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Achieving abstinence from drugs is a long journey and can be particularly

challenging in the case of methamphetamine, which has a higher relapse rate

than other drugs. Therefore, real-time monitoring of patients’ physiological

conditions before and when cravings arise to reduce the chance of

relapse might help to improve clinical outcomes. Conventional treatments,

such as behavior therapy and peer support, often cannot provide timely

intervention, reducing the efficiency of these therapies. To more effectively treat

methamphetamine addiction in real-time, we propose an intelligent closed-

loop transcranial magnetic stimulation (TMS) neuromodulation system based on

multimodal electroencephalogram–functional near-infrared spectroscopy (EEG-

fNIRS) measurements. This review summarizes the essential modules required

for a wearable system to treat addiction efficiently. First, the advantages of

neuroimaging over conventional techniques such as analysis of sweat, saliva,

or urine for addiction detection are discussed. The knowledge to implement

wearable, compact, and user-friendly closed-loop systems with EEG and

fNIRS are reviewed. The features of EEG and fNIRS signals in patients with

methamphetamine use disorder are summarized. EEG biomarkers are categorized

into frequency and time domain and topography-related parameters, whereas

for fNIRS, hemoglobin concentration variation and functional connectivity of

cortices are described. Following this, the applications of two commonly

used neuromodulation technologies, transcranial direct current stimulation and

TMS, in patients with methamphetamine use disorder are introduced. The
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challenges of implementing intelligent closed-loop TMS modulation based on

multimodal EEG-fNIRS are summarized, followed by a discussion of potential

research directions and the promising future of this approach, including potential

applications to other substance use disorders.

KEYWORDS

closed-loop neuromodulation, wearable devices, methamphetamine addiction, EEG-
fNIRS, multimodal, neuroimaging biomarkers, TMS technique

1. Introduction

Addiction is defined as a strong need to use a particular
substance or engage in a specific behavior, often in spite of harmful
consequences. Addiction not only causes personal health problems
but can have severe social impacts (1, 2). The most common
addictions involve alcohol, drugs, gambling, and smoking; and
during the COVID-19 pandemic, the incidence of internet
addiction increased owing in part to the limited availability of
alternative activities allowed during quarantine (3). However, drug
addiction or substance use disorder is perhaps the most severe
example, and laws have been established internationally to ban
the use, sale, transport, and promotion of specific drugs, including
heroin, cocaine, methamphetamine (METH), amphetamine, and
cannabis. When an individual first experiences the rewarding
effects of drugs, the habit of drug-seeking develops (4). Thus,
more of the substance is needed to maintain satisfaction, and the
individual experiences an impulse to use the drug even though
doing so is harmful to health (5). Followed by increased drug
cravings and further resulting in executive dysfunction. These
disrupted reward-related processes in the brain cause physical and
mental problems. Physically, the immune, digestion, respiration,
cardiovascular, and, in particular, neurological systems are often
damaged by addiction to drugs (6, 7). Mental health problems
include depression, anxiety, psychosis, violence, suicide, etc. (8).
Addictions might be a multidimensional disorder that includes
several subtypes with different neurobiological underpinnings. This
might lead to emotional and behavioral dysregulation (9–11).
The effects of dysregulation often associated with increased risk
of suicide (9, 12). Moreover, disordered behavior resulting from
addiction creates a severe economic burden on families and society
(13). Long-term use and dependence typically results in a variety
of maladaptive behaviors and negative outcomes, and the current
efficacy of existing interventions is limited.

Methamphetamine (METH) has been among the most
frequently misused drugs for the past two decades in Southeast
and East Asia (14). This is largely because of the geographical
proximity to production and trafficking resources (15). To treat
and prevent misuse of METH, clinicians and researchers have
studied the mechanisms of addiction (16, 17). There are various
approaches to treatment, including detox, behavior therapy, and
peer support (18), and behavior therapy administered via a series
of cognitive behavior tasks is currently considered to be the
most effective approach to METH use disorder (17). In terms
of medical therapy, the search for effective medicines to treat
METH dependence and addiction is a hot research topic in

the pharmaceutical field (19, 20). However, no promising results
have been found. During the treatment process and the follow-
up stages after abstinence has been achieved, the most serious
challenge in treating METH addiction is relapse. Once relapse
occurs, abstinence becomes more difficult.

Conventional approaches to detect METH usage include
analysis of sweat, saliva, or urine (21–23). In addition, hair analysis
may be used (24). During abstinence, questionnaires are used
to evaluate the results of treatment or the risk of relapse (25,
26). However, detection of METH usage via these conventional
methods is too slow to prevent relapse. Moreover, interpreting the
outcomes of abstinence using questionnaires is subjective and can
be inaccurate. One mechanism to reduce rates of relapse would
be to reduce the preoccupation with and perseverance on METH
before these maladaptive thoughts lead to actions. Therefore, real-
time monitoring of patients’ physiological signals during abstinence
before or when cravings arise is an important goal (27, 28). Use of
METH and other drugs results in long-lasting brain changes, which
can manifest in changes in brain signals when later exposed to cues,
drugs, and/or stressors (17). Desires and cravings for METH also
cause unique activity patterns in the brain, which can be observed
using neuroimaging techniques (29–31). Analysis of brain signals
can thus be used to determine whether an individual is or will be
experiencing strong desire for METH. Once these biomarkers for
METH cravings have been detected, corresponding actions can be
implemented to reduce the potential for relapse.

Various neuroimaging techniques have been used to study the
influence of METH use on cognitive functions (32). Functional
magnetic resonance imaging (fMRI) is a commonly used tool to
investigate the changes caused by METH and the recovery process
of brain structures during rehabilitations (33). However, the
temporal resolution of fMRI is relatively low, and its accessibility
is limited. Other non-wearable neuroimaging techniques, such
as positron emission tomography (PET) and magnetic resonance
spectroscopy (MRS), are also not suitable for real-time monitoring.
To achieve a timely response to the onset of craving when an
individual is exposed to an environment where the desire for
METH is triggered and to increase the efficacy of treatment, real-
time monitoring techniques to record neural signal variations
continuously are needed.

Electroencephalogram (EEG) and functional near-infrared
spectroscopy (fNIRS) are promising tools for brain signal
monitoring. Biomarkers in EEG signals have been explored in
patients with METH addiction (33). Biomarkers specifically found
in fNIRS signals recorded from METH-addicted participants have
also been reported (34). Applying a multimodal EEG-fNIRS
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neuroimaging technique has many benefits, including enabling
better understanding of neural coupling mechanisms compared
with analysis of both signals recorded simultaneously. However,
few studies have investigated the use of concurrent EEG and fNIRS
signals (35). Monitoring such biomarkers not only can confirm the
effect of the drug on an individual but also can be used to quantify
METH cravings and thus inform treatment (36).

Various intervention approaches are used to help individuals
with drug addictions. The conventional treatments are
psychological counseling, family support, and legal restriction.
These interventions are often planned according to a regular
schedule with a set frequency. Family and social support often
depend on the willingness and availability of others. Legal
restrictions are often applied too late, when drug compulsive use is
already established. Achieving abstinence from drug use is a long
journey with a need for high self-motivation as well as external
influences and legal constraints. Therefore, successful abstinence
is a challenge. In contrast to the passive methods mentioned
above, neurostimulation has the potential to alter brain activity
to reduce cravings for drug use (37). Neuromodulation involves
providing electrical, magnetic, optical, or ultrasound stimulation
to the specific cerebral locations to interfere with neuron activity
(38). Various modulation approaches have been shown to help
with the management of neurological disorders such as addictions,
resulting in alleviation or improvement in the clinical symptoms of
the disorder (39).

Neuromodulations exists as both invasive and non-invasive
types. Deep brain stimulation (DBS) is the most frequently
reported invasive neuromodulation solution for drug addiction
(40). However, invasive devices can cause inflammation, limiting
the feasibility of their long-term use. Therefore, non-invasive
types are preferred owing to their wearability and accessibility.
Commonly employed non-invasive neuromodulations for METH
addiction include transcranial direct current stimulation (tDCS)
and transcranial magnetic stimulation (TMS) (41, 42). tDCS
changes the excitation states of neurons using low-dose direct
currents (43). TMS modulates neuronal activity via a local current
generated by magnetic fields of coils placed close to the scalp
(44). Compared with tDCS, TMS has been shown in one study
to achieve a longer and more stable effect against relapse in
METH addiction, likely owing to the deeper stimulation depth
and more precise targeting area (45). More important, TMS has
been approved by the US Food and Drug Administration as an
approved therapy for neurological diseases. However, at present,
most commercially available TMS devices are bulky, reducing
the accessibility of the treatment. Fortunately, applying TMS
treatment remotely can increase the impact on the outcome.
Therefore, miniaturization of TMS is an important goal. eNeura
proposed a handheld TMS device to treat migraine (46). REMED
introduced the first compact repetitive TMS (rTMS; using a
train of repetitive magnetic pulses) device to initially treat
major depressive disorder (47). However, compared with other
wearable neurosignal-monitoring devices, such as EEG and fNIRS,
portable TMS devices are not user-friendly because of their size
and weight. Moreover, the current protocols for TMS therapy
for METH addiction are based on the results of previous
studies, and the protocol assigned to a patient may not be
appropriate for that specific person. In addition, the therapy is
often carried out on a regular schedule owing to the limited

availability of the devices and device operators. To increase the
success rate of TMS therapy for drug addiction, a wearable
and compact closed-loop system to accurately provide a timely
and appropriate treatment protocol to each person according
to their needs is required (Figure 1) (48). Conventional open-
loop neuromodulation validates the effects by comparing the
related parameters before and after the interventions. No timely
adjusted neuromodulation protocols can be applied based on the
comparison results. In contrast, a closed-loop neuromodulation
system can launch a new round of treatment with the optimal
protocols for instant abnormal neurological disorders. The closed-
loop system can help to determine the time when the treatment
might can end.

