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Development of better treatments for alcohol use disorder (AUD) is urgently needed.

One promising opportunity for this development is the potential of targeting the oxytocin

peptide system. Preclinical studies showed that administration of exogenous oxytocin

or, more recently, stimulation of neurons expressing endogenous oxytocin lead to a

decreased alcohol consumption across several rodent models. Initial clinical studies

also showed that administration of oxytocin decreased craving for alcohol and heavy

alcohol drinking. However, several more recent clinical studies were not able to replicate

these effects. Thus, although targeting the oxytocin system holds promise for the

treatment of AUD, more nuanced approaches toward development and application

of these treatments are needed. In this mini-review we discuss potential caveats

resulting in differential success of attempts to use oxytocin for modulating alcohol

use disorder-related behaviors in clinical studies and evaluate three directions in which

targeting the oxytocin system could be improved: (1) increasing potency of exogenously

administered oxytocin, (2) developing oxytocin receptor agonists, and (3) stimulating

components of the endogenous oxytocin system. Both advances and potential pitfalls

of these directions are discussed.

Keywords: oxytocin, alcohol use disorder, alcoholism, addiction, pharmacotherapy, oxytocin receptor agonist,

individualized medicine

INTRODUCTION

Alcohol use disorder (AUD) is a devastating condition where the affected individuals continue to
engage in drinking despite the negative experience and the harm caused by drinking. Globally, more
than 5% of all deaths have been attributed to alcohol consumption (1). In addition to alcohol-related
mortality, AUD is associated with a plethora of debilitating health and societal consequences.
Harmful alcohol consumption increased during the COVID-19 pandemic (2–4). Better treatments
for AUD with better access to these treatments are urgently needed.

Among potential targets for such treatments, recent attention has focused on the oxytocin
(OXT) neuropeptide system. OXT has a leading role in coordinating maternal behaviors, and
regulates other functions, including social attachment, anxiety, food consumption, learning, body
temperature, neuroinflammation, and pain (5, 6). OXT has been suggested to modulate alcohol-
related responses including craving, tolerance, abstinence, and withdrawal-induced anxiety and
social engagement (7–10). In turn, alcohol can affect OXT levels and underlying neurocircuitry
(11–13). These observations suggested that stimulating the OXT system could curb excessive
alcohol use by targeting several phases of the addiction cycle: modulating alcohol’s effects during
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the intoxication phase, decreasing alcohol’s toxicity during
the abstinence/withdrawal phase and/or decreasing craving
during the anticipation/preoccupation phase (14–17). Indeed,
OXT administration decreased alcohol self-administration in
numerous preclinical studies (16, 18–21). Importantly, OXT was
effective in translationally relevant animal models, including
being administered via intranasal (IN) routes, in models of severe
alcohol dependence (22), in prairie voles, which share similarities
in neurocircuitry regulating social behaviors (21), and in presence
of untreated peers, similarly to medication administration in
outpatient clinics (23, 24). Initial clinical studies also indicated
that OXT administration in humans could decrease signs of
withdrawal and craving and inhibit excessive alcohol drinking
(12, 17, 25). However, more recent studies had limited success
(26–28), calling for more nuanced approaches for the treatment
of AUDwith OXT. Moreover, recent basic science studies revised
our understanding of organization of the OXT system (29) and
exogenous OXT’s penetrance into the brain (30, 31). With these
developments, the goal of this minireview is to critically analyze
the potential pitfalls associated with clinical studies testing effects
of OXT on signs of AUD (Table 1) and to evaluate different
directions of overcoming these pitfalls: by increasing potency
of exogenously administered OXT, by developing OXT receptor
(OXTR) agonists, and by stimulating the endogenous OXT
system (Figure 1).

