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Introduction: To understand mechanisms and identify potential targets for

intervention in the current crisis of opioid use disorder (OUD), postmortem

brains represent an under-utilized resource. To refine previously reported

gene signatures of neurobiological alterations in OUD from the dorsolateral

prefrontal cortex (Brodmann Area 9, BA9), we explored the role of microRNAs

(miRNA) as powerful epigenetic regulators of gene function.

Methods: Building on the growing appreciation that miRNAs can cross

the blood-brain barrier, we carried out miRNA profiling in same-subject

postmortem samples from BA9 and blood tissues.

Results: miRNA–mRNA network analysis showed that even though miRNAs

identified in BA9 and blood were fairly distinct, their target genes

and corresponding enriched pathways overlapped strongly. Among the

dominant enriched biological processes were tissue development and

morphogenesis, and MAPK signaling pathways. These findings point to

robust, redundant, and systemic opioid-induced miRNA dysregulation with

a potential functional impact on transcriptomic changes. Further, using

correlation network analysis, we identified cell-type specific miRNA targets,

specifically in astrocytes, neurons, and endothelial cells, associated with

OUD transcriptomic dysregulation. Finally, leveraging a collection of control

brain transcriptomes from the Genotype-Tissue Expression (GTEx) project,
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we identified a correlation of OUD miRNA targets with TGF beta, hypoxia,

angiogenesis, coagulation, immune system, and inflammatory pathways.

Discussion: These findings support previous reports of neurovascular and

immune system alterations as a consequence of opioid abuse and shed new

light on miRNA network regulators of cellular response to opioid drugs.

KEYWORDS

opioid use disorder, microRNA, brain, network analysis, neurovascular, blood,
prefrontal cortex

1. Introduction

Opioid use disorder (OUD) is a major public health problem
responsible for alarming rates of overdoses and deaths, yet
the neurobiological consequences of long-term opioid misuse
are not well understood. Opioid use is known to cause
gene function dysregulation at multiple levels, including DNA
histone modification (1, 2), DNA methylation (2–4), protein
expression (5, 6), mRNA and long-non-coding RNA expression
(5, 7), and single-cell gene expression (8). Opioid drugs
also affect cellular microRNAs (miRNAs), 17–22 nucleotide
sequences that act as pleiotropic regulators of mRNAs through
imperfect matching, mostly at the 3′ UTR of genes (9–11).
miRNAs are key modulators of intercellular communication in
the brain (12) across multiple species (13) and are dysregulated
in psychiatric disorders such as schizophrenia, bipolar disorder,
and substance use disorder (14). Opioid exposure significantly
alters miRNA expression in many regions of the brain, but
most notably in the prefrontal cortex, striatum, and nucleus
accumbens (15, 16). Several miRNAs involved in regulation of
synaptic plasticity are hypothesized to underlie drug addiction
(17) and miRNAs have been shown to regulate µ-opioid
receptor levels and modulate opioid tolerance (18, 19). These
studies point toward miRNAs as critical epigenetic modulators
of short- and long-term opioid effects in the brain through
regulation of gene expression.

Importantly, miRNAs can cross the blood-brain barrier
(20, 21), potentially via exosomes (22–24), and assessment
of differential miRNA expression in blood has been used to
identify surrogate blood-based biomarkers in brain diseases,
including Alzheimer’s disease, depression, and cancer (25–
27). Brain-specific miRNAs identified in peripheral blood
have been proposed as markers for traumatic brain injury
(28). Additionally, a recent study found differential expression
of miRNAs in heroin- and methamphetamine-dependent
patients that functionally predicted anxiety and depression
symptoms (29).