To achieve effective treatment for METH addiction, three
key elements are required for an intelligent closed-loop TMS
neuromodulation system based on multimodal EEG-fNIRS
measurements: (1) an appropriate measurement protocol for
multimodal EEG-fNIRS monitoring, (2) intelligent signal-
processing strategies, and (3) customized, user-friendly, wearable
TMS devices. Section “2. Materials and methods” introduces the
materials and methods of conducting the literatures collection
for this review. Section “3. Detection and monitoring techniques
for METH addiction” of this manuscript reviews the available
techniques for physiological monitoring to detect drug use
and addiction, with a particular focus is on wearable EEG and
fNIRS neuroimaging approaches. In section “4. Biomarkers
of neuroimaging techniques,” biomarkers in EEG and fNIRS
recordings to identify METH addiction and the progression
of recovery during abstinence are discussed. In section “5.
Neuromodulation treatments for METH addiction,” the most
common neuromodulation treatments for METH, tDCS, and
TMS are introduced, and research supporting the efficacy of these
treatments is summarized. The promising future of the application
of intelligent closed-loop TMS modulation based on multimodal
EEG-fNIRS for METH addiction is summarized in section “6.
Challenges and future trends in treatment of METH addiction,”
and the challenges to be overcome to achieve an optimized
closed-loop system are discussed.

2. Materials and methods

We did not conduct a systematic review since this type of review
is less common in engineering than in the medical and public health
fields. This review aims to summarize the challenges and propose
a future trend of a wearable closed-loop neuromodulation system
for METH addiction treatment from an engineering point of view
based on the available evidence. Our review provides insights
into combing the three key elements, biomarkers, real-time signal
analysis approach and neuromodulations, of the proposed closed-
loop system. We do not aim to find a fixed answer to a specific
question or an optimal medical therapy as a standard systematic
review does. Neither needs all available evidence to support the
concept of the wearable closed-loop system. In addition, the need to
reduce the total bias and quantify (statistical analysis) the available
results is not the top priority. For building a biomedical system,
interdisciplinary knowledge is needed. Therefore, a systematic
review might not be the best approach to convey our perspectives.
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FIGURE 1

The workflow examples of (A) an open-loop neuromodulation system and (B) a closed-loop neuromodulation system for METH addiction
treatment.

Since this review contains a wide subtopic, the key words
used for searching the published journal papers are introduced
in this section. The databases “Web of Science” and “Google”
were used. For section “4.2. Biomarkers of EEG and fNIRS in
METH addiction,” key words used to search the EEG biomarkers
in METH addiction were EEG or Electroencephalography or
Electroencephalographic and Methamphetamine or Meth. The
keywords used to search fNIRS biomarkers in METH addiction
are functional near-infrared spectroscopy, fNIRS, NIRS, and
Methamphetamine or Meth. The validated papers suggest potential
EEG or fNIRS biomarkers to distinguish the subjects with METH
use disorder from healthy ones. In addition, articles that provide
biomarker information to classify the subjects of METH use
disorder receiving different treatments or at a different phase of
abstinence are included in this review article. For section “5.1.
tDCS for methamphetamine addiction,” key words applied for
searching are transcranial direct current stimulation or tDCS
and Methamphetamine or Meth. For section “5.2. TMS for
methamphetamine addiction,” keywords used to explore the related
studies are transcranial magnetic stimulation or TMS or theta
burst stimulation and Methamphetamine or Meth. Only the studies
with solid conclusions that certain tDCS or TMS protocols are
helpful to treat patients with METH use disorder are included
in this review article. No matter the validation approaches
for the outcomes of neuromodulation. The techniques include
self-rating scales, questionnaires, cognitive tasks, physiological
signals, or neuroimaging. For all the found literature, only those
that conducted the experiments on humans are reported in
this review article.

3. Detection and monitoring
techniques for METH addiction

Several approaches can be used to determine if an individual
meets the criteria for diagnosis of a dependence or addiction.

Subjectively, questionnaires are highly accessible and easily
administered to evaluate the condition of drug addiction. Also,
various methods are available to quantitatively detect physiological
parameters of patients who use illicit drugs or suffer from drug
addiction. Some methods detect drugs in biological fluids, while
others detect neurological signals. These approaches are discussed
in detail in the following sections.

3.1. Questionnaires

Various questionnaires have been developed for use before a
person becomes addicted to drugs and during abstinence to predict
the likelihood of relapse. The Inventory of Drug-Taking Situations
is a questionnaire to judge the risk of drug addiction based on
everyday situations. Abuse of drugs can be screened for using
the assessment tools suggested by the National Institute on Drug
Abuse (49). Among the suggested questionnaires, the most popular
choice to examine an individual’s involvement with a variety of
drugs is the Drug Use Questionnaire or Drug Abuse Screening
Test (50, 51). To evaluate drug addiction over time, the Desire for
Drug Questionnaire can be used to rate instances of cravings for
drugs, whereas the Obsessive Compulsive Drug Use Scale evaluates
cravings over a period of time (52). Regarding the effects of the
drugs, the Visual Analog Scale (VAS), a visualization scale, is
helpful for quantifying levels of craving for drugs. In addition, the
Addiction Severity Index is used to evaluate overall issues, from
personal to family and society, in the context of drug addiction (53).

As drug addiction affects has both physical and psychosocial
effects, scales that characterize anxiety, depression, or impulsivity
resulting from drug abuse are often used to obtain a broad view
dependence and substance abuse. These scales include the 21-item
Beck Anxiety Inventory, 21-item Beck Depression Inventory, and
30-item Barratt Impulsiveness Scale-11 (54). For the assessment of
drug abstinence, the Drug Abstinence Self-Efficacy Scale is available
(55). During the withdrawal period from drug use, the Subjective

Frontiers in Psychiatry 04 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1085036
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-14-1085036 February 17, 2023 Time: 15:41 # 5

Chen et al. 10.3389/fpsyt.2023.1085036

Opioid Withdrawal Scale, for example, can be used to check
the symptoms of withdrawal (56), and the Methamphetamine
Withdrawal Questionnaire was developed to specifically evaluate
METH withdrawal-related symptoms (57). The Risk of Relapse
Assessment Scale can be used to determine the possibility of relapse
(26), while another option is the Stimulant Relapse Risk Scale
(58). Furthermore, the Time to Relapse Questionnaire has been
proposed to distinguish two types of relapses, with or without
forewarning, to enable better treatment (59, 60).

Although questionnaires are the most convenient and broadly
accessible approach for a variety of drug addiction-related
applications, the results of the scales have limited reliability and
accuracy. As the results of these scales are based on the answers
of the respondents, the results exhibit individual variations and
are influenced by the attitudes and conditions of the participants
(61). Moreover, clinicians are often needed to draw conclusions
about the severity of addiction based on the results of the
scales and consultations. These limitations restrict the scope of
application. Therefore, questionnaires often need to be combined
with physiological tests to strengthen their conclusions about
addiction, withdrawal, abstinence, or relapse.

3.2. Conventional detection techniques
and emerging wearable techniques

In addition to questionnaires, saliva, urine, and blood tests are
conventional ways to quantitatively detect drug use (22). Nail and
hair also contain evidence of drug use with a detection window
lasting from weeks to months (62, 63). Moreover, breath analyzers
can be used to detect the drug in the breath (64). However, the
time windows of the above conventional methods are limited.
Moreover, they cannot provide real-time results owing to the
time-consuming nature of the required examination and analysis
procedures. Emerging wearables are promising options to detect
biomarkers in real-time (27, 65), most commonly using sweat
to screen for drugs using electrochemical techniques (66). Other
body fluids containing drugs are saliva and tears. However, it is
sometimes difficult to obtain sufficient body fluids for accurate
sensing. In addition to electrochemical sensing of body fluids,
wearables can detect other physiological parameters to predict or
determine addiction to drugs: these include electrocardiographic
(ECG) parameters, heart rate variability (HRV), breath rate, and
skin conductance response/galvanic skin response (SCR/GSR).
Both heart rate (HR), determined by the R-R interval of ECG
signals recorded from a chest band and breath rate increase with
increasing dosages of cocaine (67). Other parameters available in
ECG waveforms for drug addiction evaluation are the QT, PR, QRS,
and QTc intervals and the height of T waves, as summarized in
previous work (67). Regarding the morphology of the breathing
waveform, the time and depth of inhalation and exhalation, and
respiration duration are features used to predict drug-seeking and
craving for drugs. Furthermore, a wristband is another option to
identify the use of cocaine based on recorded skin temperature,
heartbeat, motion, and SCR (28, 68). HRV can be used to evaluate
stimulation in individuals with METH addiction via virtual reality
(VR) (69) and SCR increases in patients with METH addiction
when receiving specific cues (70); importantly, longer use of METH

results in a stronger physiological reaction to the cues. Owing to the
ease of access and user friendliness of wristband devices for ECG
recording, the effects of aerobic exercise on the HRV parameters
of patients with METH addiction have been investigated (71).
HRV can be further separated into high-frequency HRV and low-
frequency HRV. In addition to the frequency domain, parameters
can be derived from the recorded time domain of HR, including
the standard deviation of normal-to-normal intervals, root mean
square difference of the standard deviation, and percentage of beats
that change by more than 50 ms compared with the previous beat.

In addition to ECG and HR, drug abuse has effects on pupil
size (72). The features of ECG, GSP, and eye tracking that can
indicate METH addiction are summarized in Tsai et al. (73).
Wearables can be used not only to monitor physiological signals
but also to track the psychological impact of drug addiction. For
example, the information obtained from accelerometry and GPS
location is useful in characterizing the cravings resulting from
the addiction (74, 75). Owing to the large variety of the features
available to diagnose drug addiction or the resulting psychological
changes, machine learning (ML) has been introduced to increase
the precision of the analyzed results; more information will be
provided in section “6.1.2. Analysis of recorded neural signals.”