CLINICAL STUDIES ON OXT
ADMINISTRATION AND MOTIVATION TO
CONSUME ALCOHOL

So far, 11 clinical studies have been published on effects of
IN OXT on alcohol drinking-related behaviors, and one study
on social stress response but not drinking-related behaviors in
individuals with AUD (38) (Table 1). These studies assessed
effects of OXT treatments ranging from single to 12 week-
long daily administrations across populations in three different
countries, in subjects characterized as social drinkers, heavy
drinkers or patients with post-traumatic stress disorder/AUD
comorbidity, with modest sample sizes ranging from 11 to
84. Only half of the studies evaluated effects of OXT in both
sexes, and most studies focused on males only. Evaluating
Table 1, one can conclude that effectiveness of OXT to decrease
relevant outcomes was not overwhelming, revealing the following
potential pitfalls.

Insufficient Treatment Period
The majority of studies that looked at short-term outcomes failed
to observe decrease in drinking. The only study that reported
decreased drinking administered OXT for the longest time (25).
Importantly, decreased measures of intake in this study only
started to emerge on the second week of treatment. Therefore,
the usual duration of OXT treatment and observation in most
current studies might be insufficient to show its effect. On the
other hand, effects of OXT on measures of heavy drinking in this
study appeared to be subsiding in the last weeks of treatment,

suggesting either a desensitization to repeated treatment or a
“floor effect” of OXT.

Insufficient and Inconsistent Dosage
It appears that more recent studies, showing less consistent
effects, used slightly lower doses of OXT per day. One study relied
on subjects’ self-administration of OXT, which might have not
achieved effective uptake (27). It is important to note that in
some of the studies, OXT did not decrease measures of alcohol
craving or drinking despite having significant effects onmeasures
of stress or anxiety, arguing against insufficient OXT uptake
(26, 27). On the other hand, it could be that higher doses are
needed to decrease alcohol drinking than doses that can affect
stress or anxiety.

Individual Variance in the Population
Another consideration is that OXT could be effective only in
a subset of patients. One study indicated that OXT can even
increase craving in subjects with low attachment anxiety (32).
Thus, subpopulations of subjects can be differentially sensitive
to OXT treatment, requiring bigger sample sizes to achieve the
power necessary to detect effects of these treatments.

In studies listed in Table 1, five studies observed decreases in
craving, alcohol cue response or heavy alcohol use (12, 17, 25,
33, 37), and the other five did not observe significant effects (26–
28, 34–36). Since only one study reported that OXT produced
opposite from hypothesized effects in a subpopulation of subjects
(32), we conservatively interpret this analysis that OXT can be
effective in decreasing alcohol craving or intake, but its potency
needs to be enhanced.

ENHANCING EXOGENOUS OXT’S ABILITY
TO DECREASE ALCOHOL DRINKING

While observations of positive effects of OXT on alcohol drinking
in clinical studies are not consistent, this contrasts with a large
body of preclinical studies showing effects. Decreased alcohol
intake following OXT administration has been observed in
mice, rats, and prairie voles. These studies have been previously
reviewed (8, 9, 14, 15, 25, 39–41). The success of preclinical
studies may offer clues and opportunities to potentiate the effect
of OXT treatment in humans.

Non-human studies have explored both peripheral (e.g.,
subcutaneous, intraperitoneal, and IN) and central routes of
administration of OXT to understand its mechanisms of action.
Since OXT’s half-life in plasma is estimated to be on the order of
minutes (42, 43), the observation that peripherally administered
OXT had longer effects than expected from its half-life was
attributed to the potential feed-forward release of OXT from
magnocellular neurons (44, 45).

To overcome the difficulty interpreting results from
peripherally administered OXT, some investigators resorted
to study its effects following intracranial administration
(12, 46, 47). While these studies demonstrated OXT’s central
modulation of alcohol-related behaviors, they did not clarify
how the peptide reaches the relevant intracranial sites. More
recent studies indicated that exogenously administered OXT
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TABLE 1 | Clinical studies on effects of oxytocin administration on alcohol-related behaviors.

