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In the DSM-5, psychiatric diagnoses are made based on self-reported

symptoms and clinician-identified signs. Though helpful in choosing potential

interventions based on the available regimens, this conceptualization of

psychiatric diseases can limit basic science investigation into their underlying

causes. The reward prediction error (RPE) hypothesis of dopamine neuron

function posits that phasic dopamine signals encode the di�erence between

the rewards a person expects and experiences. The computational framework

from which this hypothesis was derived, temporal di�erence reinforcement

learning (TDRL), is largely focused on reward processing rather than

punishment learning. Many psychiatric disorders are characterized by aberrant

behaviors, expectations, reward processing, and hypothesized dopaminergic

signaling, but also characterized by su�ering and the inability to change

one’s behavior despite negative consequences. In this review, we provide

an overview of the RPE theory of phasic dopamine neuron activity and

review the gains that have been made through the use of computational

reinforcement learning theory as a framework for understanding changes in

reward processing. The relative dearth of explicit accounts of punishment

learning in computational reinforcement learning theory and its application

in neuroscience is highlighted as a significant gap in current computational

psychiatric research. Four disorders comprise the main focus of this review:

two disorders of traditionally hypothesized hyperdopaminergic function,

addiction and schizophrenia, followed by two disorders of traditionally

hypothesized hypodopaminergic function, depression and post-traumatic

stress disorder (PTSD). Insights gained from a reward processing based

reinforcement learning framework about underlying dopaminergic

mechanisms and the role of punishment learning (when available) are explored
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in each disorder. Concluding remarks focus on the future directions required

to characterize neuropsychiatric disorders with a hypothesized cause of

underlying dopaminergic transmission.

KEYWORDS

punishment learning, reward learning, reward prediction error (RPE), temporal

di�erence (TD) learning, depression, addiction

Introduction

Psychiatric conditions diagnosed within DSM-5 (1) criteria

are based on clinical phenomenon (e.g., patient-reported

symptoms and clinician-observation signs) rather than

quantifiable physiological markers. Therapeutic regimens are

often devised through trial-and-error in an attempt to treat

observed symptoms. Unfortunately, underlying etiologies for

most psychiatric disorders are currently unknown, so it is

unclear how current treatments effect their biologic causes;

as a result, unwanted side-effects are a common result (2).

Computational Psychiatry research attempts to bridge the gaps

in our understanding of the relationship between brain activity

and human behavior, particularly in the context of psychiatric

medicine, using computational tools including approaches

that have long been developed in computational neuroscience

basic research (3, 4). A particularly fruitful avenue of work has

been the investigation of human decision-making and choice

behavior where computational reinforcement learning (5, 6) has

been a guiding conceptual framework.

Computational reinforcement learning (RL) theory (5, 6)

describes a well-developed field of computer science research

that has identified optimal algorithms by which theoretical

“agents” may learn to make choices in order to optimize well

defined objective functions. RL expanded into neuroscience

with the discovery that RL concepts accurately model learning

in mammalian brains (7–9). Specifically, temporal difference

reward prediction errors (TD-RPE) have been shown to be

encoded by dopamine neurons in the midbrains of non-human

primates (7, 8) and rodents (9). The general idea of a “reward

prediction error” calculation is “the reward received” vs. “the

reward expected.” Neural and behavioral correlates to this

general calculation can be found in nearly all experiments where

expectations and deviations from these expectations can be

controlled and robustly delivered to research subjects. However,

some calculations of RPEs can explain more of the nuances

in behavior as well as associated neural activity. For example,

temporal difference reinforcement learning (TDRL) and the

TD-RPE hypothesis of dopamine neuron activity can provide

a mechanistic explanation of how an unconditioned stimulus

(US) becomes associated with a conditioned stimulus (CS) in

Pavlovian conditioning behavioral paradigms (Box 1); whereas

Rescorla-Wagner based calculations of RPEs fail to provide this

insight (12). Further, in quantitatively controlled experiments,

the value of the RPEs can be designed to be significantly different

depending on the manner in which the RPE is calculated.

Recent work suggests that dopaminergic signals in

the human brain also encode reward prediction errors

(10, 11, 13), but whether these dopaminergic signals are

specifically “temporal difference reward prediction errors”

has not been demonstrated. Whether dopamine neurons

encode temporal difference reward prediction errors vs.

some other calculation of a “reward prediction error”

signal is important because different specifications of the

mathematical theory lead to different predictions about the

relationship between the organism’s (i.e., human) behavior

and the underlying neural activity supporting it. Human

behavior is not driven solely by the pursuit of reward and

reward maximization. Negative feedback (e.g., injury) and the

anticipation of negative outcomes (e.g., the threat of injury

or death) have significant influence on the neurobehavioral

processes underlying our behavior (14). Despite this, reward-

focused TDRL-based accounts of the neural underpinnings

of human decision-making and behavior have not explicitly

addressed limitations in the ability of dopamine neuron

encoding of TD-RPEs to account for and encode punishing

experiences (15–18).

Temporal difference reinforcement learning and its use

in computational neuroscience and computational psychiatry

treats appetitive and aversive experiences as opposite ends of

a unidimensional reward spectrum (5, 17, 18). In this way,

aversive experiences are modeled mathematically in TDRL

as a negatively signed “reward,” represented by a single

scalar value. This traditional unidimensional representation

of valence in TDRL theory stipulates that appetitive and

aversive experiences are inherently anti-correlated in the

natural environment and, further, predicts that rewards and

punishments are processed and influence behavioral control

processes symmetrically, putatively via the dopamine system.

However, empirical and theoretical studies in psychology

and neuroscience indicate that this assumption might not

accurately reflect the nature of reward and punishment learning

and associated behavioral responses in humans and other

animals (15–23).
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BOX 1 Temporal di�erence reinforcement learning.

Temporal difference reinforcement learning provides a computational framework to investigate how an agent might learn directly from experience. The goal of

TDRL algorithms are to estimate the value of a particular state or of an action paired with a state (a state-action value) in order to maximize the rewards that can be

obtained. At the core of this family of algorithms is a teaching signal called a temporal difference reward prediction error (TD-RPE), Equation 1:

δt = [outcomet + γV(St+1)]− V(St) (1)

Here, δt is the TD-RPE quantity at time t, which is determined by evaluating the outcomemagnitude (i.e., reward) observed at time t added to the expected future

value, V(St+1), of being in the present state. V (St+1) is discounted by the term γ . All of this is compared to the overall value expected at time V(St). This amounts

generally to the idea of reward received vs. reward expected. However, the time indices cause the agent to evaluate not only what is received in the present state, but

also consider how being in the present state increases or decreases the overall value of future states. It can be shown that the agent only needs to estimate one step

into the future (5, 6) to have an optimal approach of associating the estimated value of future states with states that predict the occurrence of those future high (or

low) value states. This reward prediction error (δt) is then used to update the estimated value of the current state following Equation 2:

V ′ (St)← V (St)+ (α • δt) (2)

where α is a fractional multiplier that controls how much the current reward prediction error updates the (apparently wrong) estimate of the value of the current

state V (St) to a new estimate V ′ (St ).