The wearable techniques presented in this section are used
to measure the physiological reactions of the autonomic nervous
system caused by drug usage. However, drug addiction also affects
the central nervous system (7). We believe that the development
of a closed-loop system for overall management of drug addiction
would provide substantial value, regardless of whether patients are
still using drugs, in the abstinence stage, or aim to reduce the
rate of relapse rate. Application of this closed-loop system would
rely on neuroimaging techniques, being the most straightforward
approaches for brain studies, to identify and characterize the brain
signatures of drug addictions.

3.3. Neuroimaging techniques

Whereas the wearable technologies discussed in the previous
section can be used to monitor physiological changes in the body
as relates to drug use and withdrawal, clinicians and researchers are
also keen to learn how drug use influences the control center of the
body, the brain. The process of developing an addiction includes
several phases, including drug intoxication, craving, binging, and
withdrawal with loss of self-control (76–78). A series of complex
changes occur, including modification of brain structures as
well as mental and physiological changes, resulting in various
symptoms such as depression, impulsiveness, anxiety, aggression,
and many other psychological problems (11). Consequently, a tool
to monitor the response/effect of a neuromodulation treatment is a
need for a closed-loop system. Neuroimaging techniques provide
opportunities to monitor the overall process of the functional
modifications of the central nerve system in various conditions
(79). Therefore, they are suitable to study the mechanisms of
neurological disorders (76, 80).

Neuroimaging approaches can be separated into two categories:
those that can be used to examine the structural changes at
different stages of drug dependence and addiction to understand
the physiological mechanisms of addiction (30), and those that

Frontiers in Psychiatry 05 frontiersin.org

https://doi.org/10.3389/fpsyt.2023.1085036
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-14-1085036 February 17, 2023 Time: 15:41 # 6

Chen et al. 10.3389/fpsyt.2023.1085036

monitor the functional brain changes that occur as a consequence
of addiction (77). MRI, MRS, and single photon emission computed
tomography are used to inspect structures in patients with METH
addiction (31, 32, 81). PET is used to study the impact of drug
addiction on the brain at a molecular level, in order to find the
optimal brain location for treatments (82). fMRI is a powerful
tool to evaluate hemodynamic conditions after the neurons have
been activated by specific tasks (83, 84). The studies investigating
the relationship between METH use and cognitive function using
neuroimaging techniques have been summarized elsewhere (32).

Although these neuroimaging techniques provide high spatial
resolution, they have limitations. For instance, the devices required
are costly and bulky, with low accessibility, and trained operators
are needed to conduct the examinations. Moreover, MRI may not
be suitable for patients with metallic implants, and the use of
radioactive agents in PET limits the frequency of examinations.
Furthermore, those with claustrophobia may find it difficult to
participate the examinations owing to the spatially confined test
environment that is needed. Low temporal resolution also restricts
the application of real-time monitoring.

Wearable devices, being compact and easy to access, are
appropriate for real-time monitoring of neural activity. Owing to
their user-friendly implementation, wearable neuroimaging devices
have been widely used to study the outcomes of various treatments,
including the effects of exercise on parameters of drug addiction
(85). Another example is the evaluation of cravings to predict the
risk of relapse during abstinence. Real-time signals recorded in a
natural environment provide more reliable information than could
be obtained under stressful conditions using bulky equipment.

Electroencephalogram can be used to record brain cortical
electrical activity via electrodes attached to the individual’s head.
It is popular in research and clinical studies owing to the high
temporal resolution of afforded by this approach. This benefit
enables EEG to be used to record variations in neural activity
when patients receive drug-related stimuli or experience the desire
for drug taking.

When neurons change their activity patterns, such as during
different phases of addiction, the local hemodynamic conditions
in the brain change, resulting in neurovascular coupling (86).
Whereas EEG can monitor electrical signals in the brain, fNIRS
is a popular wearable device for monitoring the hemodynamic
conditions of the brain, enabling these two to be used in
combination. For example, the prefrontal, dorsolateral prefrontal,
and orbitofrontal cortices are responsible for decision-making
(30). When patients with drug addiction use the drug or receive
cues related to it, this can change the activity patterns of these
brain regions. This results in alternations in oxygenated and
deoxygenated hemoglobin concentrations, which can be recorded
using fNIRS at the corresponding cortices (87). Studies have
shown that changes in these concentrations in patients with drug
addictions are different from those in healthy controls (88). In
addition, with its advantages of being light, compact, wearable,
highly accessible, and user-friendly, fNIRS is becoming a popular
tool to study the effects of exercise on drug addictions. For instance,
fNIRS has been used to evaluate the effects of spin training and
strength training on those with a METH addiction (89). Another
study used fNIRS to evaluate the effects of dancing and exercise
on aspects of meth addiction (90). As well as its applications in
analysis of the hemodynamic variations influenced by exercise,

fNIRS has been used to investigate the relative hemodynamic
changes at different cortical regions in the brain (91). For example, a
classification algorithm based on the fNIRS signals at various brain
cortices was used to distinguish addictions to different drugs.

Neurovascular coupling indicates that electrical neuron signals
are closely related to hemodynamic conditions. In neurovascular
coupling, when neuronal activity is elevated, more oxygen is
delivered to the activated brain regions, resulting in a local
increase in oxygenated hemoglobin. As EEG measures neural
electrical activity whereas fNIRS monitors hemodynamic activity,
multimodal EEG-fNIRS recording provides a more holistic
measurement, enabling a more comprehensive understanding of
the effects of drug use and withdrawal on the brain (86). This dual
approach has recently been used in several studies, for example,
multimodal EEG-fNIRS has been used to study the brain activity
of those with a METH addiction under visual stimulation (92, 93),
whereas another study used multimodal EEG-fNIRS for those with
an opioid addiction (94).

A further benefit of wearable systems is that they can be
applied without the limitations of time and location, with a
minimal influence on social activity. Consequently, multimodal
EEG-fNIRS systems are suitable for evaluation of the efficacy of
treatment and rehabilitation. An important goal during treatment
and rehabilitation is the reduction of the incidence of relapse.
Craving is a key symptom that promotes relapse to drug use; thus,
identifying brain activity patterns during, immediately before, and
immediately following cravings could help to optimize treatment
and rehabilitation programs. For example, if we could identify
the neuronal signatures of craving, we could trigger a closed-loop
stimulation protocol to combat these activity patterns, or provide
alternative interventions. In addition, brain signal monitoring
can provide more information on changes in psychological and
physiological conditions than the wearables measuring ECG, HR,
and GSR mentioned in section “3.2. Conventional detection
techniques and emerging wearable techniques.” Notably, including
as many modalities as possible in the wearables would increase their
diagnostic precision.

It has been suggested that wearables could be used to track
the efficacy of treatment of those with a drug addiction (65).
However, the propensity for interventions based on this approach
alone is limited. To more effectively reduce rates of drug use and
relapse, a closed-loop system to provide real-time treatment that is
customizable to each specific case is needed (95). Such a closed-loop
system would consist of three parts. The first part is neuroimaging,
which can be achieved using multimodal EEG-fNIRS devices. The
second involves computational algorithms to identify the neuronal
and/or hemodynamic activity biomarkers of addiction. Finally,
the loop is closed by neuromodulation approaches that provide
stimulation of targeted brain areas to combat pathological activity
changes related to addiction.

4. Biomarkers of neuroimaging
techniques

In a closed-loop system, the treatment protocol can
be optimized according to the real-time signals from the
neuroimaging recording. Approaches to stimulate cues to further
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evaluate the level of desire for the drug are introduced in section
“4.1. Stimulation cues.” The EEG and fNIRS biomarkers used to
identify drug addiction are presented in section “4.2. Biomarkers
of EEG and fNIRS in METH addiction.”

4.1. Stimulation cues

Approaches to investigating brain signal changes influenced
by drug addiction include comparing recorded signals from those
suffering from addictions with control populations, or comparing
the signals of those suffering from an addiction across the addiction
cycle. One approach to minimize the acute and long-lasting effects
of drug intake on the participants during attempts to identify
brain signal biomarkers, drug-related cues can be applied as
alternatives to drugs. This approach is used because the variations
in autonomic nervous system and brain signals occur not only after
the presentation of drug use but also after cues. To identify useful
biomarkers to distinguish addiction and control groups, protocols
including various stimulations to provoke cue reactivity have been
proposed (96). Cues can be videos, photos, audios, or VR of the
drugs or individuals using the drugs. This approach has been done
before using MRI and EEG. In these studies, it was found that
VR induced more cravings than other stimulation types (97, 98).
Natural cues are included as important controls to identify drug-
specific cue responses (99). Natural cues can be categorized into
those with limited connections to drugs and those that share some
features with drug-related cues. The former types may include
natural scenes such as trees and flowers, while the latter types could
be, for example, a person holding a screwdriver close to the face.
This may trigger thoughts of METH use because a screwdriver
may appear similar to the use of a long tube typically used for
METH consumption. Therefore, placing a different tool of a similar
shape close to the face can induce desire for the drug. Another
example of the latter type is a light bulb, which may look similar to a
METH pipe. It has been demonstrated that these natural cues have
common features with the drug-related ones that in turn induce
higher levels of craving and desire (100).

As drug-paired cues are highly salient, emotional responses are
influenced when an individual receives cues (101). Therefore, when
neuroimaging signals are recorded, scales are applied to evaluate
changes in emotions, such as valence, arousal, and craving (100).
Measuring both the neural signals and the score on emotional
scales provide more comprehensive information for over multiple
physiological and behavioral dimensions.

