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Aim: Previously, neuroimaging studies on comorbid Posttraumatic-Major 
depression disorder (PTSD-MDD) comorbidity found abnormalities in multiple 
brain regions among patients. Recent neuroimaging studies have revealed dynamic 
nature on human brain activity during resting state, and entropy as an indicator 
of dynamic regularity may provide a new perspective for studying abnormalities 
of brain function among PTSD-MDD patients. During the COVID-19 pandemic, 
there has been a significant increase in the number of patients with PTSD-MDD. 
We have decided to conduct research on resting-state brain functional activity of 
patients who developed PTSD-MDD during this period using entropy.

Methods: Thirty three patients with PTSD-MDD and 36 matched TCs were 
recruited. PTSD and depression symptoms were assessed using multiple clinical 
scales. All subjects underwent functional magnetic resonance imaging (fMRI) 
scans. And the brain entropy (BEN) maps were calculated using the BEN mapping 
toolbox. A two-sample t-test was used to compare the differences in the brain 
entropy between the PTSD-MDD comorbidity group and TC group. Furthermore, 
correlation analysis was conducted between the BEN changes in patients with 
PTSD-MDD and clinical scales.

Results: Compared to the TCs, PTSD-MDD patients had a reduced BEN in the 
right middle frontal orbital gyrus (R_MFOG), left putamen, and right inferior 
frontal gyrus, opercular part (R_IFOG). Furthermore, a higher BEN in the R_MFOG 
was related to higher CAPS and HAMD-24 scores in the patients with PTSD-MDD.

Conclusion: The results showed that the R_MFOG is a potential marker for 
showing the symptom severity of PTSD-MDD comorbidity. Consequently, PTSD-
MDD may have reduced BEN in frontal and basal ganglia regions which are related 
to emotional dysregulation and cognitive deficits.
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1. Introduction

Posttraumatic stress disorder (PTSD) and major depressive 
disorder (MDD) are common psychiatric mental disorders associated 
with the outbreak of the coronavirus disease 2019 (COVID-19); 
according to an epidemiological study, the prevalence of PTSD and 
depression was 21.94 and 15.97%, respectively (1). As a stressful event, 
the coronavirus disease 2019 (COVID-19) pandemic outbreak has 
had a critical impact on mental health and has been associated with 
both PTSD and depression (2–5). Therefore, unprecedented public 
health measures have been implemented to prevent the spread of the 
virus, as over half of the population was affected by this epidemic 
(6–8). Although home quarantine is an effective strategy to curtail 
virus transmission (9–11), it can have negative psychiatric effects 
simultaneously. Studies have reported the occurrence of negative 
psychological effects including PTSD, depression, anxiety, and 
insomnia during the home quarantine (12) and also showed that 
longer quarantine durations were associated with PTSD and 
depression (13–15).

PTSD is a highly comorbid disease, and epidemiological studies 
have reported that 52% of the patients with PTSD had comorbid 
depression (16–18). Recently, a genetic study indicated that PTSD is 
a subtype of MDD (19). In addition, studies have suggested that the 
co-occurrence of PTSD and MDD is linked with severe cognitive 
deficits, emotional symptoms, and a longer course than in patients 
with MDD or PTSD alone (20–22). For PTSD patients with comorbid 
depression, they require a larger dosage of psychotropic drugs 
compared to those with only PTSD (23). Although, a high incidence 
and severity of PTSD-MDD comorbidity have been established, the 
knowledge about its neurobiological mechanisms is limited.

The resting state functional magnetic resonance imaging 
(rs-fMRI) employs the blood oxygenation level-dependent (BOLD) 
signal to characterize the spontaneous activity of the brain (24). In 
addition, rs-fMRI is easy to implement and provides brain function 
time-resolved imaging at a relatively high spatial resolution compare 
to the EEG, making it a widely used tool for studying psychiatric 
diseases (25). Although rs-fMRI has been widely used in psychiatric 
disease, it is rarely applied in the study of PTSD-MDD comorbidity. 
A fMRI study suggesting that the subgenual anterior cingulate gyrus 
might be  a potential neurobiological marker in distinguishing 
PTSD-MDD comorbidity from PTSD patients (26). Notably, current 
rs-fMRI studies have revealed the dynamic nature of the BOLD 
signals, which may reflect brain activity state or mental activity 
changes (27–30). Therefore, it may provide insight into the brain 
activity state in psychiatric disease by analyzing the dynamics 
regularity in fMRI time series. Wang et al. (31) developed a sample 
entropy (SampEn) toolbox to calculate the BEN maps based on the 
fMRI data. Although, the general algorithm for entropy needs a large 
dataset to precisely estimate the probability distribution function, 
whereas SampEn is an extension of Approximate Entropy and it 
showed preferable stability for different data lengths (32, 33). 
Therefore, SampEn is applicable for analyzing rs-fMRI data with an 
approximately small dataset.