Using these computations, one can simulate simple Pavlovian conditioning paradigms (Figure 1; or more complex operant behavior in humans). Figure 1 shows

a simple CS-US pairing where the conditioning stimulus (CS) precedes a reliable reward (i.e., the unconditioned stimulus, US). Figure 1 shows that, prior to any

learning, the surprising reward elicits a positive TD-RPE. Over time the learning rules expressed in equations 1 and 2 lead to the TD-RPE backing up in time (to

earlier episodes of the trial) to the earliest reliable predictor: here, the bell. The lack of the response at t = 80 is consistent with there being a TD-RPE equal to zero

– the reward received is exactly as expected. If, however, the reward is omitted (fourth row, “Omission”) a negative reward prediction error is emitted signaling that

things are worse than expected.

Human decision-making can and has been successfully studied using this computational framework and state-action elaborations depicted with Q-learning. By

interacting with the environment, we learn the consequences of our actions and adapt our behavior accordingly. These behavioral processes and TDRL models have

been linked to fluctuations in the firing rates of mid-brain dopaminergic neurons, which have been shown to encode temporal difference (TD) reward prediction

errors (RPEs; Equation 1) in response to better-than-expected or worse-than-expected outcomes (positive and negative RPEs, respectively) (10, 11). However, it

remains unclear how these neurons can encode variations in the magnitude of punishment since negative RPEs (from simple omissions) drive the neurons to stop

responding, which means that worse than expected outcomes that vary in magnitude (e.g., worse than simply not getting a reward) cannot be differentiated.

Genetic research into learning from feedback indicates

that separate genes may govern the dopaminergic mechanisms

underlying learning to positive and negative outcomes (24).

Further, mammalian mesencephalic dopamine neurons

demonstrate low baseline firing rates (25), and it is therefore

unclear how pauses in dopamine neuron activity are able

to effectively communicate magnitude variations across all

aversive experiences (negative RPEs) in the same manner as

for rewards (positive RPEs), or how downstream brain regions

might decode this information conveyed by dopaminergic

neuron silence and use it for further behavioral control (15).

In primates, midbrain dopaminergic neurons demonstrate

excitatory firing behavior following appetitive rewards and

pauses following aversive punishments (7, 8, 26). However,

evidence suggests that a separate population of dopaminergic

neurons may demonstrate excitatory activity in response

to punishing information (26–28). For example, different

populations of dopaminergic neurons in the rodent ventral

tegmental area (VTA) have been reported to respond with

excitatory activity to rewarding or punishing outcomes,

respectively (27). Local field potential (LFP) data in rodents

corroborates this separation of dopaminergic excitatory activity

for rewarding vs. aversive learning; namely, theta oscillations

increase with rewarding—but not punishing—feedback (28).

While these data support the idea that the “dopaminergic

system” can encode both reward and punishment prediction

errors, it also suggests that there are separate neural systems

within the dopaminergic neuron pool that appear to partition

along positively and negatively valenced feedback, which in

turn may underlie dopamine’s role in learning to escape aversive

situations (29). That separate dopaminergic neurons (but also

other neuromodulatory systems) may encode both reward or

punishment related information independently complicates

an otherwise simple explanation. However, the application

of computational models may be one way that clarity can be

gained as these models are explicit about how separate systems

combine information and contribute to complex behaviors.

These and other insights have inspired new RL-based

computational theories that aim to capture diverse aspects of

the influence of rewards and punishments on human neural

activity, choice behaviors, and affective experiences (18, 23,

29, 30). Still, the vast majority of RL computational models

employed to study human neural systems and decision-making

behaviors rely on a unidimensional representation of outcome

valence as the modeled driver of adaptive learning. Though

contemporary applications of TDRL theory to understanding

human decision-making in psychiatric conditions have seen

early successes, reward-centric computational theories are
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FIGURE 1

Pavlovian conditioning and temporal di�erence reinforcement

leaning algorithms. Temporal Di�erence Reward Prediction

errors (TD-RPEs) (see Box 1 for calculation) provide a teaching

signal (Equation 1, Box 1) that updates estimates of the reward

value associated with states of being or “episodes” (Equation 2,

Box 1). Each row depicts the quantity of a TD-RPE predicted

throughout various stages of learning. Row 1: “Naïve”; Row 2: as

learning progresses from “Early” to “Late” stages, “Learning”;

Row 3: after the agent has learned the association of the bell

and the reward, “Learned”; and Row 4: after the association has

been learned, but the anticipated reward is omitted, “Omission.”

According to the TDRL algorithm, when a naïve agent

encounters a surprising reward, a “better than expected” signal is

generated (“Naïve”). This signal backs up in time as the teaching

signal accounts for the collection of reward at the present state,

but also the observation of being in a better than expected

valued state given what is expected to happen one step (“t + 1”)

in the future. This causes the TD-RPE to back up in time to the

state that is the earliest predictor of the subsequent reward. Over

time the TD-RPE signal at the receipt of reward goes to zero as

the expectations come to consistently match expectations. This

also causes a negative reward prediction error when an

expected reward is not delivered as shown in the “omission” trial.

ultimately limited in their ability to distinguish the unique

influence of rewards and punishments on human neural activity

and associated affective behaviors that aremanifest in a variety of

psychiatric conditions.