Although cues provide an opportunity to distinguish those
suffering from an addiction from healthy controls, experiments
in which drug-related cues are provided to the participants have
potential ethical issues. For example, the risk of relapse may
increase after stimulation by drug-related cues. One alternative
approach has been recorded, brain signals when participants are
involved in cognitive tasks, to differentiate those suffering from an
addiction from healthy controls (32); for example, in one study,
EEG signals were analyzed when patients with METH addiction
performed cognitive tasks, including the N-back task to assess
working memory and Stroop task to assess attention (102).

Furthermore, it has been reported that without cue stimulation
and cognitive testing, the resting state brain of those suffering

from an addiction and healthy individuals exhibit differences (94,
103). Monitoring the brain signals altered by the METH addiction
and tracking the recovery process at resting state is an attractive
approach because no additional efforts are needed to implement the
drug-related cues and synchronize the cues and recorded signals or
to arrange a supervisor to conduct cognitive assessments.

4.2. Biomarkers of EEG and fNIRS in
METH addiction

Biomarkers of neuroimaging techniques are not only used
to distinguish those suffering from drug addiction from healthy
controls, but they are also widely used to evaluate the efficacy of
abstinence, exercise, and medical interventions. The biomarkers
of EEG signals that have been shown to characterize the brain
activity of those suffering from METH addiction are listed in
Tables 1, 2. The biomarkers were determined by comparing the
recorded EEG signals from patients with a METH addiction with
those of healthy controls. The brain signals were recorded when
participants received various METH-related cues (see section “4.1.
Stimulation cues”), after conducting cognitive tasks, or during
resting states. The EEG biomarkers that can identify the patients
with a METH addiction can be categorized into three types based
on the analysis approaches used. First, the time-domain EEG
signals can be converted to frequency-domain signals to reveal the
spectral information of EEG sub-bands. The sub-bands of each
frequency range represent different conditions affected by METH
(54, 85, 104–110) of Table 1. The entropy of the EEG signals at
a specific frequency range can be derived from the spectrum of
that frequency range (104). The second type of biomarkers are
based on time-domain signals. As EEG records neural activity on
a millisecond timescale, the neural signals triggered by stimuli
(visual, audio, etc.) show specific wave forms, namely the event-
related potential (ERP) (111, 112).

The third type of EEG biomarker can be visualized by the
topography of the data (Table 2). The advantage of plotting brain
signals topographically is that signal variations throughout the
cortex can be evaluated. Brain activity is typically not localized
to one specific region, but rather observed as coordinated activity
throughout multiple connected regions. Functional connectivity
(FC) in this case refers to the level of connectivity of each channel
and the connectivity between cortical regions (54, 113–117). FC can
be analyzed by processing an EEG signal using various approaches.
Some studies have considered the coherence of the EEG sub-bands
of electrode pairs (113, 116). However, coherence neglects the non-
linear relationship between the channels. Therefore, another study
used visibility graph similarity as a non-linear approach (113).
Later, the weighted phase lag index (WPLI), a modification of
the phase lag index (PLI), was used for FC analysis. Compared
with coherence, PLI (117) and WPLI can better indicate the
delays in signals between channels (54, 114, 115). Parameters of
such graph theory analyses include node strength, characteristic
path length (L), clustering coefficient (CC), and small-world index
(SWI), which is derived as the ratio of CC to L. Moreover, the
network hub(s) can be identified by the node strength, betweenness
centrality, and eigenvalue centrality. These parameters can be used
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TABLE 1 Biomarkers of EEG signals in frequency and time domains on patients with methamphetamine addiction.

References Comparison conditions Groups for comparison Number of the
electrodes and their
locations

Biomarkers Main limitations

Newton et al. (104) Eye-closed resting state during
abstinence

METH (with 4 days of abstinence) versus
HC

35 electrodes distributed
across the scalp

Increases: delta and theta bands across the scalp Patients with another period of abstinence
can be investigated.

Newton et al. (105) Eye-closed and cognitive tasks METH (with 4 days of abstinence) versus
HC

35 electrodes distributed
across the scalp

Increases: theta band increases with the increasing
of the reaction time of cognitive tasks

Difficult to identify that the EEG
biomarkers have resulted from METH use
disorder or other health issues.

Yun et al. (106) METH users at abstinence stage.
Eye-closed resting state.

METH versus HC 16 electrodes distributed
across the scalp

Decreases: approximate entropy Patients are separated in to high- and
low-dose of METH groups by their
duration of METH use, not by the
cumulated dose.

Kalechstein et al.
(107)

2.5 h of neurocognitive assessment
tests

METH versus HC 35 electrodes distributed
across the scalp

Increases: theta band correlation with poor
performances on cognitive tasks

The changes of biomarkers along with
varies abstinence time can be further
studied.

Howells et al. (108) Resting eyes closed, eyes-open and a
cognitive task

METH versus HC 6 channels (F3, F4, C3, C4,
P4, and P4)

Increases: delta/alpha ratio Future studies are needed, including a
wider variety of mental disorders in
METH patients.

Ding et al. (109) Drug-related and neutral VR (1) METH versus HC
(2) METH versus neutral cues

5 channels (Fpz, AF7, AF8,
TP9, and TP10)

(1) Increases: beta and gamma
Decrease: delta and alpha

(2) Decrease: delta, theta, and alpha

Be cautious when applying the machine
learning modal built from male-only
patients on female patients.

Lu et al. (85) METH users received anaerobic
resistance treatment (RT) and aerobic
cycling treatment (CT).
Test conditions are eyes closed (EC),
eyes open (EO), and drug-related and
neutral cues

(1) METH with exercise (RT or CT) versus
METH without any exercise

(2) Before and after exercises

64 electrodes distributed
across the scalp

(1) Increases: absolute power of theta, alpha, and
beta bands on RT group during EC; the alpha
block rate on RT group during EO and drug
cues
Decreases: mean frequency on RT group
during drug cues

(2) Decreases: brain lateralization index on RT
group during EC

Lack of a healthy control group.

Minnerly et al.
(110)

Eye-closed resting state METH versus HC 19 electrodes distributed
across the scalp

Increases: delta and theta bands across scalp
Decrease: alpha

Did not apply AI algorithm to reduce the
analysis workload of extensive data.

Zhao et al. (54) Visual stimuli (video) then
eyes-closed resting state

METH users in abstinence for 1–3 months
versus other abstinence lengths

128 electrodes distributed
across the scalp

Increases: beta across scalp
Decreases: theta and alpha

No comparison with healthy control and
no longitudinal measurements on the
same patient.

Shahmohammadi
et al. (111)

METH users at abstinence stage.
Visual stimuli (drug-related, drugs
and neutral images).

METH versus HC 32 electrodes distributed
across the scalp

Increases: P300 peaks of the event-related
potentials (ERP)

All METH patients had history of cigarette
smoking and no healthy subject had the
history. This might influence to results.

Khajehpour et al.
(112)

Visual stimuli (drugs and neutral
images) after tDCS

Biomarkers mean the difference of the
biomarkers of watching drug related cues
and neutral cues. METE users before
versus after treated with tDCS.

62 electrodes distributed
across the scalp

Increases: P3-related late positive potential (LPP)
component of the ERP
Decrease: P3 component

Repetitive tDCS was not applied, only a
single session tDCS is conducted.

GSR, galvanic skin response; HC, healthy control; tDCS, transcranial direct current stimulation; METH, methamphetamine.

Fro
n

tie
rs

in
P

sych
iatry

0
8

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fpsyt.2023.1085036
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org/


fpsyt-14-1085036
February

17,2023
Tim

e:15:41
#

9

C
h

e
n

e
t

al.
10

.3
3

8
9

/fp
syt.2

0
2

3
.10

8
5

0
3

6

TABLE 2 Biomarkers of EEG signals in functional connectivity (FC) network and network topological properties on patients with METH addiction.

References Comparison conditions Groups for comparison Number of
electrodes and their
locations

Biomarkers* Main limitations

Ahmadlou et al.
(113)

Resting state METH (with 1–3 weeks of abstinence)
versus HC

31 channels distributed
across the scalp

Increases: CC and the CC/L of gamma band in the
small world network (SWN)
Decreases: L of the gamma band in the SWN

The backgrounds of the METH and HC
groups may not be similar.

Khajehpour et al.
(114)

Resting state METH (during 1–6 months of
abstinence) versus HC

62 electrodes distributed
across the scalp

Increases: CC and SWI in delta and gamma
frequency bands
Decreases: L in delta and gamma frequency bands
Abnormal changes: inter-regional connectivity and
network hubs in all the frequency bands

HC can have a smoking, drinking, or
caffeine history, which may affect the
results.

Khajehpour et al.
(115)

Resting state METH versus HC 64 channels on the overall
scalp

Decreases: WPLI of beta bends Only male patients were included.

Shafiee-Kandjani
et al. (116)

Resting eyes closed and eyes open METH versus HC 19 channels on occipital,
temporal, frontal, and
parietal lobes

Decreases: coherences of the delta and theta band on
the left frontoparietal cortices (F3Fz and C3Cz)

Coherences were used to study the linear
relationship of the signals. However, brain
signals seem to have more non-linearity
properties.

Zhao et al. (54) Visual stimuli (video) then
eyes-closed resting state

METH users abstinent for 1–3 months
versus other abstinence lengths

128 channels distributed
across the scalp

Increases: WPLI between medial prefrontal cortex
and bilateral orbital gyrus in the beta band

No comparison with healthy control and
no longitudinal measurements on the
same patient.

Qi et al. (117) Resting state with eyes open. METH
users in control group, dancing group,
and bicycling group

METH with exercises versus control
group

64 channels distributed
across the scalp

Increase: brain flexibility and network connectivity
entropy
Decrease: mean frequency and beta relative power

Lack of data from healthy subjects.

Chen et al. (102) Resting state METH versus HC 64 channels distributed
across the scalp

Increases: GEV of 1 microstate (customized
microstate C)
Decreases: MMD of 2 microstates (customized
microstates A and B); GEV of 1 microstate
(microstate B)

Simultaneously MRI recording will be
helpful to compare with the microstates
data.