Bioinformatics pipelines are powerful tools that can extract
critical drivers of signaling pathways underlying OUD-related

changes in the brain. These pipelines have been developed to
identify biosignatures and new druggable targets from miRNA-
regulated networks inferred using miRNA and mRNA profiles
measured in the same specimens. This approach exceeds both
the single gene discovery approach as well as the use of large
gene signatures that, due to their diffuse biological impact, might
otherwise prove intractable for elucidation of mechanisms
and effective repurposing of pharmacotherapeutic agents. No
studies have used a comprehensive bioinformatics approach to
integrate miRNA expression and their regulated transcripts in
postmortem tissues from subjects with OUD. Integrating these
networks in brain and blood from the same subjects will identify
functional biomarkers of dysregulation of target genes in brain
regions affected by OUD and unveil a powerful resource for not
only validating brain and surrogate blood-based biomarkers for
this disease but also for identifying larger-scale gene networks
that point to disease pathophysiology in general.

2. Materials and methods

2.1. Sample information

Postmortem brain and peripheral blood tissues were
obtained from the University of Texas Health Science Center
at Houston (UTHealth) Brain Collection in collaboration with
the Harris County Institute of Forensic Science, with consent
from the next of kin (NOK) and approval from the Institutional
Review Board. Medical Examiner Reports, including toxicology,
were obtained and medical records were acquired when
available. The detailed UT Health Psychological Autopsy
Interview Schedule was performed on the donor by interviewing
the NOK (30) from which information of psychiatric clinical
phenotypes (evidence of depression, mania, and psychosis), age
of onset of drug use, types of drugs used, smoking and drinking
history, and any co-morbidities was obtained. A diagnosis of
OUD, or designation as non-psychiatric control (absence of
any apparent psychopathology), was determined according to
DSM-5 criteria after a consensus meeting where three trained
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FIGURE 1

Analytical approach overview. RNA-sequencing was carried out in brain tissue collected postmortem from individuals with opioid use disorder
(OUD) and controls. smallRNA-seq was carried out in both brain and blood tissue from a subset of the same individuals. Dysregulated
miRNA–RNA networks were inferred, and miRNA target genes were further investigated using pathway enrichment, repurposable drug
identification, and correlation-based network analysis.

clinicians reviewed the psychological autopsy and all other
available records.

Upon receipt of the brain, the right hemisphere was
coronally sectioned, immediately frozen, and stored at −80◦C.
Dissections of BA9, defined within the DLPFC between the
superior frontal gyrus and the cingulate sulcus, were obtained
using a 4 mm cortical punch. RNA was extracted from 50 mg
of tissue using the RNeasy Plus Mini Kit (Qiagen, Hilden,
Germany) and RNA integrity number (RIN) was measured
for RNA quality (Agilent Bioanalyzer 2100 system, Agilent
Technologies, Santa Clara, CA, USA). Postmortem interval
(PMI) was calculated from the estimated time of death until
tissue preservation. Peripheral blood samples were collected
into EDTA-containing tubes, and then stored as whole blood at
−80◦C until further use.

2.2. RNA-seq analysis

We analyzed RNA-seq data generated as previously
described (5) for 15 controls and 27 OUD cases using bulk BA9
tissue. RNA-seq data was trimmed for low quality base pairs
and adapter sequences using trim_galore. Sequencing reads
were mapped to the human genome build UCSC hg38 using
STAR (31). Gene expression was quantified using featureCounts
(32). The following demographic variables were accounted and
regressed out using the R package RUVr (33): Sex, Age, PMI
(hours), pH, and RNA integrity number (RIN). We used the
R package EdgeR (34) to infer differentially expressed genes
between groups, with significance achieved at a fold change
exceeding 1.5x and FDR-adjusted p-value < 0.05.