Newer reinforcement learning models have incorporated

novel reinforcement learning terms as a method to separately

investigate behavior and neurochemical responses to

appetitive and aversive stimuli (18, 24, 31). Collins and

Frank conceptualize stimuli as evaluated by a “critic” encoded

by phasic dopamine in the ventral striatum in Opponent

actor learning (OpAL) (31). “Go” and “NoGo” weights are

calculated separately for appetitive and aversive stimuli

(31). These are hypothesized to be encoded by D1 receptors

in the direct pathway, and D2 receptors in the indirect

pathway, respectively (31). Another proposed way to decouple

algorithmic representations of rewards and punishments is a

valence-partitioned reinforcement learning (VPRL) proposed

by Sands and Kishida (16–18). We use VPRL (Box 2) as

one putative example for how models incorporating aversive

feedback may differ from traditional RL models. VPRL is

based on the observation that dopaminergic neurons have a

low baseline firing rate (4Hz), and may not have sufficient

bandwidth to encode variations in punishment magnitude by

decreases in firing (though see Bayer et al.) (17, 18, 25). VPRL

provides a generative account that may explain asymmetric

representations of positive and negative outcomes that guide

adaptive decision-making. This includes the relative weighting

of benefits vs. costs when making decisions. Further, it retains

the successful accounting of TDRL-based optimal reward

learning while hypothesizing a parallel independent process for

punishment learning.

In this review, we discuss the benefits that reward-centric

TDRL accounts have provided for computational psychiatric

investigations into the brain-behavior based accounts of

psychiatric conditions and highlight where considerations

of punishment learning have also provided insight. We

begin our discussion with two disorders that are classically

hypothesized to have predominantly hyperdopaminergic

action as a potential underlying etiology: addiction and

schizophrenia (32, 33). In both behavioral and substance

based additions, it is hypothesized that dopaminergic

reinforcement systems are manipulated by repetitive risky

decisions or pharmacological agents directly or indirectly

(32, 33). In schizophrenia, hallmark positive symptoms like

psychosis may result from hyperdopaminergic activity of

D2/3 receptors in the striatum (34–36). However, application

of a reinforcement learning framework demonstrates that

hypodopaminergic action of stimuli may account for the

duality of negative symptoms (37). We continue our discussion

with the insights that computational reinforcement learning

has had on understanding reward processing in disorders

of primarily hypothesized hypodopaminergic signaling.

Depressive symptoms found in major depressive disorder

(MDD) may arise from altered reward and punishment

learning, consistent with depression as a disorder of learning

from feedback (38–40). We also highlight here that PTSD may

be understood as a reinforcement learning disorder and discuss

how future investigations using a computational framework

may provide a roadmap for understanding the etiology of

PTSD as well as the efficacy of current exposure-based therapies

for PTSD.
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BOX 2 Valence-partitioned reinforcement learning.

One hypothesized solution to the limitations of TDRL (Box 1) is to partition “outcomes” according to their valence. Positively valenced outcomes (e.g., those

that promote survival and reproduction) are handled via a positive-valence system, whereas negatively valenced outcomes (e.g., those that would lead to death if

unchecked) are handled by a negatively valenced system. Both systems are hypothesized, here, to learn optimally from experience and hence use the TDRL-prediction

error, but for partitioned valence specific receptive fields (Equations 3 and 4):

δPt =

{

outcomet + γ PVP (St+1)− VP (St) if outcomet > 0

0+ γ PVP (St+1)− VP (St) if outcomet ≤ 0
(3)

δNt =

{

|outcomet| + γNVN (St+1)− VN (St) if outcomet < 0

0+ γNVN (St+1)− VN (St) if outcomet ≥ 0
(4)

δPt and δNt are each TD-prediction errors that are calculated in much the same way as TD-RPEs in Box 1, except that the “outcome” processed at time t are

conditioned on the positive (greater than zero, Equation 3) or negative (less than zero, Equation 4) valence. If the valence of the outcome is not within the respective

positive or negative receptive field, then the outcome is treated as a null, or zero, outcome for that respective system.

As in TDRL, the prediction errors update representations of the appetitive (Positive system) and aversive (Negative system) values VP (St) (Equation 5) and

VN (St) (Equation 6), respectively.

VP (St)← VP (St)+ (αP • δPt ) (5)

VN (St)← VN (St)+ (αN • δNt ) (6)

The estimated appetitive (positive system) and aversive (negative system) values VP (St) (Equation 5) and V
N (St) (Equation 6) can then (at any time) be integrated

to provide an overall estimate of expected value (Equation 7):

V (St)← VP (St) − VN (St) (7)

This approach maintains the optimal learning algorithm from TDRL reward processing and it is expected that the results of experiments that only vary reward

will result in the same predictions when comparing traditional TDRL (Box 1) and this instantiation of VPRL (Figure 2). However, in experiments where punishment

learning is investigated, the two approaches will have very different predictions about the calculated reward and punishment learning signals (Figure 2).

Behavioral addictions, substance use
disorder, and impulse control
disorder

Addiction has long been conceptualized as a spectrum

disorder that includes substance based as well as behavioral

addictions (41–43). The repetitive engagement in behaviors

detrimental to an individual is required for the diagnosis

of all addictions—including substance use disorders and

behavioral addiction. Also, a loss of control or inhibition

often defines the pathology of addictive disorders (1, 41–44).

Work investigating the dopaminergic system and associated

RL-models, in addiction, are largely focused on the behavioral

reinforcing aspects of addictive stimuli, but what is largely lost

in these depictions is the diminished influence of the punishing

or aversive stimuli that are also experienced by the patient

yet appear to have little influence on behavioral change. The

following section will consider processes common to behavioral

addictions and substance use disorders as part of an extended

addiction spectrum and details relevant to specific disorders

highlighted by name.

The initial stages of any addiction are suggestive of

both classical and operant conditioning (45, 46). On first

use, addictive substances or behaviors elicit physiological and

psychological unconditioned responses, which increase the

likelihood of repeating the actions preceding the drug-taking

or behaviorally rewarding experience (47). TDRL prescribes an

algorithmic approach for associating the unconditioned ‘reward’

response with the conditioning stimuli or operant behavior

(5, 6). Physiologically, these events are strongly associated

with a sudden increase in extracellular dopamine levels and is

likely associated with the psychological experience “better than

expected” (11). In the TDRL framework, this reward prediction

error and would serve as a teaching signal for updating the

“value” of the preceding states and actions (5, 6). Importantly,

the actual “value” of the psychological experience need not

correspond to the “value” being updated in the dopaminergic-

TDRL hypothesis (7, 8). Substances of abuse can directly and

indirectly cause an increase in extracellular dopamine levels

(32, 47, 48), which the brain may interpret as a signal to

increase the estimated value of an on-drug state (32, 33). The

hypothesis is that brain receives a signal that neurochemically

reinforces the drug-taking state — akin to this state being of
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FIGURE 2

Classic TDRL algorithms do not distinguish rewards and punishments. As in Figure 1, each row depicts the quantity of a “prediction error”

predicted throughout various stages of learning according to TDRL (column 1, Box 1, Equations 1–2) or valence-partitioned reinforcement

learning (VPRL, columns 2 and 3, Box 2, Equations 3–7). Row 1: “Naïve”; Row 2: as learning progresses from “Early” to “Late” stages, “Learning”;

