals (20), higher-order crossover features used to describe the
oscillation mode of a time series (21) and magnitude squared
coherence estimate (22)], frequency domain [such as power
spectral density features (23, 24)], time-frequency domain [such
as time-frequency spectrum [TFS] features (25)], auto-regressive
(26), asymmetric spatial pattern (27), entropy [such as differential
entropy (7), sample entropy (28) and approximate entropy
(29)], maximum relevance minimum redundancy method (30),
common spatial patterns (31), filter bank common spatial pattern
(32), higuchi fractal dimension (33), and so on. Regarding EEG
feature types, all frequency bands or some frequency bands of
delta, theta, alpha, beta, and gamma are mainly utilized (34).
These features characterize the signal from different aspects, so
a variety of effective features extracted from the signal can be
better classified.

To train an excellent model, the user usually needs to collect
enough marker data for calibration. This calibration process is
typically time-consuming and laborious, which is a significant
problem of practical use in emotional brain computer interface.
Therefore, reducing or even eliminating the calibration process
and realizing Plug-and-Play is a critical challenge for the brain–
computer interface from the laboratory to real life. Transfer
learning is a crucial technology that can solve this problem by
using annotation data from other auxiliary users to help new
users build models (35). However, due to individual differences,
i.e., different users have different neural responses to the same
event, such that need first to perform data distribution adaptation
to alleviate the individual differences of EEG features. (36). To

this end, in this paper we propose an unsupervised distributed
adaptation method to align data between different users, that is,
Euclidean alignment (EA) (37).

To improve EEG emotion recognition performance,
performing deep neural networks to learn higher-level
features would be useful to achieve good results, such as
deep belief networks (7), recurrent neural networks (38), graph
convolutional neural networks (39), transfer learning (40), and
adversarial neural networks (41). Nevertheless, the recognition
performance is limited to subject-dependent and cross-subject
experiments under the same database, which is still far from
realizing a practical emotional brain–computer interface. For this
reason, we investigate an interesting and challenging problem
in EEG emotion recognition, where training samples and test
samples come from different emotional EEG databases. The
preliminary research on EEG emotion recognition across data
sets have demonstrated the significant drop of the recognition
performance because of the inconsistency of feature distribution
between the original training samples and test samples (42).
Consequently, in this paper we will take advantages of the
powerful high-level feature learning ability of deep learning
technique to deal with the cross-database EEG emotion
recognition problem.

The major contributions of this paper are summarized as
follows:

(1) This paper proposes a novel recognition framework on
the emotional EEG database, from raw data to recognition
results, including preprocessing, feature engineering,
classification recognition, and cross-database evaluation
protocol.

(2) In feature engineering, we designed a time-frequency-spatial
feature extraction method, combining forms of TFS, CNN,
and bidirectional long and short memory network (BiLSTM)
to extract multi-dimensional effectual features.

(3) Employing an unsupervised data alignment method to
project data from different databases into the same space.
While considering the inherent topological structure
of the EEG electrodes, the preliminary TFS features
are converted into three-dimensional tensors, which
takes into account the information relationship between
the electrodes.

This paper is organized as follows. Section 2 introduces emotion
database, data processing methods, and experimental settings.
Section 3 specifies the test results on the emotion database and
the test results applied to the recognition of depression. Section 4
discusses the methods and results of this research. We conclude
the paper in Section 5.

2. MATERIALS AND METHODS

As shown in Figure 1, this section mainly introduces emotion
database and the algorithms of preprocessing engineering and
feature engineering, including filtering, downsampling, EA,
short-time Fourier transform, Hilbert–Huang transform (HHT),
conversion of 1D sequence to 3D tensor, and the spatiotemporal
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FIGURE 1 | Cross-database emotion recognition framework based on electroencephalogram (EEG) signals. Emotional BCI Competition Database is the training set

of the Emotional BCI in 2020WORLDROBOT COMPETITION-BCI CONTROL BRAIN ROBOT CONTEST Emotional BCI in 2020 WORLD ROBOT COMPETITION-BCI

CONTROL BRAIN ROBOT CONTEST.

TABLE 1 | Details of the two experimental databases.