Lin et al. (118) Resting state with eyes open; then
visual stimuli of METH cues with VR

(1) METH under cues versus resting;
(2) METH versus HC

32 channels on the overall
scalp

(1) Increases: coverage and occurrence of microstate
B, transitions of microstates B→ D and D→ B
pairs
Decreases: coverage, duration, and occurrence of
microstate A, occurrence of microstate C,
transitions of microstates A→ C and C→ A
pairs

(2) Increases: coverage of microstate A
Decreases: coverage and occurrence of
microstate B

The number of microstates was limited to
4 during the analysis. Results might
change with other numbers of microstates.

CC, clustering coefficient; GEV, global explained variance; HC, healthy control; L, characteristic path length; METH, methamphetamine; MMD, mean microstate duration; SWI, small-world index; WPLI, weighted phase lag index. *The microstates discussed in this
table were derived based on individual EEG recordings (102, 118). In other words, microstates with the same names may have different topographies in different studies.
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as features of ML models to classify and differentiate those with
METH addiction from healthy subjects (115).

Other EEG biomarkers represented by topography include
EEG microstates that show the spatial distribution of electrical
signals recorded by the electrodes over the scalp (102, 118).
The dynamic changes of these electric potential states can be
validated by examining a consecutive set of topographies. EEG
microstates represent an emerging technique for analysis of
EEG signals, especially at resting states. The parameters used
to investigate microstates are the mean states duration, total
time covered/coverage ratio, global explained variance (GEV),
occurrence, and transition probability. Studies to date have been
limited because the number and type of microstates are optimized
differently, depending on the database used. Fortunately, most
microstates derived from the resting state of healthy subjects of
different studies comprise four representative states, where each
state corresponds to specific neural activity patterns, such as
visual or audio responses. However, microstates of people with
neurological diseases or actively engaged in task-related states
(e.g., receiving cues or being involved in a cognitive task) vary
across studies (118). Therefore, interpretation of results is not
always straightforward, and comparisons between different studies
can be challenging.

In the EEG spectrum analyses summarized in Table 1, one
approach is that an individual electrode is inspected only when
the number of electrodes is small (108). Alternatively, the spectrum
of individual electrodes is calculated, then representative channels
are selected for further investigation (111). In studies with larger
numbers of electrodes, the average EEG spectrum of all electrodes
is often investigated (54, 85, 104–107, 109, 112). Lu et al. and
Minnerly et al. studied changes in the EEG spectrum of different
brain regions (85, 110). The former separated the brain into
four areas, whereas the latter separated the cortices using five
different approaches. A lower number of EEG channels reduces
the preparation time when the region of interest is well known.
However, increasing the number of electrodes allows for studying
FC across various brain regions.

Some studies had explored EEG biomarkers when subjects
had their eyes closed but were not asleep; this is done to reduce
the disturbance due to non-task related visual stimuli (104–106,
108, 110). Other studies report the identification of biomarkers
specifically when the subjects had received cues (85, 109, 111,
112). Some studies included cognitive tasks in the experiment
protocols. However, most of these studies only analyzed the
correlation of the level of cognitive impairment (e.g., the reaction
time and the response accuracy) and the EEG spectrum (105, 107).
Few studies have monitored the variation in the EEG spectrum
during cognitive tasks (108). For future applications in closed-
loop neuromodulation systems, the biomarkers found when the
participants were simultaneously receiving cues may be more
helpful than, e.g., at a resting state, as the use of cues can more
accurately simulate the conditions of having a desire for a drug.

In addition to the EEG signal, FC is often studied in the resting
state as well. In the task state, the connectivity needs to be analyzed
in every pair of channels at every point of interest, resulting in a
heavy computational load. This is because the brain is engaged in
various tasks at different stages along with the task. Only the data
of a selected resting time period is calculated in the resting state.
For this reason, in the task state, only the channels of interest are

often analyzed to reduce computational load (54). Only one study
has evaluated the effects of exercise on those with METH addiction
using EEG signals (116). In this study, the EEG signals were not
recorded simultaneously during the exercise, but rather before and
after the acute and long-term period of exercise.

An fNIRS device is easy to wear without time-consuming
preparation such as is required for EEG gel electrodes. Therefore,
fNIRS devices have been widely used to study the effects of exercise
on patients with METH addiction during abstinence. Optodes
of fNIRS are often mounted on the prefrontal cortex and the
motor cortex to study the influence of METH on decision-making
as well as on cognition and motion abilities. The biomarkers of
fNIRS signals are listed in Table 3. These biomarkers include a
variation of hemoglobin concentration (34, 87, 89, 90, 119–122)
and parameters of functional connectivity (34, 88, 121, 122). The
most used hemodynamic parameter is the concentration variation
of oxygenated hemoglobin, M[OxyHb]. Deoxygenated hemoglobin
concentration variation and regional cerebral oxygen saturation
were not found to have been used in METH-related applications.
To calculate the FC of channel pairs, Pearson’s correlation is the
most frequently used approach (34, 121, 122). Some studies have
used the coherence of the channel pairs (88, 89). In this case, the
fNIRS signals must first be converted to various frequency ranges.
One study calculated the coherence of four frequency ranges (89),
whereas another used only one (88). Optimization of the frequency
of coherence evaluation needs further study. The fNIRS parameters
include global efficiency and local efficiency, in addition to the
graph theory parameters of path length and clustering coefficients
(122).

The fNIRS studies in individual with METH addiction were all
conducted in the past 3–4 years. Interestingly, all these studies were
carried out in China, specifically by the groups of Dong (34, 88,
89, 122), Chen, and Zhou (90, 119, 121). This might be because of
an increasing focus in mainland China on treating drug addiction
via scientific approaches that can quantify the efficacy in treatment
outcomes (123).

Most of the experimental groups in the studies summarized in
Tables 1–3 consisted of those with a METH addiction before or
during abstinence. This was likely because rehabilitation centers
are the most convenient places to recruit participants for those
studies. However, limited studies have reported how long that those
in recovery from METH addiction had been abstinent, and the
amount of METH taken has been seldom reported in a systematic
fashion. It has been demonstrated that brain activity changes with
abstinence duration (54), and that the propensity for relapse varies
as a function of abstinence duration. Thus, more detailed research
on a wider variety of METH user groups using fNIRS needs to
be performed, and long-term follow-up of users after withdrawal
may yield important insights toward development more efficacious
treatments.

5. Neuromodulation treatments for
METH addiction

Advances in neurophysiology together with the neuroimaging
technologies discussed here have led to the identification of some
mechanisms underlying METH addiction disorders. Many studies
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TABLE 3 Biomarkers of fNIRS signals recorded on patients with methamphetamine addiction. The biomarkers include variation of hemoglobin concentration and functional connectivity (FC).

References Comparison conditions Groups for comparison Locations* and number
of the channels

Biomarkers Main limitations

Bu et al. (89) METH users during resting and
exercise: spinning training and
strength training

(1) After exercises versus resting;
(2) Strength versus spin training

Prefrontal cortex: 8,
motor cortex: 16

(1) Increase: M[OxyHb], wavelet phase coherence
(WPCO) at frequency intervals II and IV†

Decrease: WPCO at frequency interval I
(2) Increase: M[OxyHb], WPCO at frequency

intervals III and IV
Decrease: WPCO at frequency intervals II

Longitudinal recordings can be
carried out to explore the changes in
the biomarkers.

Bu et al. (88) METH users during resting and
exercise: kick boxing

(1) METH group versus HC at resting
and training states;

(2) METH group during training
versus resting

Prefrontal cortex: 8,
motor cortex: 16

(1) Decrease: effective connectivity (EC) of some
pair of channels

(2) Decrease: EC of some pair of channels

Only signals when eyes closed were
analyzed.

Wang et al. (119) METH users exercising; then visual
stimuli of images with food

After exercises versus control group
(no exercise) when receiving cues
with high-calorie food

OFC: 4,
VLFPC: 4,
DLFPC: 7,
PPA: 5

Increase: M[OxyHb] of some channels at OFC No measurements on healthy subjects
for comparison.

Zhou et al. (90) METH users exercising: dancing or
treadmill; then visual stimuli of
images with food

After versus before treadmill training
when receiving cues with high-calorie
food

OFC: 4,
VLFPC: 4,
DLFPC: 7,
PPA: 5

Decrease: M[OxyHb] of one channel at left DLFPC fNIRS cannot provide hemodynamic
information in the deep brain.

Tao et al. (120) METH users exercising: dancing or
cycling, then visual stimuli of images
which caused negative emotions

After versus before dancing, when
receiving cues with negative images

OFC: 4,
VLFPC: 4,
DLFPC: 7,
PPA: 5

Decrease: M[OxyHb] of one channel at DLFPC No measurements on healthy subjects
for comparison.

Gao et al. (121) METH users exercising: cycle
ergometer with moderate or high
intensity

METH with high intensity versus
moderate intensity of exercises

OFC: 4,
VLFPC: 4,
DLFPC: 7,
PPA: 5

Increase: M[OxyHb] at PFC and DLFPC, FC of left
DLPFC and OFC

No measurements on healthy subjects
for comparison.

Qi et al. (34) METH users exercising: VR cycling,
then visual stimuli of images with
drug-related and neutral cues

(1) Drug-related versus neutral cues;
(2) After versus before exercise when

seeing drug-related cues

DLPFC: 8,
VLPFC: 8,
PM and SMA: 6,
M1: 4
S1: 6,
FPA: 2,
OFC: 4,
FEF: 4

(1) Increase: M[OxyHb] at OFC and DLPFC;
(2) Increase: FC between PFC and motor cortex,

between VLPFC and other cortices;
Decreases: M[OxyHb] at OFC and DLPFC

No measurements on healthy subjects
for comparison.