Row 3: after the agent has learned the association of the bell and the outcomes, “Learned”; and Row 4: after the association has been learned,

but the anticipated outcome are omitted, “Omission.” In a paradigm that contains both a reward and a punishment in each trial, classic-TDRL

generates a positive RPE for surprising gains and a negative RPE for surprising losses (TD - “Naïve,” row 1). As these outcomes are learned, the

TD-RPE backs up in time as specified in Eqs, 1, 2 and shown (TD - “Learning,” row 2; for rewards only in Figure 1). However, once these

associations are learned (“Learned”, row 3) the positive and negative values of the eventual outcome cancel each other out and the associated

TD-RPEs. This behavior of the TDRL algorithm is symptomatic of a system that does not independently distinguish rewards and punishments. As

one hypothetical remedy, we propose VPRL (columns 2 and 3, Box 2, Equations 3–7). The prediction errors generated by the Positive System

(VP-Positive) and Negative System (VP-Negative) behave in much the same way as the traditional TDRL algorithms, but by having these systems

partitioned they are able to independently provide learning signals that can update both the positive and negative aspects of episodes and

actions (if applied in Q-learning contexts). This would allow a system to use both error signals (predictive positive and predictive negative) to

motivate behavior and evaluate the associated cost and benefits without unintentionally superimposing the valence of coincident events.

“higher value” than expected. This neurochemical reinforcement

is not necessary associated with a positive subjective experience;

in fact, individuals suffering from addiction may continue an

addictive drug or behavior in an attempt to return to prior

state (49–51). Notably, these repetitive behaviors in the face of

negative feedback would appear as a relative underweighting

of aversive or punishing feedback in addition to the relative

overweighting of (no longer) rewarding feedback (49–51).

From this viewpoint, the pathology of addiction can be

conceptualized as a disorder of learning caused by an over-

valuation of behaviors associated with artificial increases in

dopamine, but also an underweighting of consequent negative

experiences. Dopamine increases are caused by pathological

levels of a potentially addictive substance or behavior (51, 52).

Such a connection between temporal difference reinforcement

learning (TDRL) and addiction was put forth by Redish, who

posited that aberrant RPE signaling in individuals suffering

from substance use disorder (SUD) may lead to persistent use

of addictive substances (32). As Redish noted, many drugs

with addictive potential increase dopamine levels directly, like

cocaine, or indirectly, like nicotine and heroin, and SUDs

may be understood in the context of aberrant dopaminergic

TDRL signaling (32). Indeed, individuals with SUDs have

been observed to overvalue immediate, drug-associated stimuli

and undervalue future alternative rewards (53, 54). This

discounting of future outcomes is more severe in patients

with SUDs including opioid-dependence and cocaine use

disorder in studies assessing delay-discounting by survey tools

and monetarily incentivized decision-making tasks (55, 56).

Temporal discounting behavior has been shown to predict

short-term relapse for individuals completing an inpatient

detoxification program for cocaine, opioid, marijuana, and
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amphetamine addictions (57). Studies of methamphetamine use

disorder also find these individuals to have altered learning with

associated hyperactivation of striatal regions while performing

reinforcement learning tasks in patients who have relapsed vs.

those who have maintained abstinence (58, 59).

The conceptual link between reinforcement learning

and addiction has been expanded to include the entire

addiction spectrum, including behavioral addictions (BAs)

(33). Individuals with BAs share patterns in cognition and

decision-making with patients suffering from SUDs (60, 61).

In light of these findings, gambling disorder was recategorized

in the DSM-5 as the first non-substance, or behavioral,

addiction (62). It is hypothesized that the same underlying

dopaminergic pathways critical to reinforcement learning are

altered in all forms of addictions (33). If this is true, then

core characteristics in patients suffering along the spectrum

of addictions (including substance use disorders) may be

revealed by studying decision-making in specific behavioral

addictions (1, 63). There is, however, a major difference between

substance induced addictions and behavioral addictions —

addictive substances can be neurotoxic at the levels typically

consumed by individuals with substance use disorders, whereas

behavioral addictions are not known to have similar neurotoxic

or neurodegenerative profiles (1, 61, 63–65). Thus, the study

of BAs may allow for a separation of the underlying neural

mechanisms shared by all addictions without the confounding

factor of the neurotoxicity-induced changes that are caused by

specific addictive substances (i.e., cocaine vs. alcohol).

A special class of BAs, Impulse Control Disorder (ICD),

has furthered the investigation of addiction and the role

reinforcement learning mechanisms may play. Impulse control

disorders (ICDs) are identified as rapid changes in risky

behavior that arise secondary to dopaminergic therapies for the

treatment of Parkinson’s disease (PD), particularly dopamine

receptor agonists (66). The current gold standard for assessing

ICD history is the Questionnaire for Impulsive-Compulsive

Disorders in Parkinson’s Disease-Rating Scale (QUIP-RS), which

is a self-report survey instrument (67, 68). In the QUIP-RS,

ICD is defined as meeting a threshold of excessive behavior

in one or a combination of the following categories: gambling,

sex, buying, and eating (67, 68). These ICDs can be present as

specific symptoms (for example, gambling or eating disorders)

or as a combined group of ICD symptoms; the unifying factor

is that the symptoms present as a rapid change in risky behavior

elicited by dopaminergic action (67, 68). In a study of over 3,000

patients with PD, dopamine agonist therapy increased the odds

of developing ICD by 2–3.5 times (69). Within the subgroup of

patients with any ICD, over a quarter had two ormore ICDs (69).

As ICDs occur naturally through the course of dopaminergic

therapy for patients with Parkinson’s disease, patients with

ICD have been studied as a way to investigate the relationship

between dopamine and behavioral addiction (66, 70, 71).

Elevated impulsivity has been shown to be a hallmark both

in patients with pathological gambling, an ICD, and patients

with SUDs (72). [11C] raclopride positron emission tomography

(PET) measurements during a gambling task have revealed

increases in ventral striatal dopamine release in patients with

Parkinson’s disease with ICD compared to patients with

Parkinson’s disease without ICD (73).