SEED Emotional BCI Competition Database

Category Positive, neutral, negative happy, sad, neutral

Channel 62 62

Subject 15 23

Session 3 2

Positive 49,680 49,110

Neutral 52,650 50,722

Negative 50,400 56,694

Sum 152,730 156,526

feature extraction model combined with convolutional neural
network (CNN) and BiLSTM.

2.1. Emotion Database
One of the databases used in this study is SEED (43). This
database includes 15 subjects, three sessions for each subject
and three emotion categories under video stimulation (i.e.,
positive, neutral and negative). The data were downsampled
to 200 Hz. A bandpass frequency filter from 0 to 75 Hz
was applied. The data are cut into one sample per second,
with a total of 152,730. The other database comes from the
training set of the Emotional BCI in 2020 WORLD ROBOT
COMPETITION—BCI CONTROL BRAIN ROBOT CONTEST
Emotional BCI in 2020 WORLD ROBOT COMPETITION—
BCI CONTROL BRAIN ROBOT CONTEST (Emotional BCI
Competition Database), which includes 23 subjects, two sessions
(from A and B, respectively), and three emotion categories under
video stimulation (i.e., happy, sad, and neutral). The data samples
rate of the Emotional BCI Competition Database is 100 Hz.
The EEG signals are segmented in seconds and hence results
in a total of 156,520 samples. Details of the two databases
are shown in Table 1. It can be seen from the table that the
two databases have differences in categories, subjects, sessions,
and the number of samples. In the subsequent processing, the
three categories of happy, sad, and neutral in the emotional
BCI database correspond to the positive, negative, and neutral
emotion, respectively.

2.2. Preprocessing Engineering
EEG recordings measured by the scalp often contain noise and
artifacts, such as blinking or movement, and cannot accurately
represent signals from the brain. Therefore, it is necessary to
preprocess the recorded EEG data. The preprocessing steps
include converting or organizing the recorded EEG data,
removing insufficient data, and segmenting the continuous
original signal without changing the clean data. Appropriate
band-pass filtering can effectively reduce the superimposed
artifacts of various sources embedded in the EEG recording.
Generally, the finite impulse response (FIR) filters are a good
choice because they do not distort wave phases (44). EA maps
each user’s EEG signal to a new space so that the difference
in the second-order statistics of the average covariance matrix
of the mapped users is minimized, thereby implicitly reducing
the difference in the original distribution. EA implements the
above mapping for each user (auxiliary user and new user). Since
different users have the same average covariance matrix after
mapping, they tend to be more consistent in data distribution,
meaning models trained on auxiliary users can be better applied
to new users.

2.3. Data Alignment
EA is easy to perform and completely unsupervised, in which the
basic idea of aligning EEG from different subjects (domains) is
as follows (35): for all subjects, EA first calculates the arithmetic
mean of all spatial covariance matrices.

R =
1

N

N∑

n=1

Xn(Xn)
T (1)

then performs the alignment by

X̃n = R
−

1
2Xn (2)

where Xn ∈ R
c×t is the nth EEG trial, in which c is the number of

EEG channels and t is the number of samples. The aligned EEG
trials are whitened, and the average spatial covariance matrix
of each subject is the identity matrix (45), so the EEG test
distribution of different subjects is more consistent, which is
meaningful for subsequent cross-database recognition.

Frontiers in Psychiatry | www.frontiersin.org 3 March 2022 | Volume 12 | Article 837149

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Chang et al. Depression Assessment Method

2.4. Time-Fequency Spectrum
The EEG signal is non-linear and non-stationary, so its
statistical properties (for example, spectral density) will change
greatly over time. Spectrum estimation cannot identify its time-
varying spectral components and cannot perform time-frequency
positioning simultaneously. Time-frequency analysis technology
is capable of revealing the time-varying frequency spectrum
of non-stationary EEG signals and can provide a joint time-
frequency distribution (TFD) of signal power (46). This paper
adopts two methods of short-time Fourier transform (STFT)
(47–49) and HHT (50, 51) for time-frequency spectrum (TFS)
analysis.The method of calculating TFS using STFT and HHT
comes from Song et al. (25).