(Continued)
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have suggested that impaired self-control, irritability, compulsive
consumption, etc., are caused by dysregulation and malfunction
of specific brain circuits. Traditional pharmacotherapy, one
of the most commonly applied interventions, can be viewed
as a type of neural circuit modulation. However, traditional
interventions lack spatial and temporal specificity of action.
Neuromodulation, a novel approach that can modulate brain
activity with spatiotemporal precision, has shown efficacy and is
a promising treatment for addiction disorders (38) (Figure 2).
Invasive neuromodulation techniques such as DBS, vagus nerve
stimulation, etc., require surgery to implant a device and are usually
used in severe and otherwise intractable brain disorders such
as Alzheimer’s disease and epilepsy (124), with some promising
results. However, the safety and long-term biocompatibility are still
challenging issues to be overcome for invasive neuromodulation.
In contrast, non-invasive techniques such as TMS, tDCS, and
transcranial ultrasound stimulation are widely used as research
tools to probe affected circuits and also as therapeutic interventions
for a variety of neurological and psychiatric disorders, with
encouraging results (125). In the remainder of this section, we focus
on non-invasive neuromodulation devices for treatment of METH
addiction.

5.1. tDCS for methamphetamine
addiction

Transcranial direct current stimulation uses a constant low-
intensity current that passes through two electrodes attached to
the scalp of the participant to modulate neural activity. During
tDCS modulation, a current flows between the electrodes and
passes through the brain. A positive anodal current is generally
considered to depolarize the neurons, thereby increasing cortical
excitability and behaviors associated with the cortical region under
the electrode. On the other hand, a negative cathodal current
hyperpolarizes neurons, thereby inhibiting action potentials and
behaviors in the corresponding cortical region.

A standard apparatus for tDCS stimulation, as shown in
Figure 2C, includes a target electrode, used to stimulate the region
of interest as determined by the modulation task. A reference
electrode is commonly placed opposite the target electrode.
Modeling studies have shown that the shorter the distance between
the two electrodes, the more susceptible the current is to shunting
effects. Generally, large distances between the scalp electrodes are
expected to increase cortical modulation, allowing the current to
be drawn through the cortex rather than shunted across the scalp
(126). As the advisable safety threshold for human studies is 2 mA
(127), most tDCS stimulation studies use currents between 0.5 and
2 mA with a duration between 5 and 30 min.

The dorsolateral prefrontal cortex (DLPFC) is the area most
selected for tDCS stimulation of subjects with METH addiction,
as dysfunction in this area has been reported frequently among
these individuals. Moreover, DLPFC can also be easily targeted
in a non-invasive fashion. Table 4 summarizes recent studies
that have used tDCS for the treatment of addiction. Shahbabaie
et al. conducted three 20-min sessions with 30 participants in a
double-blinded sham-controlled trial (128). They found that the
anodal tDCS of the right DLPFC decreased immediate craving at
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FIGURE 2

Common neuromodulation techniques: (A) deep brain stimulation; (B) transcranial magnetic stimulation; (C) transcranial direct current stimulation;
and (D) transcranial ultrasound stimulation.

rest; however, cue-induced METH cravings could increase under
active online stimulation of the right DLPFC. In another study,
tDCS experiments lasting for half a year were conducted. After
20 sessions (1 month), the subject reported a significant reduction
in craving and was able to control their cravings. Four booster
tDCS sessions were given in the following 5 months as symptom-
triggered therapy (129). These booster tDCS treatments were
shown to be helpful in controlling psychological stress and drug
cravings. Shahbabaie et al. conducted a double-blinded sham-
controlled crossover study with 15 males with METH addiction
(130). For each anticipant, 20 min sessions of real or sham 2-
mA tDCS were applied over the DLPFC on two separate days in
a random order. Participants receiving the real tDCS stimulation
showed significant decreases in cravings. However, another clinical
trial reported that cue-induced craving was reduced significantly
but there were no significant effects on spontaneous cravings
(131). More recently, a randomized controlled trial investigated
the effects of tDCS on cue-induced craving; consistent with
the findings of other studies, the results showed that tDCS
could significantly reduce cravings (132). Jiang et al. applied
tDCS and used two-choice oddball tasks to evaluate behavioral
impulsivity prior to and after the treatment. However, they
found that their protocol was not optimized to reduce symptoms
associated with METH addiction (42). Khajehpour et al. conducted
a sham-controlled tDCS stimulation experiment with 42 male
participants with METH addiction (112). The results showed

that tDCS could mitigate initial attention bias to METH stimuli.
Overall, the findings summarized in Table 4 indicate that tDCS
stimulation of DLPFC likely can play an active role in suppressing
cravings.

The most common electrode locations in these studies are F4
(right DLPFC) for the anodal and F3 (left DLPFC) for the cathode
electrodes. In these other studies, only two of the studies listed
in Table 4 placed the cathode at other locations. One placed the
cathode electrode on the left supraorbital area (128), and the other
placed it over the right arm (129). Regarding the current used
for stimulation, most studies used 2 mA, while one used 1.5 mA
(132). For the evaluation of treatment effects, Shahbabaie et al. used
EEG, Khajehpour et al. used fMRI, and the others used VAS or
performance on cognitive tasks.

5.2. TMS for methamphetamine
addiction

Transcranial magnetic stimulation techniques use a strong
electrical current through an electromagnetic coil to generate
magnetic pulses (Figure 2B). The magnetic pulse-induced
electrical activity in the targeted brain area serves the purpose
of neuromodulation. In practice, rTMS is used to elicit
neuromodulation and neuroplasticity. Unlike tDCS, where
the excitation and inhibition are controlled by anodal and cathodal
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TABLE 4 Examples of tDCS treatments in patients with methamphetamine addiction.

References Number of subjects
METH patients

Treatment sessions Stimulation
parameters
(current, duration,
and location)

Effects Main limitations

Shahbabaie et al.
(128)

30 males 3 sessions. At least 72 h between two
sessions.

2 mA, 20 min. Anode: F4
(right); cathode: contralateral
supraorbital area.

Reduced craving at resting state. Increased craving
during meth-related cue exposure.

The effects might be transient. Long-term
effects need to be explored.

Shariatirad et al.
(129)

1 male 5 sessions a week, for 4 weeks. During
6-month follow-up, booster tDCS on days
67, 70, 72, and 88.

2 mA, 20 min. Anode: right
DLPFC; cathode: over right
arm.

Reduced drug cravings as measured by DDQ and
LDQ.

This is a case report.

Shahbabaie et al.
(130)

15 males Two separate days, one-week washout
period.

2 mA, 20 min. Anode: F4
(right); cathode: F3 (left).

Significant decrease of craving after tDCS,
modulation of DMN, ECN, and SN.

A limited number of subjects.

Anaraki et al. (131) 30 males 5 sessions. 2 mA, 20 min. Anode: F4
(right); cathode: F3 (left).

Cue-induced cravings reduced significantly, no
significant change in instant cravings.

Lack of longitudinal recordings to analyze
the long-term effect of tDCS.

Xu et al. (132) 75 females CCAT + tDCS, 5 sessions per week, for
4 weeks.

1.5 mA, 20 min. Anode: F4
(right); cathode: F3 (left).

Reduced cue-induced cravings. Lack of longitudinal recordings to analyze
the long-term effect of tDCS.

Jiang et al. (42) 45 males 5 days daily. 2 mA, 20 min. Anodal: F4
(right); cathode: F3 (left).

Counterproductively increased impulsivity. No simultaneous neuroimaging signals to
provide the real-time effect of tDCS.

Khajehpour et al.
(112)

42 males 1 2 mA, 20 min. Anode: F4
(right); cathode: F3 (left).

Mitigated initial attention bias but not sustained
motivated attention to METH related stimuli.

Repetitive tDCS was not applied. Only a
single-session tDCS is conducted.

CCAT, computerized cognitive addiction therapy; DDQ, Desire for Drug Questionnaire; DLPFC, dorsolateral prefrontal cortex; DMN, default mode network; ECN, executive control network; LDQ, Leeds Dependence Questionnaire; METH patients, patients who were
addicted to methamphetamine; SN, salience network.
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stimulations, respectively, in rTMS the frequency drives the
direction of neuromodulation (133). Frequencies over 5 Hz have
been shown to increase cortical excitability, whereas low frequency
rTMS, such as 1 Hz, decreases cortical excitability. Still another
type of rTMS is the theta burst stimulation (TBS, a variation of high
frequency rTMS) has also been applied to evaluate the effects on
withdrawal of METH (134–137). TBS can be further separated into
continuous TBS (cTBS) and intermittent TBS (iTBS), depending
on the existence of intertrain intervals. The TBS consists of 3 pulses
at 50 Hz forming 1 burst, and the bursts are repeated at 5 Hz.
In cTBS the bursts are applied continuously while in iTBS, the
bursts are applied with 2 s on and 8 s off, continuing for a designed
number of cycles. TMS treatments have been reported to not only
reduce feelings of craving in patients with METH addiction, but
also to reduce negative emotions (such as depression and anxiety)
and improve cognitive function (138–140). TMS stimulation on
DLPFC also an FDA-approved treatment for depression (FDA
approval K061053). Therefore, like tDCS, DLPFC is also the most
commonly targeted stimulation area to modulate METH addiction
(Table 5). A pilot study by Li et al. reported that low-frequency
rTMS increased cravings of METH patients receiving drug-related
cues (141). Liang et al. developed a protocol with 2 days rest
between two 5-day treatments (142). Chen et al. designed a TMS
protocol to stimulate not only the DLPFC but also the ventromedial
prefrontal cortex (vmPFC) and reported an improved effect of this
combined protocol (125). Zhao et al. showed that high-frequency
rTMS over the DLPFC and low-frequency rTMS over the right
DLPFC could reduce cravings for METH (135). Other studies have
shown that TMS of the left DLPFC is effective to reduce METH
addiction (142, 143). Wen et al. reported a decrease in theta/beta
ratio after participants had received TMS treatment (144). Liu et al.
showed that iTBS, which is a more time-efficient protocol, had
similar effects to those of rTMS at 10 Hz (145). Besides the studies
discussed in Table 5, some ongoing protocols have been proposed
to investigate the effects of TMS treatment on METH addiction.
One protocol proposes to analyze the power spectrum of EEG
sub-bands when individuals receive METH-related VR cues before
and after the cTBS treatment (137). Another protocol is designed
to examine the effects of various stimulation parameters (146).
Protocols are not listed in Table 5 since no experimental data are
reported yet.