A gap in the human addiction literature is a rigorous

characterization of the individual neurochemical differences

present in those who suffer from addiction and how those

differences map to behavior. Future work using ICD as a

model for behavioral addiction may be a promising avenue to

uncover dopaminergic and behavioral signals with the potential

to elucidate differences in reward and punishment processing

and provide insight for therapeutic development. Dopamine

increase during addictive drug use has been suggested to

heighten learning following positive reinforcement, thus driving

the transition between drug use and addiction and SUD (51,

71, 74). Similarly, it is possible that dopaminergic therapies

used to treat PD may amplify dopaminergic signals involved

in positive reinforcement, pushing those with an underlying

predisposition for ICD into a symptomatic state. This may

be particularly true for dopamine receptor agonists, where

research suggests that these agents alter dopaminergic action

specifically in the ventral and dorsal striatum (75). Directly

investigating real-time dopamine signaling in response to

reward and punishment in humans with and without a history

of ICD is possible (11, 13, 76–78), and should provide critical

insight into the neurochemical mechanisms underlying ICD and

other addictive disorders.

Recent work suggests that punishment learning ought to

also be more closely investigated in behavioral addiction and

substance use disorder (79–82). In one study, pramipexole—

a dopamine receptor agonist known to cause ICD—was given

to individuals with SUD and found to increase learning from

punishment (80). When patients with PD, with and without

ICD, were presented with a probabilistic learning task including

rewards and punishments, ICD patients on dopamine receptor

agonists demonstrated a relatively lower learning rate to negative

reward prediction errors (83, 84). Individuals with opioid use

disorder completed the same task, but the researchers concluded

that individual variability in learning to both rewards and

punishments did not allow for detection of differences across

individuals with and without SUD (84, 85). A separate study

investigating heroin dependency found that individuals with

a heroin dependency learned to successfully acquire rewards

with equal accuracy as a control group, but the control

group outperformed the group with heroin dependency when

challenged to avoid punishments (86).

Further research on punishment learning in addiction

may expand treatment options for addictive disorders, even

employing medications already on the market for alternative

uses (87). For example, the antipsychotic sulpiride, a D2 receptor

antagonist, has already demonstrated differential action on
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reversal learning to rewards and punishments in gambling

disorder vs. a control group (87). These results suggest that

further research targeting investigation of punishment may

reveal translational potential within differences in decision-

making to punishing outcomes in ICD and across the addiction

spectrum (81, 82).

Schizophrenia

Schizophrenia is a psychiatric disorder diagnosed based

on a spectrum of positive and negative symptoms (1, 88,

89) (Supplementary Table 1). Positive symptoms are often

conceptualized as the outwards presentation of the disorder,

notably hallucinations, delusions, and disordered speech (1).

Negative symptoms include the inwards presentation of

the disorder, which may consist of diminished emotional

expression, asociality, anhedonia, avolition, and alogia (1). The

dopamine hypothesis of schizophrenia suggests that dopamine

dysregulation explains the characteristic signs and symptoms

of the disorder (37, 89, 90). Recent animal and neurochemical

imaging research — including positron emission topography

(PET) and single-photon emission computed topography

(SPECT) — refined the dopamine hypothesis to specifically

include elevated presynaptic dopamine in the striatum as

a key factor underlying schizophrenia (91). This hypothesis

predicts that the divergent symptomology experienced in

patients with schizophrenia (Sz) may result from altered

dopaminergic receptor activity affecting distinct brain regions.

Evidence from additional PET and SPECT imaging experiments

shows that positive symptoms result from hyperdopaminergic

activity of D2/3 receptors in the striatum (34–36). Negative

symptoms and cognitive impairments may be a result of hypo-

frontality, or decreased D1 receptor density in the prefrontal

cortex (89, 91, 92). Alternatively, schizophrenia may be caused

by increased spontaneous dopamine release punctuated by

relatively decreased phasic responses to reinforcing stimuli (37).

Based on this evidence, current research aims to determine

how cognitive and behavioral processes regulated by striatal

dopamine and dopaminergic projections to cortical regions are

altered in Sz.

Cognitive impairments may be the sentinel sign of

Sz—often appearing prior to positive symptoms classically

associated with the disorder (93). Set-shifting in particular is a

potential cognitive impairment in Sz with applicability to the

reinforcement learning field (94–96). Set-shifting tasks require

participants to ‘shift’ their attention across different goals based

on feedback; for example, the Wisconsin Card Sorting Test

(WSCT) requires participants to sort cards based on rules

that change throughout the test (96–98). It is acknowledged

that set-shifting may measure a variety of cognitive skills,

including working memory (96). Working memory is an

important intermediate for RL because it is essential for

integrating relevant information during goal-directed behavior

(99, 100). Anatomically, working memory is modulated by

dopamine in the prefrontal cortex and striatum. PET imaging

and behavioral studies show that dopamine levels and working

memory are related in a U-shaped fashion, with both excess

and insufficient levels of dopamine in the prefrontal cortex and

striatum impairing working memory (101–105). In Sz, these

alterations to dopamine function impair RL processes leading

to inaccurate value calculation and non-optimal weighing of

potential outcomes (106). Therefore, patients with Sz who

possess more intact working memory make more optimal

decisions, whereas those with alterations to their working

memory make less optimal decisions (106).

In addition to weighing potential outcomes, working

memory is associated with alterations in delay discounting

of rewards in Sz (101). Delay discounting is the tendency

to discount future rewards as a function of time (i.e. the

subjective value of a reward declines as the time to the reward

increases) (101, 107). Patients with Sz have been shown to

have greater delay discounting of rewards, meaning they prefer

smaller immediate rewards rather than larger later rewards

(101). While other cognitive processes have been hypothesized,

it is believed that impaired working memory contributes to

greater delay discounting (101, 102, 108). These findings suggest

that greater delay discounting may add noise to value estimation

functions resulting in altered reward value calculations in Sz

(108). Thus, patients with Sz who exhibit impaired working

memory, demonstrate greater delay discounting, which results

in abnormal reward learning (108).

A hypothesis of shared striatal circuity that modulates

both reinforcement learning (RL) and the dopaminergic

dysfunction in Sz has led research into the relationship

between schizophrenia and altered adaptive decision-making

behavior. Findings based on PET and SPECT research, human

neuroimaging studies, and computational models suggest that

RPE signaling in the striatum is impaired in Sz compared to

controls (91, 106, 109–111). Differences in RL are specifically

evident in tasks where patients with Sz are required to

utilize positive feedback to optimize rewarding outcomes,

resulting in abnormal RPE signaling and altered activity in

the ventral striatum (106, 109–111). This abnormal RPE

signaling and altered striatal activation is thought to present

as behavioral differences in reward and punishment learning

in Sz. Reward learning in Sz differs based on the patient’s

current experience of positive or negative symptoms. When

positive symptoms are experienced, patients with Sz exhibited

alterations in reward learning specifically as a rigidness to

maintain certain cue-reward associations, even when it was

evident that this association was no longer rewarding (106). This

association between reward learning and positive symptoms

is exemplified during a probabilistic reward and punishment

task, in which patients with Sz performed similar to patients

with bipolar disorder with psychotic features, both disorders
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sharing psychosis as a potential symptom (109). Recent work

has attempted to model choice proportions and reaction-time

simultaneously using a reinforcement learning drift diffusion

model (RLDDM) (112). A RLDDM was able to mathematically

explain both choice proportions and reaction time performance

during reward learning for those with Sz, and a trend for

significant group differences in learning rate was found when

comparing those diagnosed with Sz to healthy controls (112).