2.3. smallRNA-seq analysis

The small RNA fraction was isolated from bulk BA9 tissue
from 15 controls and 24 OUD cases for which brain tissue was
available and bulk RNA-seq data was already generated (5), and
from blood from a subset of the same individuals from whom
blood tissue was available (8 controls and 18 OUD). miRNA
libraries were prepared and sequenced at the University of
Houston Seq-N-Edit Core per standard protocols. Briefly, RNA
was isolated using the miRNAeasy Mini Kit (Qiagen) and total
RNA, including miRNA, was bound to a miRNeasy spin column
and washed three times before subsequent elution. Quality
checks of the extracted RNA were performed using a Qubit
Fluorometer (Thermo Fisher, Waltham, MA, USA) and an RNA
tape on a TapeStation 4200 (Agilent). miRNA libraries were
prepared with the QIAseq miRNA library kit (Qiagen) using
5 µL of the extracted total RNA sample. Libraries were produced
by sequentially ligating adapters to the 3′ and 5′ ends of
miRNAs. This was followed by reverse transcription into cDNA
and subsequent ligation of sample indexes and sequencing
adapters. The size selection for libraries was performed using
QIAseq beads (Qiagen). Library purity was analyzed using
the DNA HS1000 tape on a Tapestation 4200 (Agilent) and
quantified with Qubit Fluorometer (Thermo Fisher, Waltham,
MA, USA). Small RNA libraries were sequenced on an Illumina
Genome Analyzer NextSeq 500. We analyzed 3–4 million reads
per sample using our published bioinformatics pipeline (35).
We constructed RNA-seq libraries using the Takara SMARTer
Universal Low Input RNA Kit (Takara Bio, Kusatsu, Shiga,
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Japan) designed to handle 2–100 ng of total RNA and retain
strand-specific information.

The smallRNA-seq data was trimmed for low quality base
pairs and adapter sequences using trim_galore. Sequencing
reads were mapped to the human genome build UCSC hg38
using STAR (31) allowing for at most 10 matches. miRNA
expression was quantified using featureCounts (32) and the
miRBase reference database (10). The following demographic
variables were accounted and regressed out using the R
package RUVr (33): Sex, Age, PMI (hours), pH, and RIN. We
used the R package EdgeR (34) to screen for differentially
expressed miRNAs between groups, considering an unadjusted
p-value < 0.05. We conducted miRNA–mRNA integration
using the SigTerms methodology (36), utilizing the miRDB
(37) database as a reference for miRNA–mRNA interactions.
Specifically, we employed the hypergeometric distribution to
assess enrichment of miRNA targets in a gene list, with
significance achieved at FDR-adjusted p-value < 0.05. miRNA–
mRNA networks were visualized using the Cytoscape platform
(38). Correlation of specific miRNAs detected both in blood and
in BA9 samples with expression measured as log2(CPM) (counts
per million reads mapped) was assessed using the Pearson
Correlation Coefficient as implemented in the R statistical
system; significance was achieved for p < 0.05. SmallRNA-seq
data will be deposited in the NCBI Gene Expression Omnibus.

2.4. Pathway enrichment analysis

Enriched pathways were determined using the Gene
Ontology Biological Processes (GOBP) compendium as
compiled by the Molecular Signatures Database (MSigDB)
(39) based on hypergeometric distribution, with significance
achieved at FDR < 0.05 and the requirement to have at
least two genes from an input gene list present in a GOBP
pathway. To determine GO terms enriched in collections of
significant GOBP pathways, we used an approach similar to
the one employed by the REVIGO method (40). Specifically,
we determined significance of enrichment or depletion of a
GO term in a collection of pathways using a Fisher’s exact
test, with significance achieved for FDR < 0.05; we further
determined enriched GO terms by requiring the odds-ratio to
be greater than 1.

2.5. Gene network analysis

Gene network analysis was carried out using the Weighted
Correlation Network Analysis (WGCNA) R package (40), using
default parameters and a minimum module size of 5. Brain
cell type composition was inferred with CIBERSORT (41)
using reference gene signatures previously reported (42) for
human brain cell types and default parameters. Significant

association with clinical traits was performed using WGCNA,
with significance achieved at p < 0.05.