STFT spectrum is calculated by

TFSSTFT(t, f ) =

∣∣∣∣
∫

+∞

−∞

w(τ − t)x(τ )e−j2π f τ dτ

∣∣∣∣
2

(3)

where x(t) is the time series and w(τ − t) is the short-time
analysis window.

The Hilbert–Huang spectrum is calculated based on HHT.
HHT processing non-stationary signals include three basic
processes. First, the empirical mode decomposition (EMD)
method is used to decompose a given signal into a number of
intrinsic mode functions (IMF),

x(t) =

K∑

i=1

IMFi(t)+ rK(t) (4)

where rK(t) represents the residual of a constant or monotonic
signal. These IMFs are components that meet certain conditions.
Then, perform Hilbert transform on each IMF to obtain
the corresponding Hilbert spectrum, that is, represent each
IMF in the joint time-frequency domain. An analytic signal
reconstructed by a conjugate pair (IMF and IMF∗

k
) can be

formulated as

Zk = IMFk(t)+ jIMF∗k = Ak(t)e
jθk(t) (5)

FIGURE 2 | Topological structure map of 64-electrode channels mapped to a two-dimensional picture. The circle represents the electrode, and the label inside is the

serial number and name of the electrode. The left and right mastoid electrodes (M1, M2) of the 64-lead electrodes are reference electrodes when collecting signals, so

they are not used as signal input for emotion recognition.
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where Ak(t) represents the instantaneous amplitude of Zk(t)
and θk(t) denotes the instantaneous phase of IMFk(t). Finally,
summarizing all Hilbert spectra of IMF will get the Hilbert
spectra of the original signal. The original time series x(t) can be
obtained by

x(t) =

K∑

i=1

Ak(t)e
j2π

∫
fk(t) dt (6)

and the instantaneous frequency can be evaluated by

fi(t) =
1

2π

dθi

dt
(7)

where the squared amplitude A2
k
(t) and instantaneous frequency

fk(t) form the time-frequency spectrum.

2.5. Convert 1D Feature Sequence to 3D
Tensor
Due to a large amount of noise in the EEG signal and
the difficulty in capturing the unobvious relationship between
the EEG signal and certain brain activities, the practical
interpretation of the EEG signal is still challenging. Most
of the existing studies only treat EEG as a chain sequence,
ignoring the complex dependence between adjacent signals or
the need to convert EEG, such as converting EEG waves into
images (52).

According to the inherent topological structure of the EEG
channel, as illustrated in Figure 2, the one-dimensional sequence

data St = [s1
f
, ..., sc

f
, ..., sC

f
] (where sc

f
is the TFS feature of

the cth electrode channel at frequency f ) after extracting the
TFS feature is mapped into a three-dimensional tensor Tn ∈

RH×W×F , where the first dimension H is height, the second
dimension W is width, and the third dimension F is channel
(i.e., the number of features extracted per channel) of the nth
EEG trial. The conversion function of 1D feature sequence to 3D
tensor Tn(H,W, f ) is,

Tn(H,W, f ) =




0 0 0 s1
f

s2
f

s3
f

0 0 0

0 0 s4
f

0 0 0 s5
f

0 0

s6
f

s7
f

s8
f

s9
f

s10
f

s11
f

s12
f

s13
f

s14
f

s15
f

s16
f

s17
f

s18
f

s19
f

s20
f

s21
f

s22
f

s23
f

s24
f

s25
f

s26
f

s27
f

s28
f

s29
f

s30
f

s31
f

s32
f

s33
f

s34
f

s35
f

s36
f

s37
f

s38
f

s39
f

s40
f

s41
f

s42
f

s43
f

s44
f

s45
f

s46
f

s47
f

s48
f

s49
f

s50
f

s51
f

s52
f

s53
f

0 s54
f

0 s55
f

s56
f

s57
f

0 0 s58
f

s59
f

s60
f

s61
f

s62
f

0 0




(8)

which is the fth channel features. Among them, the positions
without electrodes were filled with zeros. Each generated data
grid contains spatial information of brain activity.

FIGURE 3 | Cascade 2dCNN+BiLSTM architecture.