Patients with Sz who display negative symptoms show

alterations in reward learning that lead to a tendency to fail

to appropriately estimate and use future rewards to guide

decision-making behavior (110, 111). This means patients

experiencing negative symptoms tend to struggle to rapidly learn

relative reward value and they tend to favor the immediate

preceding reward choice, even if that option is less likely to be

rewarding in the future (110, 111). Therefore, patients with Sz

experiencing negative symptoms tend to select the option with

the greatest immediate reward even if longer term rewards will

be greater (110, 111). The alteration in reward learning to select

and stay with immediate rewarding outcomes is significantly

correlated with avolition, defined as the lack of motivation or

ability to initiate or persist in goal-directed behaviors (110).

Using a RL framework to model these differential associations

and alterations in reward learning may provide additional

understanding of the mechanisms underlying both positive and

negative symptoms in Sz.

In addition to reward learning, patients with Sz show

differences in punishment learning, though results in the

literature are mixed. For example, patients with Sz have

been shown to maintain sensitivity to rewarding stimuli but

undervalue potential losses (108). Another study reported

no differences in punishment learning on a probabilistic

punishment task between patients with Sz and control

individuals (109). However, other work found a reduction in

the use of punishments to guide future choice behavior in

patients with Sz (98, 113, 114). These conflicting results may

be clarified by an approach using RL that explicitly accounts

for the valence differential of both punishment learning and

reward learning. A potential approach that explicitly accounts

for a punishment learning system that is distinct from the

reward learning system would allow one to experimentally

and computationally control different aspects of reward and

punishment to determine whether one or the other or both are

altered in patients with complex presentations of positive and

negative systems (18).

Schizophrenia is a severe psychiatric disorder characterized

by alterations in dopaminergic activity eventuating in positive,

negative, and cognitive symptoms (115). Alterations in

dopamine receptor activity are known to be critical for

differences in reinforcement learning behavior in Sz. Changes

in RL in Sz appear to be contingent on one’s current experience

with positive or negative symptoms, which result in differences

in working memory, delay discounting, and value calculation

(101, 102, 106, 108). These neural and behavioral changes

are thought to underlie aberrant decision-making in Sz

(101, 102, 106, 108, 115). Using novel computational RL models

that explicitly express the role of various factors could provide

clarification of conflicting results and further the understanding

of the divergent symptomology experienced by patients with Sz.

Depression

Major depressive disorder is a leading cause of global

disability, affecting over 300 million people worldwide (116).

Despite this prevalence ∼50% of individuals with MDD do not

fully recover using traditional interventions, signifying the need

for a better understanding of the neural mechanisms underlying

depressive behaviors (117). Though depressed mood is standard

forMDDdiagnosis, symptoms thatmeet theDSM-5 criteria vary

and may include differences in cognitive function and decision-

making (118–120). Emerging evidence suggests these differences

may arise from altered reward and punishment learning,

characterizing depression as a reinforcement learning disorder

(38–40). These behavioral differences are shown to correlate

with altered brain activity in a myriad of regions responsive to

rewarding and punishing feedback (for example, the prefrontal

cortex, nucleus accumbens, amygdala, habenula, anterior insula,

or orbitofrontal cortex) (121–125). Reinforcement learning

models provide objective characterizations of dynamic brain

activity and behavior that are lacking in clinical assessments and

may lead to a better understanding of how various brain regions

and their interactions are functionally and structurally altered

in depression (126). However, the ability of these models to

accurately represent the neural processes underlying reward and

punishment learning will determine their utility in advancing

our understanding and treatment of depression.

Temporal difference reinforcement learning models (5, 6)

of human choice behavior are often used to study psychiatric

populations including patients with depression. These standard

algorithms are grounded in the RPE hypothesis that states

that dopaminergic neurons encode the difference between

an expected and experienced outcome. The role of reward

has been well studied in the context of TDRL models of

dopaminergic activity (7, 8, 17). TDRL models are frequently

paired with decision-making tasks and functional magnetic

resonance imaging (fMRI) to examine choice behavior and

associated changes in neural response as humans adaptively

learn from rewards and punishments (22, 127–129). This

methodology is foundational to our present understanding of

reward learning differences specific to depression, whereby

many studies support diminished RPE signaling in response to

rewarding outcomes, such as monetary rewards, in unmedicated

patients with MDD (121). This diminished neural activity

is shown within cortico-striatal circuits including the ventral

tegmental area (VTA), nucleus accumbens, ventral striatum,
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amygdala, hippocampus, and prefrontal cortex (121, 122,

130, 131). Diminished functional connectivity during reward

learning is further observed in unmedicated patients with MDD

between regions such as the VTA and striatum and between the

nucleus accumbens and midcingulate cortex (132). Collectively,

studies assessing these reward-learning circuits demonstrate that

strength of connectivity correlates negatively with both number

of depressive episodes and depression severity (130, 132–135). It

is hypothesized that this weakened RPE signaling in depression

stems from dopamine signaling deficits downstream of the VTA,

which is posited to generate RPE signals (136, 137). For example,

one study found intact striatal RPE signaling in patients with

MDD during a non-learning task (138). Other studies support

diminished RPE signaling in this same brain region in patients

with depression during reward learning (99, 130, 131). Together,

these findings suggest that reward learning impairments in

depression may stem from deficits in RPE signaling rather than

a fundamental failure of RPE computation.

Multiple treatment modalities are suggested to improve

reward learning impairments experienced by patients with

MDD, including antidepressant medications, psychotherapies,

and brain stimulation techniques (100, 113, 139). The

mechanisms of action for these treatments are diverse, but

evidence points (overall) to a role that allows an increase in

the representation of RPEs that are generally hypothesized

to be encoded by phasic dopamine. Antidepressants

are pharmacological agents that modulate serotonin,

norepinephrine, or dopamine concentrations in the brain

(140). One study found that patients with MDD receiving

long-term citalopram, a selective serotonin reuptake inhibitor

(SSRI), show increased RPE signaling in the VTA (141).