2.6. Drug repurposing analysis

Repurposing of drugs targeting the gene signatures
determined using the miRNA–mRNA analysis pipeline was
performed using the Library of Integrated Network-Based
Cellular Signatures (LINCS) Program/Connectivity Map
platform at:https://clue.io (43).

2.7. Signature correlation analysis

A methodology used frequently to assess the interaction
between gene signatures in human cohorts is the correlation
of gene signature scores; this approach has been utilized
both in cancer (44–46) and non-cancer systems (47–49). We
downloaded data for 425 control bulk BA9 brain tissues
collected by the Genotype-Tissue Expression (GTEx) project
(50), using the GTEx data portal. We computed signature scores
separately for the 50 Hallmark pathways (51), then for the gene
targets of BA9 or blood miRNAs and for WGCNA modules
using summed z-scores. We then assessed the association using
Pearson Correlation Coefficient, with significance achieved for
p < 0.05. Correlation heatmaps were plotted using the Python
language scientific library.

2.8. Statistical significance of overlap
between brain and blood

Overlaps between lists of terms in brain and blood tissue
(significant genes, pathways) were determined and represented
using Venn diagrams. The statistical significance of the overlaps
was determined using the DynaVenn approach (52).

3. Results

To explore the potential role of miRNAs as regulators of
transcription in opioid-exposed brains, we employed a multi-
pronged sequencing and analytical approach focusing on the
dorsolateral prefrontal cortex (DLPFC, Brodmann area 9, BA9)
as this is a key cerebral area involved in inhibition and
impulsivity, functions that are altered in substance use disorders
(53). RNA-Sequencing (RNA-Seq) was carried out in bulk tissue
from the DLPFC of individuals with OUD and controls, as we
previously described (5). smallRNA-Seq, to identify miRNAs,
was also performed in both BA9 and blood collected from the
same donors. Dysregulated miRNA networks were inferred,
and miRNA target genes were further examined using pathway
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enrichment, repurposable drug identification, and correlation-
based network analysis. An overview of our analytical approach
is outlined in Figure 1.

Demographic information of subjects is provided in Table 1,
with additional detailed information previously described (5).
The control group was 87% male with an average age of 55 years,
and the OUD group was 56% male with an average age of
39 years. Controls were statistically more likely to be male than
OUD (p < 0.05, Fisher’s Exact test), and statistically older than
OUD (two-tailed Student’s t-test, p< 0.001, 95% CI of difference
[7.31–24.69]).

3.1. miRNA–mRNA networks are
dysregulated in OUD

We used RNA-seq to profile bulk BA9 tissue from 15
controls and 27 OUD cases. Employing stringent criteria
of FDR-adjusted p < 0.05 and fold change exceeding 1.5x,
we determined differential expression of 402 protein coding
genes, with 55 induced in OUD and 347 decreased, after
controlling for age, sex, PMI, RIN, and pH (Figure 2 and
Supplementary Table 1A). We used a criterion of nominal
unadjusted p < 0.05 to screen for miRNA network candidates
based on differential expression of miRNAs, controlling for
the same demographic and clinical covariates. From this
analysis, we identified 89 differentially expressed miRNAs in
BA9, with 29 induced in OUD and 60 suppressed (Figure 2C
and Supplementary Table 1B). In blood, we identified 104
differentially expressed miRNAs, with 51 increased in OUD
and 53 decreased (Figure 2D and Supplementary Table 1C).
We then used the SigTerms bioinformatics platform (35, 36),
developed by our group, to extract biologically significant
miRNAs and their target mRNA pairs underlying OUD. This
approach integrated our sequencing data with miRNA target
prediction algorithms from mirDB (37) to identify miRNA–
mRNA target pairs that are oppositely correlated in expression,
applying a stringent statistical criterion with significance
achieved at FDR-adjusted p< 0.05. Using the miRNA candidates
identified in BA9 (Figures 2A, C), we identified 12 OUD
up-regulated miRNAs that drove, at a stringent FDR-adjusted

TABLE 1 Demographic information of samples used for
RNA-sequencing and smallRNA-sequencing.