Frontiers in Psychiatry | www.frontiersin.org 5 March 2022 | Volume 12 | Article 837149

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Chang et al. Depression Assessment Method

2.6. 2dCNN+BiLSTM
We designed a cascaded deep convolutional recurrent neural
network framework, as shown in Figure 3, to capture the
spatiotemporal features of EEG. The model’s input is the
converted 3D tensor Tn that a 3D data structure containing
space and time information. First, 2D CNN extracts the spatial
features of each data, BiLSTM extracts temporal features,
a fully connected layer receives the output of the last
step of BiLSTM, and then uses the softmax layer for final
emotion prediction.

This study constructed a 2dCNN+BiLSTM model to learn
a good spatiotemporal representation for multi-channel EEG.
The diagram for this deep spatiotemporal network is illustrated
in Figure 3. Since each EEG segment with the duration of 1 s
is treated as one sample, we conduct time-frequency spectrum
feature (STFT and HHT) extraction for each sample, which was

TABLE 2 | Recognition results on emotional database.

No. Protocol STFT HHS

Training set → Test set Acc(%) F1 Acc(%) F1

1 Emotional BCI Competition Database → SEED 83.56 0.84 83.60 0.84

2 SEED → Emotional BCI Competition Database 74.33 0.72 70.26 0.70

3 Leave-One-Subject-Out 81.58 0.80 79.29 0.77

fed into the deep network for deep feature extraction. Each 1-
s sample is denoted by Xi(i = 1, 2, . . . , n) and treated as a
spatial image with five channels. Five convolutional layers were
followed by ReLU to learn non-linear local spatial features, in
which a 3 x 3 convolutional kernel was used. Following the
convolutional layers, the fully connected layers were utilized to
learn global spatial features. Existing studies showed that spatial
features for a temporal signal are insufficient for discriminant
information representation. We also employed the BiLSTM to
learn temporal representation.

2.7. Experimental Settings
First, we utilize the FIR filter to perform 50-order 1–50 Hz band-
pass filtering on the EEG original signal, downsampling on the
Emotional BCI data to 200 Hz to be consistent with the SEED
data, and then perform EA. Then extract the relative energy of
the five frequency bands for each electrode channel [i.e. delta
(1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30 Hz),
and gamma (30–50 Hz)] using STFT and HHS, respectively. The
number of features extracted from each sample is 5 ∗ 62 =

310, then converted into a 3D tensor of 9 ∗ 9 ∗ 5. Then feed
the 3D tensor to spatiotemporal network for training, the batch
size is 32, the frame length is 12 (i.e., 12 s), the epoch set
to 100, the cross-entropy used as loss function, the optimizer
selects SGD, the learning rate initialized to 0.005. The update
calculation is lr = init_lr ∗ (0.95epoch//10), where init_lr is the
initial learning rate.

FIGURE 4 | Confusion matrix of protocol 1. The vertical axis is the true label and the horizontal axis is the predicted label. (1) and (2) are the recognition results of

STFT features; (3) and (4) are the recognition results of HHS features; (1) and (3) are with Euclidean alignment (EA) module, while (2) and (4) are the recognition result

without the EA module.
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3. RESULTS

3.1. Emotion Recognition Results
In order to test the performance of the emotion recognition
framework system built in various aspects, three protocols
are proposed. In the three protocols proposed in this study,
the training set and test set data are completely non-
overlapping, and the test set data and labels are not used
in the training process. The training set and test set of the
first two protocols are from different databases. The third
protocol is the leave-one-subject-out method. Considering
the imbalance of the category, in addition to calculating
the accuracy, the F1 score is also calculated. We applied
this model to depression recognition and performed five-fold
cross-validation.

For the first protocol, all data of Emotional BCI competition
database are used as the training set, and all data of SEED are used
as the test set. For two different manual features, the recognition
accuracy and weighted average F1-score are shown in Table 2. It
can be seen from the table that the manual feature recognition
effect extracted by the STFT method is better. In order to show
the true prediction of each category, the confusion matrix of the
classification accuracy is analyzed. we present a confusion matrix
exploiting the features of STFT andHHS shown in Figure 4, from
whichwe can see that neutral emotion has the highest recognition
rate among the three types of emotions, whether it is STFT or
HHS features. The recognition rate of the three types of emotions
under the STFT feature is higher than that of the HHS feature.