In contrast, diminished VTA RPE signaling was observed

among unmedicated patients with MDD and in controls after

receiving a 20mg dosage of citalopram for only 3 days (141).

Electrophysiological evidence suggests that SSRIs initially

inhibit spontaneously active VTA dopamine neurons through

5-HT 2B/2C receptor pathways (142, 143). However, after long-

term administration, these receptors become hyposensitive

while DA D2/D3 receptors have been shown to increase

(142, 143). The resultant rise in spontaneously active VTA

dopamine neurons is hypothesized to drive the enhanced RPE

signaling shown in antidepressant-responsive patients (141).

The increased responsiveness of DA D2 and D3 receptors are

similarly seen in the other types of antidepressants to increase

mesolimbic dopaminergic function over time (144). Numerous

other studies indicate normalized neural response to RPEs in

regions such as the ventral striatum, ventrolateral prefrontal

cortex, and orbitofrontal cortex after antidepressant treatment,

suggesting the long-term action of these medications may be to

modulate RPE signaling and reward learning (145, 146). Further,

these findings are consistent with a tight interaction between

opponent serotonin and dopamine neural systems generally,

but also in the underlying pathology of MDD (15, 147).

Depression is also treated with cognitive behavioral therapy

(CBT), an efficacious psychotherapy theorized to reduce

symptoms in part through changing learning (114). A recent

study found that after 12 weeks of CBT, normalization of reward

learning rate occurred in patients with depression alongside

improved anhedonia and negative affect (148). Another fMRI

study demonstrates that increased neural activity in the

ventral striatum, which is known to contain dense regions of

dopaminergic terminals, correlates with increased RPE signaling

and response to CBT (149). In addition, transcranial magnetic

stimulation (TMS) is a common noninvasive brain stimulation

treatment that delivers magnetic pulses to regulate the

activity of cortical and subcortical structures (150). One study

reported increased functional connectivity between the VTA,

striatum, and prefrontal cortex among patients with depression

responsive to TMS compared with those unresponsive to the

procedure (151). Overall, these studies support improved reward

learning among patients with depression responsive to various

treatment modalities. These behavioral results suggest that

prolonged treatments induce a series of adaptive signaling

changes downstream of respective therapeutic targets which, in

effect, improves reward learning and neural plasticity. It is not

clear what mechanism allows the observed increases in reward

learning rates following these brain stimulation treatments;

however, a positive change in the ‘reward learning rate’

parameter in TDRL models is consistent with the hypothesis

that RPEs (hypothesized to be encoded by phasic changes in

dopamine) gain influence in effecting behavioral change after

these treatments.

Certain brain regions are posited to integrate reward and

punishment information encoded by separate, opponent,

neural systems relevant to depression. This opponent systems

theory hypothesizes that neural systems that track negative

reward prediction errors may include serotoninergic or a

subset of dopaminergic neurons distinct from those that

encode RPEs (16, 17, 23). Prediction-error-driven learning

is also associated with subjective feelings, a critical aspect

of depression as a disease of suffering. ‘Better or worse than

expected’ events drive learning and changes in behavior but

also are hypothesized to drive dopaminergic signals and

thereby affect momentary mood in response to rewarding

outcomes (152, 153). One study implemented a “happiness”

model using trial-level choice parameters including the

value of certain rewards, the expected value of a chosen

gamble, and associated RPEs to predict subjective ratings

of happiness (138). Results showed that baseline mood

parameters correlate with depressive symptoms, though

there was unexpectedly no difference between patients

with MDD and controls when assessing the expression

of dopaminergic RPEs and their impact on self-reported

happiness (138).

There has also been investigation into the structural

abnormalities associated with reward and punishment learning
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systems in depression. These structural foundations for which

functional (reward and punishment) prediction error signals are

carried are an important aspect to consider as decreases in the

integrity of physical connections within reward and punishment

valuation networks may underlie loss of reward and punishment

efficacy in depression (154). At this time, results appear

inconsistent across studies, with disagreement in precisely where

the changes exist with respect to these pathways. The major

reward system pathways include the cingulum bundle (CB;

ventromedial frontal cortex to posterior parietal and temporal

cortices), uncinate fasciculus (UF; ventromedial frontal cortex to

amygdala), and superolateral medial forebrain bundle (slMFB;

anterior limb of internal capsule to frontal brain regions) (155–

157). One of the main indices derived using diffusion tensor

imaging (DTI) is fractional anisotropy (FA), which is a measure

of water movement. FA can provide information about the

structural integrity and axonal properties within white matter

tracts, as healthier, more myelinated or organized tracts will

restrict movement to one direction along the axons. Several

DTI studies have shown decreased FA, indicating diminished

white matter integrity, in various areas within the CB of patients

with MDD (158–161). However, other DTI studies have found

no changes in FA of the CB (162–164). These inconsistencies

may be due to several factors, such as the effects of medication

and disease history that differ between studies (155). The

microstructure of the CB may also be indicative of vulnerability

to depression, as suggested by family history studies, making it a

target for study in depression identification and diagnosis (165,

166). Within the UF, most studies agree that FA is decreased

in adult patients with MDD (164, 167, 168). However, results

are less consistent in adolescents, with some studies reporting

increases in FA while others report decreases, indicating that age

and development may be a determining factor (162, 163, 169).

Microstructural alterations have also been shown within the

slMFB in patients with acute and treatment-resistant depression,

making it a target for therapies such as deep brain stimulation

to alleviate depression symptoms (170–175). However, unlike

CB abnormalities, changes in the UF and slMFB have yet to

provide evidence of a biomarker for depression in those with

familial history. Interestingly, several studies show that in these

pathways of the reward circuit, decreased FA is associated with

higher overall melancholic symptoms and depression severity as

determined by depression rating scales (155, 166, 170).