Demographics Control OUD

Total number of samples 15 27

Males (%) 13 (87%) 15 (56%)

Age mean (SD) 55 (14) 39 (13)

PMI mean in hours (SD) 29 (7) 26 (9)

Ethnicity
(White/Black/Hispanic/Asian)

8/4/2/1 25/5/0/0

OUD, opioid use disorder; PMI, postmortem interval.

p < 0.05, a network of 107 OUD down-regulated genes
(Figure 3A and Supplementary Table 2A). Using blood miRNA
candidates (Figures 2A, D), we identified 17 OUD up-regulated
miRNAs with targets enriched in 161 BA9 down-regulated genes
(Figure 3B and Supplementary Table 2B). We did not identify
overlap between potential BA9 and blood miRNA regulators.
However, overlap of their target genes was robust, with 79
down-regulated genes enriched for targets of both BA9 and
blood miRNAs (Figure 3C, overlap statistic p = 1.92 × 10−20).
We then conducted Pearson Correlation Coefficient analysis
between expression of the 29 miRNAs with significant mRNA
targets in either BA9 or blood tissues. Twenty-three out of
29 miRNAs were commonly detected in both BA9 and blood
samples (10 of the 23 in BA9 and 13 of 23 in blood) but only
one of these, miR-340-5p, was significantly correlated between
BA9 and blood (PCC = −0.46 and p = 0.02; Supplementary
Figure 1C and Supplementary Table 2C). miR-340-5p was
detected in blood samples and targeted 42 BA9 mRNAs
(Supplementary Figure 1D and Supplementary Table 2B).

The direct (canonical) mode of miRNA-driven regulation of
mRNA is that of transcription suppression, e.g., up-regulated
miRNA targets are enriched in down-regulated genes and
conversely down-regulated miRNA targets are enriched in up-
regulated genes. However, indirect (non-canonical) regulation
is possible via intermediate lncRNA modulation (54). As
such, we also evaluated miRNA and coding gene changes in
the same direction. Based on BA9 miRNA candidates, we
identified 21 down-regulated miRNAs with targets enriched
in 171 down-regulated genes (Supplementary Figure 1A
and Supplementary Table 2A). Interestingly, the number of
miRNA–mRNA pairs for non-canonical regulation exceeded
the number for canonical regulation. Whereas a similar picture
emerged using blood miRNA candidates, the difference between
canonical and non-canonical miRNA–mRNA pairs was not
as striking (Supplementary Figure 1B and Supplementary
Table 2B). Specifically, 23 down-regulated miRNAs targeted 170
down-regulated genes.

3.2. Pathway enrichment and drug
repurposing via targeting
miRNA–mRNA networks

Based on BA9 miRNAs/BA9 gene networks and blood
miRNAs/BA9 gene networks, we determined enriched Gene
Ontology pathways using the MSigDB approach based on
hypergeometric distribution, with significance achieved at
FDR < 0.05 (Figure 4A and Supplementary Table 3A).
Reassuringly, 490 pathways were enriched in gene targets
of both BA9 miRNAs and blood miRNAs (Figure 4A,
overlap statistic p = 1.49 × 10−142). Interestingly, targets of
both BA9 miRNAs and blood miRNAs enriched for similar
processes; whereas development and morphogenesis were the
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FIGURE 2

Differentially expressed protein-coding genes and microRNAs in brain and blood from individuals with opioid use disorder (OUD). (A) Summary
of differentially expressed miRNA–mRNA network components. Volcano plots of BA9 protein coding genes (B), BA9 miRNAs (C), and blood
miRNAs (D), comparing OUD to controls. Genes highlighted in panel (B), DUSP10 and EGR2, are targeted by miR-92a-3p, highlighted in
panel (C).