References Population Dose Effects on alcohol craving and

intake

Other effects

Pedersen et al. (17) USA, heavy drinkers,

11: 9M/2F

2 × 24 IU/day × 3 days ↓ Penn Alcohol Craving Scale (g∼2.7) ↓ Several alcohol WD ratings, ↓ dose

of BZ, ↓ anxiety on Profile of Mood

States

Mitchell et al. (32) USA, heavy drinkers,

32: 19M/13F, CO

1 × 40 IU ↓ or ↑ craving (Alcohol Urge

Questionnaire) dependent on social

attachment anxiety

↓ Approach to appetitive stimuli

Pedersen et al., (25) USA, heavy drinkers,

22: 13M/9 F

3 × 40 IU/2 days, then 2 × 40 IU

/day for 12 weeks

↓ Number of heavy drinking days (g

up to∼1.9), ↓ drinks/drinking day (g

up to ∼5.8), lower efficacy at the end.

No effect on Penn Alcohol Craving

Scale

Hansson et al. (12) Germany, heavy

drinkers, 12M, CO

1 × 24 IU ↓ fMRI response to alcohol cue

across several brain regions

Vena et al. (28) USA, social drinkers,

35: 19M/16F, CO

1x (40 IU + 20 IU) No effect on subjective and

physiological responses to alcohol,

including “want more” on Drug Effects

Questionnaire

Bach et al. (33) Germany, social

drinkers, 13M, CO

1 × 24 IU ↓ Alcohol cue-induced fMRI

connectivity (g up to ∼1.6), correlated

with subjective cue-induced craving

ratings

Flanagan et al. (26) USA, PTSD/AUD, 67M 1 × 40 IU No effect on subjective craving

ratings after Tier Social Stress Task

↓ Cortisol response to Tier Social

Stress Task

Stauffer et al. (34) USA, 47—PTSD/AUD,

37—controls, M, CO

1 × (20 IU, 40 IU or placebo) No effect on subjective cue-induced

craving ratings and cue-induced heart

rate response

Melby et al. (35, 36) Norway, heavy

drinkers, 40: 29M/11F

2 × 24 IU/ 3 days No effect on self-reported alcohol

intake and no effect on

phosphatidylethanol levels

Not effect on WR questionnaires and

BZ for WD, no effect on actigraphy

and sleep

Bach et al. (37) Germany, social

drinkers, 18M, CO

1 × 24 IU ↓ fMRI response to faces (g up to

∼4.1), correlated with alcohol craving

and heavy drinking days

Melby et al. (27) Norway, heavy

drinkers, 40: 29 M/11F

2 × 24 IU/ 3 days, then SA up to 24

IU/day for 25 days

No effect on Alcohol Craving

Questionnaire and several measures

of drinking

↓ Self-reported nervousness

Melkonian et al. (38) USA, PTSD/AUD, 73M 1 × 40 IU ↓ Anger in subjects with low

subjective rating of craving

M, male; F, female; CO, cross-over; x, times; IU, international unit; SA, self-administration; WD, withdrawal; BZ, benzodiazepine; red font, decrease; Orange font, decrease in a correlated

measure; green font, increase; g, Hedges effect size, estimated where possible.

indeed reaches selected brain regions in mice, rats, monkeys
and humans (30, 48–52). Since OXT has additional affinity
to vasopressin (AVP) receptors, it is worth noting that the
exogenously administered and centrally active OXT could
also exert its functions via actions that do not involve OXTRs
(29, 53, 54).

The IN route results in penetration of a portion of
total administered OXT to the brain via several pathways:
transmission along the olfactory and trigeminal neural bundles,
absorption from basal epithelia directly into cerebrospinal fluid,
crossing the blood-brain barrier, and through circumventricular
organs (6, 52). The different relative size of the neural bundles
vs. whole brain across species might contribute to differences
in the access to specific brain regions in rodents vs. humans.
Nevertheless, attempts to increase penetration of IN OXT are
underway, including the use of mucoadhesives, nanoemulsions

and liposomal formulations (6, 55). Another development is the
recent recognition that brain penetrance of OXT is aided by
the participation of the Receptor for Advanced Glycation End-
products (RAGE) (31, 56). Development of allosteric modulators
of RAGE could be an interesting approach to enhance the
potency of exogenous OXT.