Current TDRL research investigating depression also

suggests altered punishment learning within certain brain

regions (for example, the habenula, insula, or medial prefrontal

cortex) (123, 124). The lack of uniform incorporation of

punishment learning in dopamine-TDRL theory may have

produced conflicting results in the literature regarding

differences in punishment learning reported for patients with

and without depression (125, 176, 177). For example, fMRI

studies show increased “negative-reward-prediction-error”-

associated neural responses to monetary loss in the habenula,

anterior insula, and lateral orbitofrontal cortex in unmedicated

patients with MDD (123, 134). Further, negative prediction

error signals in the habenula are shown to correlate positively

with number of depressive episodes, suggesting punishment-

related habenula activation increases with disease burden

(130, 178). Alternatively, unmedicated patients with MDD have

also shown decreased negative prediction error response to

monetary loss in the insula, habenula, and prefrontal cortex

(177). Other studies show no group differences in habenula

activation or connectivity strength between the VTA and

habenula for unmedicated patients with MDD and healthy

controls during gain or loss conditions (130). Importantly,

these studies use similar monetarily-incentivized reinforcement

learning tasks yet report different directionality of negative-

reward-prediction-error-responsive neural activity. There are

also reports of overlapping positive reward prediction error and

negative reward prediction error signaling (179); for example,

the anterior cingulate cortex shows increased reward prediction

error and negative reward prediction error activity among

individuals genetically at-risk for depression, and the insula

and VTA show increased reward prediction error and negative

reward prediction error activity among unmedicated patients

with MDD (180).

There has been much less focus linking punishment learning

and white matter differences associated with depression. One

study did report a significant decrease in mean FA within

the VTA-lOFC (ventral tegmental area — lateral orbitofrontal

cortex) connection tract of the MFB associated with punishment

processing in depressed individuals compared to non-depressed

controls (170). However, these results were significant only

between controls and patients suffering from melancholic

MDD and did not remain significant between controls and

non-melancholic MDD. As such, white matter structural

abnormalities may be a key feature in the reward and

punishment dysfunction associated with depression symptoms

and severity.

Overall, reward learning has been widely investigated

in depression, but future research may use computational

frameworks to explicitly parse reward and punishment learning

processes to identify and delineate hypothesized reward and

punishment learning neural circuits. In turn, this may help

pinpoint reward and punishment system pathways in the

human brain and better capture how humans—and especially

patients with MDD—may react differently from complicated

interactions of appetitive and aversive outcomes in natural

experience. While computational formulations that better

account for these systems will help, it is important to note

that factors such as clinical heterogeneity, different subtypes

of depression, and variability in study methodology likely also

contribute to discrepancies in the current literature. Still, more

detailed computational characterizations of patient behavior,

charateristics, and patient populations may provide an approach

to better stratify patient subtypes for more effective targeting
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of individualized therapeutic strategies. The precision gained

through a computational lens may provide hypotheses about

how distinct learning processes and associated circuits are

altered in depression. These data, paired with white matter

abnormalities in individual patients with depression, including

MDD, may provide important behavioral, functional, and

structural measures to advance our current understanding and

treatment of depression.

Post-traumatic stress disorder

A diagnosis of post-traumatic stress disorder (PTSD) by

DSM-5 criteria must involve exposure to actual or threatened

death, serious injury, or sexual violence; after such an event,

the following must be present: (1) the presence of intrusion

symptoms associated with the traumatic event; (2) persistent

avoidance of stimuli associated with the traumatic event;

(3) negative alterations in cognition or mood beginning or

worsening after event; (4) marked alteration in arousal and

reactivity associated with the traumatic event; and (5) symptoms

lasting longer than a month (1, 181). Though the exact

mechanism is not yet understood, PTSD has been described

as a reinforcement learning deficit (182, 183). Patients who

suffer from PTSD have come to associate punishment with

environments which are normally neutral or even typically

rewarding (1, 181). Psychologically, patients act as though they

predict and relive traumatic experiences in relatively innocuous

settings (1, 181). Researchers have taken first steps toward

understanding reinforcement learning mechanisms underlying

PTSD through work developing our understanding of safety

cues (182, 183).

It is known that PTSD patients are unable to inhibit

fear response in the presence of environmental cues that

indicate that an environment associated with punishment

will not result in punishment (184). For example, a combat

veteran may experience uncontrollable fear in response to

a previously learned aversive stimuli (e.g., helicopter sound)

when surrounded by many other cues that signal safety (e.g.,

company of a loved one in a non-threatening environment)

(184). Inhibition of fear potentiated startle phenomena in the

presence of a safety cue was first observed in a control human

cohort in 2005 (185). In a later study, inhibition of fear-

potentiated startle to a safety cue was associated with PTSD

symptom severity (186).

In humans the safety signal phenotype of PTSD is seen

in the startle response, where startle is attenuated by the

presence of the safety signal. Startle responses of PTSD

patients are not attenuated by the presence of a safety signal

compared to controls (187). Administration of L-Dopa during

safety learning results in safety memories which are context

independent (188). Enhanced dopaminergic activity following

omission of aversive stimuli as seen in dopamine rebound is one

endogenous mechanism which could mimic this experimental

observation. Further research is necessary to determine if

physiologic dopamine rebound is related to safety learning in

PTSD. Modeling dopamine rebound and safety learning in

a reinforcement learning framework offers a computational

approach to address the relationship between PTSD and

impaired safety learning. Future workmay utilize computational

reinforcement learning algorithms to express explicit hypotheses

about the way reward and punishment systems interact such that

the mechanisms underlying PTSDmay be disentangled and new

therapeutics developed.

Conclusions and future directions

Temporal difference reinforcement learning theory and

the calculation of reward prediction errors therein has been

instrumental in providing insight into the information that

dopamine neurons encode. The idea that dopamine neurons

encode “reward prediction errors” that are important for

updating expectations and guiding choice behavior has been a

critical one for understanding motivated mammalian behavior

and has led computational psychiatric investigations into a

number of psychiatric conditions where subjective suffering and

aberrant decision-making are hallmark features.

The gains that have been made using TDRL, and

computational reinforcement learning theory more generally, to

guide computational psychiatric investigations are undeniable.

Future computational psychiatric investigations may utilize

VPRL as it is described here or some other explicit approach to

hypothesize about how the brain may learn to adapt in the face

of punishing outcomes. The best approach is to be determined,

but we hope to have made the case that some way of accounting

for this fundamental aspect of human behavior and psychiatric

illness ought be accounted for and investigated further.

We hope to provide those interested in computational

psychiatry a clear picture of the importance of extending

the widely successfully computational reinforcement learning

framework to include punishment learning. The mathematical

explication of reward learning mechanisms has allowed rigorous

testing of hypothesized processes including the role dopamine

neuron activity and dopamine release in the brain may play in

human cognition generally, but specifically how these processes

may be altered in psychiatric illness (81). We hope to encourage

investigators in the area to consider the potential impact equally

explicit mathematical representations of punishment learning

may have, especially since this is a major gap in the current state

of mental health research (189).
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