All studies in Table 5 apply self-rated VAS scores to assess the
effects of TMS. Only one study uses EEG signals together with
VAS scores to assess the effects (144). Some studies use images
(125, 141, 143, 145), some use videos (135) and still others use
VR as the cues (144). One study asks the participants to actively
interact with the tools used for METH consumption (142). Since
the FDA has approved TMS to treat depression, effects on emotions
are compared before and after the treatments. The most common
assessment is self-rating questionnaires regarding depression,
anxiety, and withdrawal symptom. Results have indicated that the
VAS, depression, anxiety, and withdrawal symptoms all decrease
after TMS treatment (145). iTBS has become a more popular
treatment approach because it takes less time to achieve the same
therapeutic effect as rTMS (145). However, comparing the long-
term effects of various protocols is challenging because the results
reported after TMS treatments are not over the same time frame.
For example, the VAS scores are measured either immediately or
4 weeks after the TMS (Figure 3). In addition, stimulation intensity

is often non-consistent across studies: the published intensity has
varied from 70% resting motor threshold (rMT) to 110% rMT.
In the future, more data regarding the stimulation intensities and
long-term effects will be needed.

Another potential confound of the studies being discussed is
that the patients population within a given study is either all male,
or all female. This is because of a single-gender policy that applies at
the rehabilitation centers. With the wearable closed-loop system we
propose in the following section, assessing potential effects of TMS
in both males and females would be easier to implement without
these limitations.

6. Challenges and future trends in
treatment of METH addiction

In section “4. Biomarkers of neuroimaging techniques,” we
summarized the evidence that neuroimaging biomarkers can be
used to distinguish patients with METH addiction from healthy
individuals and evaluated the efficacy of various types of treatment,
such as exercise training and neuromodulations. Furthermore, in
section “5. Neuromodulation treatments for METH addiction,”
we discussed the results of studies that have used TMS on the
DLPFC to reduce cravings resulting from drug-related cues in
METH user groups. However, these results were based on offline
signal processing, which does not the variations of brain activity
during treatment in real time, which is essential for closed-
loop therapeutics. In addition, bulky TMS systems hinder wider
applications to increase the efficacy of the therapy. We propose a
wearable closed-loop neuromodulation to efficiently treat METH
addiction (147).

6.1. The modules of the proposed
wearable closed-loop neuromodulation
system

This system consists of multimodal EEG-fNIRS combined with
TMS (Figure 4), a combination that could potentially overcome
the limitations of current detection and treatment approaches.
The advantages of individual module in the proposed closed-loop
system are described in this section. Furthermore, an example of the
scenario of applying the closed-loop system is explained in section
“6.2. Apply our closed-loop system to treat METH addiction.”

6.1.1. Multimodal EEG-fNIRS neuroimaging
Limited studies have combined multimodal EEG and fNIRS

for METH-related applications. Chen et al. used concurrent EEG-
fNIRS monitoring to evaluate the influence of aerobic exercise
on patients with METH addiction during cognitive tasks (35).
In the studies presented in section “4.2. Biomarkers of EEG and
fNIRS in METH addiction,” most fNIRS measurements carried
out on patients with METH addiction focused on signals from
frontal cortices, whereas they recorded EEG signals from several
channels covering a larger area of the scalp. Recording fNIRS
signals from cortical regions other than the frontal cortices could be
interesting, as this would both enable analysis of multimodal signals
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TABLE 5 Examples of TMS treatments for methamphetamine addiction.

References Groups for
comparison

Treatment sessions Brain area, coil type, and stimulation
parameters (frequency, intensity, total
number of pulses, and duration of
treatment)

Effects Main limitation

Li et al. (141) 10 METH* versus 8 HC. Real
versus sham TMS.

One session: 15 min of sham
and real TMS separated by
1 h.

Left DLPFC, figure-of-eight, 1 Hz rTMS, 100% rMT, 900 pulses,
15 min.

Increase: cue-induced craving in
METH.

The first studies to explore the TMS effect
on METH addiction. Many stimulation
parameters can be further optimized.

Liang et al. (142) 50 males (1–15 days of
abstinence). Real versus sham
TMS.

5 days treatments, then
2 days of rest, followed by
another 5 days of treatments.

Left DLPFC, 10 Hz rTMS (5 s on and 10 s off), 100% rMT, 2,000
pulses, 10 min.

Decrease: craving and withdrawal
symptoms.

The long-term effect of rTMS needs to be
further explored.

Chen et al. (125) 74 METH, separated into 3 real
(A, B, and C) and 1 sham TMS.

One session/day and
5 days/week, in total 10
sessions over 2 weeks.

(A) Left DLPFC, figure-of-eight, 2 s on and 8 s off iTBS, 100%
rMT, 900 pulses, 5 min;

(B) Left vmPFC, butterfly coil, 900 pulses cTBS, 110% rMT, 60 s;
(C) A combination of the above two protocols.

Decrease: cue-induced craving for
all three groups. Group 3 was
most effective.

The long-term effect of treatment needs to
be further explored.

Zhao et al. (135) 83 METH, separated into 3 TMS
groups (A, B, and C)

Twice daily over 5 days for a
total of 10 sessions.

(A) Left DLPFC, figure-of-eight, 2 s on and 8 s off iTBS, 70%
rMT, 600 pulses, 3 min;

(B) Right DLPFC, round-shaped, 600 pulses cTBS, 70%
rMT, 40 s;

(C) Left DLPFC, figure-of-eight, 600 pulses cTBS, 70% rMT,
40 s.

Decrease: cue-induced cravings
for groups (A) and (B).

The long-term effect of treatment needs to
be further explored.

Wang et al. (143) 66 METH (within 3 months of
detoxification). Real and sham
TMS.

5 days/week, 20 sessions. Left DLPFC, figure-of-eight, 2 s on and 8 s off iTBS, 100% rMT,
600 pulses, 3 min.

Decrease: cue-induced cravings. The long-term effect of treatment needs to
be further explored.

Liu et al. (145) 20 male METH, separated into 2
TMS groups.

First 10 days daily, then on
days 15 and 20.

(A) Left DLPFC, circular, 10 Hz rTMS (5 s on and 10 s off),
100% rMT, 2,000 pulses, 10 min;

(B) Left DLPFC, 2 s on and 8 s off iTBS, 100% rMT, 600 pulses,
190 s.

Decrease: cue-induced craving for
both groups.

iTBS had a much shorter stimulation time
compared to rTMS, which might affect the
results.

Wen et al. (144) 15 female METH. Real versus
sham TMS.

Two separate sessions within
1 week

Left DLPFC, figure-of-eight, 2 s on and 8 s off iTBS, 80% rMT,
1,800 pulses, 10 min.

Decrease: frontal EEG theta/beta
ratio during cue-related VR
scenes.

The long-term effect of treatment needs to
be further explored.

cTBS, continuous theta burst stimulation; HC, healthy control; iTBS, intermittent theta burst stimulation; METH, individuals with methamphetamine addiction; rMT, resting motor threshold; vmPFC, ventromedial prefrontal cortex; VR, virtual reality. *Individuals
with current methamphetamine dependence and non-treatment seeking.
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FIGURE 3

The time when the VAS and other physiological questionnaires (if available) were measured after TMS treatment for the studies is listed in Table 5.

FIGURE 4

Proposed intelligent closed-loop TMS neuromodulation to treat methamphetamine addiction. It uses EEG-fNIRS measurements and is composed of
three main parts: a real-time brain signal monitoring interface, an artificial intelligence signal processing block, and a customized neuromodulation
system. Cp and CC, clustering coefficient; cTBS, continuous theta burst stimulation; Eglobal, network global efficiency; Elocal, local efficiency; Enodal,
nodal efficiency; ERP, event-related potential; FC, functional connectivity; GEV, global explained variance; iTBS, intermittent theta burst stimulation;
Lp and L, characteristic path length; rTMS, repetitive TMS; ML, machine learning; 1[OxyHb], concentration variation of oxygenated hemoglobin; SWI,
small-world index; WPLI, weighted phase lag index.

of nearby EEG and fNIRS signals to study the effects of addiction
on neurovascular coupling mechanisms, and could also increase
the data from which to extract useful biomarkers to identify
phases of addiction, withdrawal, and relapse in METH users.
Many commercially available systems support multimodal EEG
and fNIRS measurements simultaneously, and other multimodal
EEG-fNIRS systems are under development because of research to
achieve more compact and user-friendly systems.

6.1.2. Analysis of recorded neural signals
To demonstrate the efficacy of TMS treatment, neural signal

analyses are carried out offline. Thus, the alternations in brain
signals resulting from the stimulation cannot be identified in
real time. Given the functionality of microchips for use in small
systems, algorithms to detect biomarkers in real time can be

embedded in a custom chip of a wearable system (148). Moreover,
with embedded ML algorithms, multimodal EEG, fNIRS, and
other related physiological recordings can be analyzed to identify
signs of addiction more accurately. A support vector machine
(SVM) algorithm has been implemented to stratify METH-user
and healthy groups using FC network features of EEG signals
(115). Concerning the relative frequency-specific power change
ratio of EEG signals, SVM, logistic regression (LR), decision tree
(DT), random forest (RF), multilayer perceptron, radial basis
function networks, AdaBoost and gradian boost are implemented
to compare the accuracy of classifying the METH and healthy
groups (149). A convolutional neural network (CNN) model has
been applied to EEG-fNIRS signals to classify METH addiction into
light, moderate, and severe (93). Another CNN was used to classify
the fNIRS signals of METH users and mixed users (150). The same
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research group compared the performances of linear discriminant
analysis, SVM, and CNN of fNIRS signals to distinguish METH
users and mixed users (87). When applying the EEG and GSR data,
the accuracy of distinguishing the METH and the healthy group
determined by random forest, logistic regression, and SVM have
been compared (109).