For the second protocol, all data of SEED are used as
the training set, and all data of Emotional BCI Competition
Database are used as the test set. For two different manual
features, the recognition accuracy and weighted average F1-
score are shown in Table 2. The recognition rate under
the STFT feature is 4.07% higher than that of the HHS
feature, but it is about 9% lower than the protocol 1.
Similarly, we present a confusion matrix using the features
of STFT and HHS shown in Figure 5. The recognition rate

TABLE 3 | EA ablation experiment results.

Training set → Test set TFS EA Acc(%) F1

Emotional BCI Competition STFT With EA 83.56 0.84

Database → SEED

Without EA 57.29 0.54

HHS With EA 83.60 0.84

Without EA 53.84 0.49

SEED → Emotional STFT With EA 74.33 0.72

BCI Competition Database

Without EA 52.40 0.48

HHS With EA 70.26 0.70

Without EA 53.46 0.53

Bold value indicate the same experimental conditions, the maximum index with or without

EA comparison.

FIGURE 5 | Confusion matrix of protocol two. The vertical axis is the true label and the horizontal axis is the predicted label. (1) and (2) are the recognition results of

STFT features; (3) and (4) are the recognition results of HHS features; (1) and (3) are with Euclidean alignment (EA) module, while (2) and (4) are the recognition result

without the EA module.
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of the three categories under the STFT feature is relatively
balanced, while the recognition rate of positive emotion

FIGURE 6 | The impact of time length selection on recognition rate. The

length of time is in seconds.

under the HHS feature is significantly higher than the other
two categories.

For the third protocol, the recognition results of two
databases are shown in Table 2 including the accuracy
and weighted average F1-score where the recognition
results are sorted according to the database (i.e., the
recognition results of the subjects in each database are
averaged) and the average recognition rate of all subjects
is calculated. It can be seen from the table that the
recognition result under the STFT feature is slightly higher
than HHS.

In order to explore the influence of EA on experiment, an
ablation experiment was performed on this module. As shown in
Figures 4, 5 and Table 3, the difference between the recognition
results of the EA module and the absence of the EA module
is very obvious, whether it is protocol 1 or 2. At the same
time, in order to explore the timing relationship between EEG
emotional frames, the frame length is selected from 8 to 32, and
the step size is 4 during training. Experiments were carried out on
protocols one and two, and the experimental results are shown in
Figure 6.

FIGURE 7 | Topological structure map of 128-electrode channels mapped to a two-dimensional picture. The circle represents the electrode, and the label inside is the

serial number and name of the electrode.
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3.2. Depression Recognition Results
We chose a multi-modal open dataset for depression recognition,
i.e., the MODMA dataset. The dataset includes 128-channel
event-related potential recordings, of which 24 major depressive
disorder subjects and 29 healthy controls, the age range is 16–
52 years old (53–55). Since the number of electrodes in the
database is 128 and the topology is shown in Figure 7, the
size of the three-dimensional matrix mapped to it is 21*19*5.
Note that 53 subjects, including 24 outpatients and 29 healthy

controls, were divided into fivefold. Due to uneven data, the first
three folds made up of 5 depressed and 6 normal subjects of
each one, and the last fold included 4 depressed and 5 normal
subjects. The recognition result of each fold is shown in Figure 8.
The ERP experiment is a dot-probe task, and its cue stimuli
include three kinds of emotional-neutral face pairs, namely
Happy-Neutral (“hcue”), Fear-Neutral (“fcue”), and Sad-Neutral
(“scue”). Therefore, we not only tested all the experiments
but also identified depressed patients and normal subjects on

FIGURE 8 | Recognition results of spatiotemporal neural network on depression database.

FIGURE 9 | The time-frequency spectrum (TFS) characteristic relative energy map (based on the short-time Fourier transform [STFT] algorithm) corresponds to the

electrode arrangement in Figure 2.
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different stimuli. Among them, the overall recognition rate on
“hcue” is the highest, reaching 71.14%.