Finally, as mentioned, OXT could be differentially effective
across different populations of subjects. OXT was found to
differentially affect alcohol craving in subjects with low and
high attachment anxiety (32). Several indicators suggest that it
could be more effective in males vs. females (57). Moreover,
subjects carrying polymorphisms in OXTR and OXT show
differences in alcohol consumption patterns (58, 59). Carriers
of these polymorphisms could be differentially sensitive to OXT
treatments. Studies targeting these subpopulations could be a step
toward development of individualized AUD treatments.
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FIGURE 1 | Opportunities and challenges for improving the targeting of the oxytocin system for the treatment of alcohol use disorder. Opportunities: (1) increasing

potency of exogenously-administered oxytocin, (2) development and use of oxytocin receptor agonists, (3) stimulating components of the endogenous oxytocin

system. Challenges: (1) achieving specificity to oxytocin receptor vs. other related receptors, (2) achieving anatomical specificity (central vs. peripheral, or targeting

specific subpopulations of neurons), (3) overcoming or focusing on potential sex-dependent effects, (4) identifying subpopulations sensitive to treatments due to

genetic or environment-induced differences.
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DEVELOPMENT OF MORE POTENT AND
EFFICACIOUS OXTR AGONISTS

OXT’s lack of stability, low brain penetrance and non-specific
effects on AVP receptors prompted researchers to consider
developing OXTR agonists (14, 60). The majority of developed
and tested OXTR agonist are peptides, with presumably minimal
penetrance of the blood-brain barrier. Because of this, peptide-
based OXTR agonist PF-06655075 was used to test whether
effects from manipulating the OXT system are through central
or peripheral OXTRs (22). This is an important consideration
as stimulation of peripheral OXTR can affect certain behaviors,
for example fear conditioning (61). However, central, but not
peripheral administration of PF-06655075 decreased alcohol
drinking in dependent rats, indicating that stimulation of
the central OXT system is crucial for moderating alcohol
consumption (22).

Carbetocin is a highly stable OXT analog used in clinics to
prevent postpartum hemorrhage. It has been demonstrated to
modulate central effects of morphine (62, 63). In relation to
alcohol, however, reported effects aremixed.While the same dose
of repeated carbetocin inhibited acquisition, enhanced extinction
and suppressed reinstatement of ethanol-induced conditioned
place preference in a mouse study (64), it enhanced ethanol-
induced conditioned place preference in another study (65). We
are not aware of any reports on carbetocin’s effects on alcohol
drinking. Other peptide OXTR agonists include Lipo-oxytocin-
1 and [Thr4,Gly7]OXT (66–68). Their effect on alcohol-related
behaviors have not been reported, but the strong possibility
of effects on various peripheral systems could be a matter
of concern.

Another possibility is to explore the effects of OXT
metabolites—OXT fragments composed of shorter chained
peptides. As smaller molecules, they should have better
penetrance into the brain and, therefore, higher potency. In
contrast to carbetocin, OXT (4–9) improved social preference
in the BALBc/J model of autism spectrum disorder-like social
deficits (69). In early studies, the tripeptide OXT (6–9) was shown
to attenuate tolerance to hypothermic effects of repeated ethanol
injections in mice (70). However, whether OXT metabolites
can affect alcohol drinking or alcohol reward is still to
be discovered.

Development of non-peptide OXTR agonists continues to
progress. Three small-molecule agonists have been reported
(14, 60, 71, 72). TC-OT-39 has an EC50 of ∼100 nM at
OXTR as an agonist, but also a moderate affinity at V1a AVP
receptors as an antagonist. Therefore, its neurochemical mode
of action in vivo is difficult to estimate. In any case, it was
not effective in studies of BALBc/J model of autism spectrum
disorder-like social deficits (69). Comparing to TC-OT-39,WAY-
267464 is a level of magnitude more potent OXTR agonist,
but with a similar affinity to V1a AVP receptors (71), again
making it difficult to evaluate specificity of its effects after
systemic administration. Promisingly, however, administration
of this compound into amygdala facilitated extinction of fear
conditioning (73) whereas systemic injection of this compound

rescued not only social deficits in Shank3b mutant mice (74),
but also social deficits caused by adolescent alcohol exposure in
rats (75).