dominant dysregulated biological pathways and processes,
another common term among the top 20 enriched pathways
was cell adhesion (Figure 4B). Based on the observation
that sometimes multiple related pathways differ only through
a relatively small number of genes relative to the pathway
size, the Revigo method has been developed to summarize
enrichment or depletion at the level of Gene Ontology terms
(55). Using this approach, the 549 GOBP pathways significant
in the BA9 miRNA targets were enriched for developmental
terms, as well as MAPK signaling and Stress Associated Protein
Kinase signaling (SASPK) (Figure 4C and Supplementary
Tables 3B, D). Similarly, the 1,043 pathways significant in the
blood miRNA targets enriched both for developmental terms,
and MAPK and SAPK signaling, further showing functional

redundancy between the gene targets of BA9 and blood miRNAs
(Figure 4D and Supplementary Tables 3C, D).

Repurposing of compounds based on gene signatures using
the Library of Integrated Network-Based Cellular Signatures
(LINCS) L1000 database (43) has generated effective compound
candidates in numerous disease systems, including alcohol
use disorder (56, 57). Smaller, refined gene signatures could
be more effective to guide pharmacotherapy interventions via
drug repurposing. Thus, we interrogated the LINCS database
with our miRNA–mRNA network genes generated based on
either BA9 miRNAs or blood miRNAs. Interestingly, BA9
and blood miRNA targets led to 173 common medications
with an absolute score over 90 (Supplementary Figure 2A,
overlap statistic p = 4.8 × 10−48; Supplementary Table 4)

Frontiers in Psychiatry 06 frontiersin.org

https://doi.org/10.3389/fpsyt.2022.1025346
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-13-1025346 January 11, 2023 Time: 10:32 # 7

Grimm et al. 10.3389/fpsyt.2022.1025346

FIGURE 3

Dysregulated miRNA–mRNA networks in brains from opioid use disorder (OUD) donors. Using the significant dysregulated protein coding genes
measured in BA9, we determined enriched miRNA targets based on the OUD-associated miRNA candidates measured in panel (A) BA9 and (B)
blood via the mirDB compendium. (C) Overlap of down regulated genes targeted by miRNAs in BA9 and blood. Network of genes targeted by
miR-92a-3p is enlarged in panel (A).

and 24 common compounds with an absolute score over 98,
including dopamine receptor antagonist, JNK inhibitors, and
CDK inhibitors (Supplementary Figure 2B).

3.3. WGCNA reveals miRNA–mRNA
networks associated with individual
cell types

Using CIBERSORT, we inferred cell type composition of the
BA9 bulk tissue samples based on a collection of brain cell type

signatures (42). Next, we employed WGCNA (40) to identify
modules in the BA9 miRNA–mRNA network of 107 genes,
identifying five modules ranging from 7 to 36 genes (Figure 5A).
A sixth module, gray, contained 26 genes not clustered in
any other module. By using the brain cell-type composition
and the OUD status as traits, we performed module-trait
association analysis, identifying WGCNA modules significantly
associated with the relative proportion of astrocytes, neurons,
or endothelial cells and also with OUD status (Figure 5B). The
yellow and green modules associated negatively with astrocyte
abundance and positively with neuron abundance (Figure 5B).
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FIGURE 4

Integrative analysis of miRNA–mRNA networks. (A) Pathway enrichment was carried out with the enriched gene targets of BA9 and blood
miRNAs using the Gene Ontology Biological Processes compendium, with overlap of enriched pathways shown as a Venn diagram. (B) Top 20
common GOBP pathways between BA9 and blood miRNA targets. (C) List of GO terms enriched in the 549 significant pathways in BA9 miRNA
targets. (D) List of GO terms enriched in the 1,043 pathways significant in blood miRNA targets. For panels (C,D), the percent of pathways
associated with a GO term, odds-ratio, and –log10(FDR) are shown.