Another limitation is that when ML models are designed for
METH addiction applications, the performance of classification for
different types of drugs or different periods of METH use is the
focus, rather than the features used in stratification and the links
between neurological systems. This limits our understanding of
how these algorithms work, and thus, makes it hard to improve
upon them. A more detailed interpretation of ML models would
increase the confidence of clinical professionals in the classification
results. Yet other limitation of existing EEG or fNIRS biomarkers
is that they cannot be used to determine the stage or severity of
addiction; therefore, they cannot be used to evaluate treatment
effects during the therapy or as features to predict the possibility
of relapse. Until now, the most used approach for stratifying the
severity of addiction has been questionnaires, although the scores
are based on subjective answers. Using body fluidic tests, the
amount of drug in one’s system can be quantified. It has been shown
that the longer a person uses METH, the stronger their 1SCR
reactions are to drug-related cues (70). As neuroimaging techniques
are more complex than the above-mentioned methods, there have
been limited studies on the correlations of the severity of addiction
with the EEG or fNIRS biomarkers discussed in section “4.2.
Biomarkers of EEG and fNIRS in METH addiction.” Conversely,
the severity level (degree) of addiction during abstinence is also
an issue that interests not only academics but also the judicial
community (54). There is no solid evaluation system available to
treatment centers to assess whether a patient has been rehabilitated
when the scheduled therapy period is completed. With real-
time signal-processing chips, various experimental protocols could
be implemented to quantify the recorded biomarkers, providing
information about the severity of addiction, amount of successful
recovery, and correlations of these factors with cognitive functions.

6.1.3. Portable/wearable TMS for customized
treatments

The TMS protocol has not been extensively customized;
previous studies have reported the effect of treatments in a fixed
time frame owing to a pre-scheduled treatment protocol. To
ensure a significant effect when comparing experimental and the
controlled groups, which require analysis of performance over a
fixed and limited time period, the protocols are often prescribed
for a period from a few weeks to months (Table 5). Moreover,
few studies have investigated the long-term effects of the treatment
after the prescribed TMS treatment had been completed. These
limitations of the published research are also due to the low
accessibility of the commercially available bulky TMS devices and
a lack of professional operators to conduct the treatment.

With the proposed wearable closed-loop system, treatment
could be conducted at any time when it is needed. First, the
parameters of the stimulation protocol (amplitude, frequency,
intertrain interval, and duration) and numbers of treatment
sessions can be customized depending on the real-time-monitored
neural signals. Ideally, the potential customized protocol would

increase the efficiency of the TMS devices and the work of clinical
professionals. Second, the efficacy of TMS treatment could be
further improved by the use of a wearable TMS system. A wearable
TMS device could provide the required stimulations without
constraints of time and location. However, the wearability of the
TMS system depends strongly on miniaturization of the magnetic
coil and the control module. Achieving sufficient stimulation
voltage for neuromodulation applications is an important issue
to be addressed in the development of a compact wearable TMS
system (48).

6.2. Apply our closed-loop system to
treat METH addiction

The treatment often has a predefined protocol in a
rehabilitation center for drug abstinence. Patients receive a
fixed amount of therapy in a fixed period. In addition, the effect
of the treatment is difficult to quantify. This condition limits
the flexibility of customizing the treatment protocol based on
the latest conditions. One scenario of applying the closed-loop
system in proposed.

6.2.1. Baseline brain signal recording
The patients are recruited using EEG-fNIRS measurements to

record the baseline brain signals. During the recording, the patients
will be guided to watch the cues, such as drug-related pictures and
videos, on a screen and rate the level of craving after seeing the cues.
The differences of the various parameters of EEG and fNIRS signals
from METH disorder users and healthy participants are analyzed.
Moreover, various recorded signals when receiving neutral or drug-
related cues are investigated. Brain signals’ features, found explicitly
in patients receiving drug-related cues, are defined as biomarkers.
During biomarker identification, no real addictive stimulus (drug)
is required to arouse the thoughts of craving.

6.2.2. Biomarkers identification to predict the
desire of METH

During daily life, no matter in the rehabilitation centers or not,
patients wear the EEG-fNIRS cap as frequently as possible. Twenty-
four hours per day would be optimal. Theoretically, when the users
receive anything related to their previous experiences of METH use,
the brain signals alter, and specific signals containing biomarkers
can be detected. The potential cues can be a wide variety, such
as the environment similar to where the users used METH, the
people who look identical to who the users had METH with, and
the items with similar shapes or functions as the tools used for
METH. The advantages of the real-time signal processing chips are
that the biomarkers can be extracted and compared with baseline
biomarkers at every moment. As soon as the results of biomarkers
comparison can reveal the increasing of craving, an alarm will be
sent to the TMS module to active a treatment. Moreover, with
the low-power and high-performance real-time processing chips,
multimodal biomarkers can be analyzed without delay.

6.2.3. TMS protocol customization
If this is the first time the TMS is activated, the protocol

applied by previous publications can be used. During the TMS
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FIGURE 5

The summary of the limitations of literatures listed in Tables 1–4. (A) Gender types of the recruited subjects with METH addiction; (B) whether the
participants are recruited from rehabilitation centers; (C) whether healthy subjects are included as comparison; (D) whether long-term effects are
tracked; and (E) number of the subject with METH addiction in each study.

planned period, the biomarker changes are identified when being
exposed to the cues which bring more craving, seeing real drug,
for example. If a second round of TMS can be conducted after
the planned stimulation period and the variance of the biomarkers
before and after the treatment is not apparent, this can be a sign
to reduce the TMS treatment intensity or even stop the stimulation
(Figure 1B). Thanks to the flexibility of the wearable TMS module,
the optimal stimulation onset time when biomarkers are detected
can be explored. Moreover, how long the TMS therapy last can be
studied.

6.2.4. Contributions to clinical practice and
medicine

With this wearable closed-loop system, many research
questions which were listed in the limitations of previous published
work (Tables 1–4) can be more feasible to conduct. Figure 5
summarizes the main limitations of the literature reviewed in
Tables 1–4 of this review article. In total, there are 40 pieces
of literature included. As shown in Figure 5A, 34 papers have
single genders, and 7 are females. Single-gender dominates
because most experiments are conducted in rehabilitation centers
where single-gender is allowed in most places. Figure 5B,
only the studies that recruited participants from society have
a chance to include both genders. Figure 5C, not all studies
include healthy subjects as a comparison. When validating the
effect of neuromodulation techniques, often, the stimulations
are not conducted on healthy subjects due to ethical concerns.
Excluding the literature aimed to explore the biomarkers of METH
and healthy group, others implemented neuromodulations or
therapies, such as exercise training. However, only 4 of the 27
studies performed the track monitoring to evaluate the long-term
effect of the treatments (Figure 5D). For clinical studies, more
subjects can lead to a more solid conclusion. Among the 40 pieces
of literature in the tables of this review, 30 studies contain less
than 50 METH patients, eight studies contain 50–100 METH
patients, and two studies have over 100 METH patients. It is
noted that even though some literature uses the same group
of participants, they are still considered individual studies in
Figure 5. These limitations and challenges to obtaining an

optimal experiment are due to limited devices and manpower to
conduct a large-scale investigation and later analyze the massive
data.

The wearable closed-loop system we propose is highly
accessible and user-friendly, and can be easily applied to a broader
range of subjects. This means measurements on both genders
and on both healthy and used disordered. Moreover, longitudinal
recordings to track the long-term effect of the TMS treatment can
be investigated. This system can provide a quantitative evaluation
of the craving level in real-time. This is helpful for clinical doctors
to adjust the therapy plan in the rehabilitation centers. Further
quantitatively support the decision to leave the rehabilitation
centers in advance or extend the stay. Furthermore, subjects not
in the rehabilitation center, meaning those still using METH and
those leaving the rehabilitation center, can be easily monitored.
All scenarios, besides the rehabilitation centers, exit real METH.
Therefore, the risk of relapse can be higher, which might result
in more effective treatment of the system. With chips that can
powerfully analyze the signals using ML algorithms in real-time,
multimodal biomarkers can be analyzed efficiently.

We intend this review to provide a foundation for our
current understanding of the potential for wearable closed-loop
neuromodulation for treating methamphetamine addiction, which
hopefully could be used for other addictive disorders. Here we
detail wearable technologies and how those could be interfaced with
neuroimaging techniques to understand how brain signals may
relate to and influence biological signatures identified using the
wearables. This information would be required to design closed-
loop stimulation parameters that could be applied to patients.
Our goal is that this review will provide a state of the field and
a clear set of questions and next steps, including barriers that
need to be overcome, to design such systems, which we believe
hold great promise.

7. Conclusion

To boost the effectiveness of TMS treatment for METH
addiction, we propose the concept of a wearable closed-loop
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neuromodulation with three main parts: a real-time brain signal
monitoring system, an artificial intelligence signal processing
system, and a customized neuromodulation system. In this
review, we have summarized the research findings relevant to
the essential modules required to achieve a wearable system that
can be used to efficiently treat addiction, including biomarkers
of EEG and fNIRS signals in patients with METH addiction,
ML algorithms that can identify METH addiction, and applied
TMS protocols to treat the addiction. Moreover, various cues
that can be used to induce the desire for METH in validation
experiments have been introduced. This novel approach currently
focuses on METH but could be applied to other substance
addictions in the future.
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