Entropy indicates system irregularity. In the context of neural 
system time-based signals, it measures the irregularity of brain 
activity. Studies have suggested that the human brain should sustain 
entropy to maintain normal brain functioning (34, 35). Therefore, 
measuring the brain entropy (BEN) may be  a physical means for 

characterizing brain activity state and its changes in psychological 
diseases. BEN has been characterized using electroencephalogram 
(EEG) data with relatively low spatial resolution (32, 36, 37). However, 
resting-state fMRI (rs-fMRI) provides an approximately high spatial 
resolution, that can be used for BEN mapping.

According to Wang et al. (31), over 1,000 healthy individuals’ 
SampEn maps showed significant lower entropy in the neocortex in 
compare with the rest of the brain. In addition, by comparing the 
changes in the BEN before and after caffeine intake in large samples 
of healthy subjects, Chang et al. (38) identified a significant caffeine-
induced pattern of BEN increase in the whole brain. Furthermore, it 
has been shown in the study by Song et al. that BEN can provides 
features that cannot be fully described by other methods of resting-
state brain activity, such as the cerebral blood flow (CBF) and the 
fractional amplitude of low-frequency fluctuation (ALFF) (39). 
Moreover, a current study also proposed the neurocognitive 
correlations of BEN in rs-fMRI (40). BEN alterations have been shown 
in various disorder conditions in clinical research, including 
schizophrenia (41, 42), MDD (43), attention deficit hyperactivity 
disorder (44), insomnia (45), and cocaine addiction (46). The BEN has 
been suggested as a potential biomarker for a number of psychiatric 
disorders. Studies on BEN represent a growing field on studying the 
dynamic nature of brain activities. we believe BEN can provide a novel 
insight into PTSD-MDD comorbidity.

The purpose of this study was to investigate the irregularity of the 
brain in patients with PTSD-MDD comorbidity by analyzing BEN in 
these patients and comparing them to traumatized controls. 
We observed that BEN had not been applied to the fMRI study PTSD 
or PTSD-MDD comorbidity; However, there are a few studies on 
MDD using the BEN. These studies propose that patients with MDD 
show BEN alterations in the brain regions associated with emotion 
regulation, such as the putamen and thalamus (47), and those vital for 
information processing, such as the medial orbital frontal cortex (43). 
Although these studies focused on MDD, previous studies have 
indicated that PTSD and MDD have quite a few overlapping 
symptoms, including anhedonia, sleep disturbance, and concentration 
difficulties (48). Therefore, we hypothesized that the BEN would differ 
between patients with comorbid PTSD-MDD and traumatized 
controls in the frontal regions and limbic systems, which are associated 
with information processing and emotion regulation.

2. Materials and methods

2.1. Participants

Participants include 33 drug-naive patients with PTSD-MDD 
comorbidity and 36 traumatized controls (TCs), who were enrolled at 
the Guangdong Second Provincial General Hospital in China and 
matched demographically. From December 2020 to October 2021, all 
the patients with PTSD-MDD were home-quarantined for 1 month or 
more during the COVID-19 epidemic, after which they received 
psychological consultation at the Guangdong Second Provincial 
General Hospital. The structured Mini-International Neuropsychiatric 
Interview for DSM-IV was administered by two experienced 
psychiatrists to assess PTSD-MDD comorbidity diagnosis. 
Subsequently, 33 patients were diagnosed with PTSD-MDD 
comorbidity. In addition, patients completed the PTSD Checklist 
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Scale-Civilian (PCL-C) and the HAMD-24. TCs recruited from the 
local community were also quarantined for 1 month or more during 
the epidemic, and all of them showed no psychiatric symptoms after 
quarantine. The mental state of TCs subjects was also evaluated by two 
experienced psychiatrists. Lastly, each participant was matched 
according to sex, age, educational level, and hand dominance.

The inclusion criteria for patients with comorbid PTSD-MDD 
were as follows: (i) 1 month or more than 1 month of quarantine 
during the epidemic; (ii) met the criteria of DSM-IV (iii) PTSD 
Checklist-Civilian Version (PCL-C) score > 44 and HAMD score > 17; 
(iv) age > 18 years; and (iv) without a history of neurological disorders 
or psychiatric disorders. In contrast, the inclusion criteria for TCs 
were as follows: (i) age > 18 years; (ii) right-hand dominance; (iii) no 
psychiatric medications history; (iv) non-compliance with 3 Tesla 
fMRI safety standards. However, the groups did not differ in age or sex 
(Table 1). Furthermore, permission to conduct this study was granted 
by the ethics committee of Guangdong Second Provincial General 
Hospital. All the participants provided written informed consent in 
agreement with ethical approval from the Guangdong Second 
Provincial General Hospital committee.