The largest module, turquoise, as well as the brown and
the blue modules associated positively with endothelial cell
abundance. The turquoise, brown, green, and yellow modules
associated negatively with OUD status and comprised the
majority of the canonical miRNA–mRNA network driven by
up-regulated miRNAs and down-regulated genes (Figures 3A,
5C).

As previously indicated, even though the network miRNAs
inferred from BA9 and blood were non-overlapping, 79
down-regulated gene targets overlapped (Figure 3C and
Supplementary Figure 3). Robust overlaps were also observed
between the BA9 WGCNA gene modules and blood miRNA–
mRNA network targets; the brown module was fully targeted
by blood miRNAs (11/11 genes), the blue module showed 95%
overlap (17/18 genes) and the turquoise module showed a 75%

overlap (27/36 genes). The rest of the modules showed 56–57%
overlap with blood miRNA gene targets (Supplementary
Figure 3 and Supplementary Table 5).

To assess if the WGCNA modules associated with distinct
pathways, we first downloaded a database of 425 transcriptomes
of control BA9 tissues compiled by the Genotype Tissue
Expression (GTEx) project (50), then computed gene signature
scores for genes targeted by either BA9 or blood miRNAs, as well
as each of the WGCNA modules, and for a reference collection
of the 50 Hallmark pathways (51). Strikingly, the signature
scores for miRNA targets showed distinct correlation patterns
across modules: the yellow and green modules correlated
negatively, while brown and blue modules correlated positively,
with immune system and inflammatory pathways, angiogenesis,
and coagulation pathways. The turquoise module correlated
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FIGURE 5

Correlation-based analysis of BA9 canonical miRNA–mRNA network genes. (A) Weighted gene correlation network analysis (WGCNA) was
carried out for the 107 BA9 gene targets of BA9 miRNAs, identifying five distinct gene modules using a minimum module size of 5. The gray
module of 26 uncorrelated genes was not included. (B) Association with brain cell type abundance (astrocytes, neurons, and endothelial cells)
and OUD diagnosis was evaluated for each module. (C) Module membership is indicated in the network comprised of increased miRNAs and
decreased genes, indicating the turquoise, blue, brown, green, and yellow WGCNA module genes.

positively with Notch signaling, apoptosis, hypoxia, and TGFß
signaling (Figure 6 and Supplementary Figure 4).

4. Discussion

In this study, we performed an integrated analysis of RNA-
seq and smallRNA-seq data from same-subject postmortem

brain (BA9) and blood samples to explore the hypothesis that
miRNAs and their mRNA targets are critical drivers of opioid-
induced neurobiological alterations. This is the first study of
its kind to investigate miRNA–mRNA networks for OUD in
corresponding brain and blood from the same subjects. Overall,
we identified robust miRNA–mRNA networks in both BA9
brain and blood. Although there was no overlap between
differentially expressed miRNAs in BA9 and blood, we found
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FIGURE 6

Gene set signatures for miRNA targets show robust and distinct correlation patterns. Gene signature scores were derived for opioid use disorder
(OUD) down-regulated BA9 and blood miRNA targets, as well as for WGCNA modules, and comprehensive correlations were computed with
the 50 Hallmark pathways over a collection of BA9 bulk tissue transcriptomes from 425 control brain samples from the GTEx project. Presented
here is a subset of the Hallmark pathways, showing that OUD down-regulated targets of BA9 and blood miRNAs and the WGCNA turquoise
module correlated with Hallmark pathways for Notch signaling, apoptosis, hypoxia, and TGFß signaling; WGCNA modules brown and blue
correlated with immune system, inflammatory pathways, angiogenesis, and coagulation.