LIT-001, the most recently developed small molecule, has
an agonist activity on OXTR similar to that of WAY-267464
in in vitro studies, but several magnitudes lower affinity to
AVP receptors, for the first time allowing receptor-specific
systemic pharmacology of OXTR (71). Systemic administration
of LIT-001 rescued deficits in social interaction in the Oprm1
knockout model of autism spectrum disorder (71) and inhibited
inflammation-induced hyperalgesia in rats (76). Studies testing
LIT-001 in models of AUD are underway.

Development of small-molecule OXTR agonists is a promising
avenue for future research. Though striving to develop
compounds with more specific and potent effects than OXT, one
has to keep in mind the potential side effects. For example, a
compound that has potent anxiolytic and analgesic properties
must be evaluated for its own potential addictive properties.

HARNESSING THE ENDOGENOUS OXT
SYSTEM

OXT is an evolutionary old peptide. Therefore, its mixed affinities
toward OXTR and AVP receptors, as well as its poor brain-
penetrance, could have advantages for fitness. It might be,
therefore, more prudent to stimulate the endogenous OXT
system to produce beneficial effects instead of manipulating the
system exogenously. As a proof of this concept, a recent study
by King et al. used a chemogenetic approach to activate OXT
neurons of the mouse paraventricular nucleus of hypothalamus
(PVN) (77). This activation significantly decreased alcohol
consumption in a mouse model of binge drinking. This finding
implicates the need to explore the feasibility to develop effective
means of stimulating the endogenous central OXT system for
AUD treatment.

The importance of OXT in regulating social attachments is
well-demonstrated across vertebrate species (78–83). Positive
social interactions are known to stimulate OXT neurons (84–
87). Therefore, social interactions could stimulate the OXT
system and hence, decrease alcohol consumption. However, the
relationship between social interaction and activity of OXT
system is more complex. OXT neurons are also activated during
social isolation and after exposure to other stressors (88–
90). Stressful experiences are well-known to increase alcohol
consumption (7, 91, 92). Therefore, it would be more relevant
to selectively stimulate OXT system in a way that mimics
the effect of positive social interactions to regulate AUD-
related phenotypes.

The latter task is extremely difficult because there are currently
nomethods allowing to evaluate when specific components of the
central OXT system are activated in humans. Our understanding
of the relationship between the activation of subpopulations
of OXT neurons and OXT’s peripheral levels continues to
change, and knowledge of projections sites of parvocellular and
magnocellular OXT neurons are being revised (29). Additionally,
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it is difficult to estimate the relationship between levels of OXT
in plasma vs. levels in the brain. A meta-analysis across 17
studies found no significant associations between peripheral
and central—in either cerebrospinal fluid or specific brain
regions—OXT levels under basal conditions in both humans
and non-human animals (93). On the other hand, this meta-
analysis confirmed significant positive associations between these
levels after IN OXT in humans and rodents (49, 94, 95) and
after experimental stress in rodents (93, 96–98), indicating that
correspondence in OXT levels can be established. Recent studies
also complicate the interpretation of previous studies showing
that alcohol consumption decreases OXT levels (9). For instance,
while one study showed significantly higher OXT levels in blood
of patients with AUD (99), another study found significantly
lower OXT levels in AUD patients (100). The reason for such
opposite results needs to be further studied.

Taken together, stimulation of endogenous OXT system
could contribute to treatments of AUD by modulating social
relationships or adherence to therapy. This potential could
be especially relevant to group-based approaches to treatment.
However, direct behavioral manipulation of this system to
moderate excessive alcohol intake in AUD patients at this
point is still a theoretical goal. Its realization relies on better
understanding of the OXT system.

CONCLUSIONS

While recent clinical studies show mixed results in the
effectiveness of IN OXT to decrease excessive drinking, more
sophisticated approaches targeting the OXT system are needed.
One possibility is to enhance access of exogenously administered
OXT to relevant brain regions either through development of
better delivery systems or through enhancement of transporters.
Another possibility is to further explore the development of
OXTR agonists. The potential of behavioral stimulation of parts
of the endogenous OXT system should also be investigated.
The better we understand the organization of the OXT system,
the greater chance we have of harnessing it for the treatment
of AUD.
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