2.2. Mental status assessment

The PTSD-MDD comorbidity diagnosis was determined 
according to the DSM-IV diagnostic criteria. Before undergoing the 
fMRI scanning, all the PTSD-MDD comorbidity patients were 
screened with the CAPS, PCL-C, and HAMD-24 to estimate the 
severity of the symptoms. Further structured clinical interview was 
conducted to assess other psychiatric comorbidities.

2.3. fMRI procedures

Scans were obtained in a single 3.0-T Philips MR scanner (Ingenia; 
Best, The Netherlands) equipped with a 32-channel head coil. The 
datasets include T2-FLAIR images, 3D T1-weighted images and gradient 
echo-planar images (EPI). The T2-FLAIR images were obtained to detect 
the participants with any brain lesions. The EPI data were acquired in an 
interleaved order to measure BOLD signal, the data were scanned 
approximately AP-PC line with the following parameters: repetition time/
echo time (TR/TE) = 2,000/30 ms; matrix = 64  ×  64, field of view 

(FOV) = 230 mm × 230 mm, flip angle (FA) = 90°, slice thickness = 3.6 mm 
slice, number of slices = 33, slice gap = 0.6 mm, 250 volumes were acquired 
within 500 s. 3D T1-weighted structural images were acquired for each 
participant with TR/TE = 25/4.1 ms; FA = 30°, matrix = 256  ×  256, 
FOV = 230 mm × 230 mm, slice thickness = 1.0 mm; number of slice = 160, 
slice gap = 0. During the scan, the participants wore headphones to reduce 
noise, and placing soft pads on the sides of the head to minimize the head 
movement. All the participants were instructed to lie still, stay awake, and 
think of nothing in particular.

2.4. Data processing and BEN calculations

2.4.1. Preprocessing
MRI data were preprocessed using the Statistical Parametric 

Mapping version 12 (SPM12) software1. (1) Before preprocessing, the 
first 10 EPI volumes of each subject’s data were discarded to allow for 
image intensity to reach stable state. (2) The remaining volumes were 
performed with correction of intra-volume time delay using the 
middle slice as reference and inter-volume head motion using the first 
volume as the reference. (3) 3D T1-weighted images were registered 
into Montreal Neurological Institute (MNI) space, gray matter, white 
matter and cerebrospinal fluid maps were segmented and generated 
during this process. (4) The EPI images were spatially co-registered 
with the 3D T1-weighted structural images as mentioned above and 
resampled into 3 mm isotropic voxels. (5) We  used the mean 
framewise displacement (FD) Jenkinson as the head motion reference 
standard. We  eliminated the participants with motion (mean FD 
Jenkinson) > 2 × Standard Deviation (SD) above the group mean 
motion as we did in our previous study (49). (6) Temporal nuisance 
signals were regressed out including the head motion parameters 
(Friston 24 model), the cerebrospinal fluid signal, and white matter 
signal, global signal was not regressed out (50). Subsequently, linear 
detrend and bandpass filtering (0.01–0.08 Hz) were performed to 
minimize the low-frequency drift and high-frequency physiological 
noise. Finally, the data were spatially smoothed with a 10 mm full-
width at half-maximum Gaussian kernel.

2.4.2. BEN calculation
A combination of home-designed Matrix Laboratory (MATLAB) 

code and the Brain Entropy Mapping toolbox (BENtbx) developed by 
Wang et al. (31) were used to calculate the sample entropy for each 
voxel after image preprocessing (33). SampEn is an extension of 
Approximate Entropy (ApEn), its determined from the temporal 
coherence of a time-series. SampEn is calculated the “logarithmic 
likelihood” that a small window (length “m”) of the data “matches” 
with other windows whether it will still “match” the other windows if 
the window length increases by 1 (length “m + 1”). The “match” 
depends on the tolerance threshold value <“r” times SD of the entire 
time series. Details of BEN calculation was described in the original 
BENtbx paper (31). Same as previous studies the “m” equal to 3 and 
the “r” equal to 0.6 and the threshold is r * SD (39).

1 http://www.fil.ion.ucl.ac.uk/spm

TABLE 1 Demographic and clinical data.