strong overlap among the differentially expressed target genes
of the network miRNAs from both tissues. In addition, the
corresponding enriched pathways derived from miRNA–mRNA
networks in brain and blood were highly overlapping, with
tissue development, morphogenesis, and pathways related to
circulatory system development among the dominant enriched
biological processes. A GO term enrichment analysis further

identified functional similarities in MAPK and Stress Associated
Protein Kinase (SAPK) signaling. Further, using WGCNA,
we identified cell-type specific miRNA targets, particularly in
astrocytes, neurons, and endothelial cells, associated with OUD
transcriptomic dysregulation. The largest module identified by
WGCNA (turquoise - comprised of 36 genes) was positively
associated with endothelial cells, and correlated with Hallmark
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pathways for Notch signaling, apoptosis, hypoxia, and TGFß
signaling providing evidence for a role of endothelial cells
in opioid-induced brain alterations, as we have previously
reported (5).

Of interest, the identified miRNA targets included genes we
previously found to be involved in endothelial cell function,
cytokine signaling, and angiogenesis pathways associated with
OUD, including EGR1, EGR2, EGR4, NR4A2, and DUSP10 (5).
Among the differentially expressed and enriched miRNAs was
miR-92a-3p, which has been previously found to be dysregulated
in blood from male subjects after hydromorphone or oxycodone
treatment (58). Our bioinformatics analysis identified miR-92a-
3p to be significantly up-regulated in BA9, and its targets EGR2
and DUSP10 (59, 60) to be significantly down-regulated. miR-
92a is highly expressed in endothelial cells, which regulate
vascular endothelial function. Overexpression of miR-92a in
endothelial cells blocks angiogenesis and administration of a
miR-92a inhibitor enhances recovery of damaged tissues in a
mouse model of ischemia (61).

miR-92a acts through its targets via the p38 MAPK
signaling pathway (62, 63), which we previously identified to
be significantly enriched in OUD (5). Additional support for a
role of MAPK pathways in OUD pathophysiology was found
by our GO terms enrichment analyses in pathways identified by
miRNA–mRNA networks in BA9 or blood.

Leveraging a collection of control brain transcriptomes
from the GTEx project, we identified a correlation of OUD
miRNA targets with hypoxia, TGFß, angiogenesis, coagulation,
immune system, and inflammatory pathways. TGFß signaling
can contribute to the pathogenesis of cardiovascular diseases
(64), and TGFB2 was among the top differentially expressed
genes in our previous study of gene dysregulation in OUD
postmortem brain (5).

Altogether, our current results using a multi-omics
approach support previous findings in human and animal
studies of neurovascular alterations as a consequence of
opioid abuse (65–75), and establish miRNA–mRNA networks
perturbed convergently in brain and blood of opioid users.
Several peripheral blood miRNA candidates, including miR-
369-3p (22 targets, including EGR1 and EGR2) and miR-627-3p
(25 targets including EGR1, DUSP4, and DUSP10) should
be investigated further as surrogate biomarkers for their
target coding genes in brain. Importantly, the American
Heart Association recently advised on the risk of opioid
use for neurovascular complications (76), underscoring the
urgency of research aimed toward understanding mechanisms
underlying opioid-induced neurobiological alterations and
treatments aimed at preventing them. Further preclinical
studies in animal or cell models are needed to clearly define
these mechanisms.

Limitations of this study include the small sample size,
which precluded our ability to match subjects for age and
sex. Additionally, although sex and age were controlled for

in all analyses, controlling for these covariates limits the
exploration of age and sex as important factors contributing
to gene expression. Further, we used cell-type deconvolution
of bulk RNA-seq data for determination of cell-specific effects.
Future studies using single cell RNA sequencing technology
are needed to validate the gene correlation findings in
specific cell types. In summary, our findings suggest that
miRNA-driven mRNA dysregulation in OUD is profound
and potentially realized through redundant and systemic
alternatives. Our study demonstrates the utility of analyzing
miRNA networks to facilitate new avenues of mechanistic
explorations that could lead to the development of novel
therapeutic approaches to minimize or potentially reverse
opioid-induced brain abnormalities.
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