4. DISCUSSION

This paper proposes a complete pipeline from preprocessing
to EEG-based emotion recognition, with a recognition rate of
over 80%. The preprocessing part follows with the unsupervised
EA method to map the data of different databases to the
same space, where STFT, CNN, and BiLSTM are combined
to extract multi-domain features in the time-frequency space.
Before the CNN operation, according to the spatial arrangement
of the EEG electrodes, the one-dimensional time series feature
is converted into a three-dimensional tensor, such that the
correlation between EEG electrodes can be fully considered.
Moreover, we use 2D CNN to extract spatial features, and
BiLSTM to capture the timing relationship of features.

It can be seen from the confusion matrix of protocol 1 that the
recognition rates of the three categories under the twomethods of
STFT and HHS are relatively balanced, and the positive emotion
recognition rate is the highest. The neutral emotion recognition
rate under the HHS method of protocol 2 is the highest, and the
negative emotion recognition rate is the lowest. There is a 9%
difference between the accuracy of protocols 1 and 2. Since the
three categories of data in the Emotional BCI database are more
diversified (the first 15 people and the bottom eight people in
the three categories of the Emotional BCI database in Table 1 are
different).

From the recognition results of all protocols, the accuracy and
F1 score of the TFS features extracted by STFT are higher than
those of the HHS method. Figure 9 shows the STFT method
and Figure 10 shows the HHS method. The three categories are
displayed in five frequency bands, and each spectrum is shown
per the electrode arrangement in Figure 2. The features extracted
by the two methods are pretty different in the high-frequency
range. The relative energy of the two frequency bands, beta
(14–30 Hz) and gamma (30–50 Hz), under the STFT method, is

relatively high, and the three categories have apparent differences.
In contrast, the HHS method has relatively high positive and
neutral relative energies in these two frequency bands. Negative
emotions have always been low energy in the entire frequency
band. Hence, the recognition rate of the HHS method is lower
than that of STFT, and it performs well in positive and negative
emotions.

To further validate the proposed method, we compared
our model with the start-of-the-art methods. Table 4 presents
a summary of the current subject-independent recognition
algorithms on the SEED database, including linear support
vector machine (SVM) (56), kernel principal component
analysis (KPCA) (57), transfer component analysis (TCA)
(58), transductive parameter transfer (TPT) (59), domain
adversarial neural network (DANN) (60), dynamical graph
convolutional neural network (DGCNN) (39), bi-hemispheres
domain adversarial neural network (BiDANN) (61), BiDANN-S
(41), hierarchical spatial-temporal neural network (R2G-STNN)
(62), and instance-adaptive graph (IAG) (63). It can be seen

TABLE 4 | The mean accuracies (Acc) and standard deviations (Std) on SEED

dataset for subject-independent EEG emotion recognition experiment.

Method Acc/Std(%)

SVM (56) 56.73/16.29

KPCA (57) 61.28/14.62

TCA (58) 63.64/14.88

TPT (59) 76.31/15.89

DANN (60) 75.08/11.18

DGCNN (39) 79.95/09.02

BiDANN (61) 83.28/09.60

BiDANN-S (41) 84.14/06.87

R2G-STNN (62) 84.16/07.63

IAG (63) 86.30/06.91

ours 86.42/05.26

FIGURE 10 | The time-frequency spectrum (TFS) characteristic relative energy map (based on the HHS algorithm) corresponds to the electrode arrangement in

Figure 2.
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from the table that our method has achieved the highest accuracy
and the smallest standard deviation. Unlike these methods, our
training set adds the Emotional BCI database. The training set’s
increasemakes the trainingmodel’s generalization better, proving
that the proposed method can effectively extract spatiotemporal
multi-view features and classify emotions well across databases or
subjects.

5. CONCLUSIONS

This study designed a complete pipeline from preprocessing to
the classification of emotion recognition based on EEG, which
achieved a correct rate of more than 80%. It is significant that we
apply this model to the recognition of depression based on EEG
signals. The preprocessing combined with the unsupervised EA
method maps the data of different databases to the same space.
The three methods of STFT, CNN, and BiLSTM are combined to
extract the time-frequency-space multi-domain features. Before
the CNN operation, the one-dimensional time series feature
was converted into a three-dimensional tensor according to the
spatial arrangement of the EEG electrodes. In the future, we will
study end-to-end real-time emotional brain–computer interfaces
for depression recognition.
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