Variables 
(mean ± SD)

PTSD-MDD TCs p-value

Sex (M/F)* 12/21 15/21 0.203

Age (years) 27.3 ± 9.47 25.4 ± 7.11 0.357

Education (years) 12.8 ± 3.05 12.8 ± 2.93 0.660

CAPS score 52.70 ± 7.38 6.58 ± 4.53 <0.0000

PCL-C score 49.30 ± 5.28 5.25 ± 3.41 <0.0000

HAMD-24 score 22.88 ± 4.57 3.36 ± 2.10 <0.0003

*For gender p value was calculated using the Chi-square (χ2) test; M/F, Male/Female; CAPS, 
Clinician-Administered PTSD Scale for DSM-IV; PCL-C, The PTSD Checklist-Civilian 
Version; HAMD-24, Hamilton Depression Scale-24 items; SD, Standard Deviation; PTSD-
MDD, Posttraumatic Stress Disorder and Major Depression Disorder Comorbidity; TCs, 
Traumatized Controls.
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2.4.3. Statistical analysis
A two-sample t-test was used to compare the differences in age 

and education level, While, a chi-square test was used to compare the 
gender composition between the two groups. A two-sample t-test was 
used to compare the differences in the brain entropy between the 
PTSD-MDD comorbidity group and TC group by using the DPABI 
toolbox,2 covariates included age, sex, and educational level. The false 
discovery rate (FDR) correction was used for the multiple comparison 
correction, and the significance level was set at p < 0.05. Therefore, to 
explore the relationship between the average BEN values of the ROIs 
and clinical indicators, we performed general linear models with the 
CAPS, PCL-C, HAMD-24, and BEN values from the clusters that 
showed significant group differences as independent variables, and 
age, gender, educational level, and head motion (mean FD Jenkinson) 
as covariates. Statistical analysis was performed using the Statistical 
Package Social Sciences (SPSS) software version 2.3, with a significance 
threshold set at p < 0.05.

3. Results

3.1. Demographic and clinical tests

There were no significant inter-group differences in terms of age, 
sex, or education level (all p > 0.05). However, in neuropsychology 
assessments, there were significant differences between patients with 
PTSD-MDD and the TCs in CAPS, PCL-C, and HAMD-24. Table 1 
shows the demographic and neuropsychological assessment results.

2 http://rfmri.org/dpabi

3.2. Altered BEN values in patients with 
PTSD-MDD comorbidity

Figure 1 shows the results of the group-level analysis. The results 
showed that patients with PTSD-MDD had significantly decreased 
BEN values in the right middle frontal gyrus orbital part (R_MFOG), 
left putamen and right inferior frontal gyrus, opercular part (R_
IFOG), after FDR correction compared to TCs (Table 2; Figure 1).

3.3. Correlations between BEN values of 
abnormal regions and CAPS score, HAMD 
score

The BEN values and clinical scales were correlated using 
Spearman’s correlation because of the limited sample size of this study 
(see in Figure 2). Figure 2 shows that R_MFOG BEN in was positively 
correlated with HAMD-24 (r = 0.479, p = 0.005) and CAPS (r = 0.366, 
p = 0.036).

4. Discussion

This study examined the BEN maps in PTSD-MDD by comparing 
the BEN maps in the PTSD-MDD and TCs. The following are two 
major findings derived from these results: (1) Patients with 
PTSD-MDD showed lower BEN in the R_MFOG, left putamen, and 
R_IFOG; and (2) BEN values in the R_MFOG was positively 
correlated with HAMD-24 and CAPS. These findings support our 
hypothesis that patients with PTSD-MDD show significant differences 
in the BEN in the frontal regions and limbic system.

The reduced BEN found in the R_MFOG during the resting state 
in patients with PTSD-MDD is partially consistent with those of 
previous studies (51–53). However, a resting-state perfusion study 
showed a reduced cerebral blood flow (CBF) in the R_MFOG, and the 
reduced CBF in the R_MFOG was negatively correlated with PTSD 
severity (51). Our study also showed reduced BEN in the R_MFOG, 
but the reduced BEN was positively correlated with PTSD severity and 
depression severity. A previous study showed BEN-CBF correlation 
especially in the MFOG and inferior temporal cortex (39), since the 
BOLD signal is mostly contributed by the CBF (54). These studies may 
explain the concordance between our results and the CBF results. 
Interestingly, a previous study indicated that BEN is mostly 
independent of CBF; they found that caffeine induced whole brain 
CBF decrease, but a large portion of BEN increased including the 
prefrontal cortex (38). These results suggest that caffeine induced CBF 
decrease, but caffeine induced BEN increase may suggest enhanced 
cognition in the subject. Electroencephalographic (EEG) studies have 
also indicated that BEN is associated with cognition and emotion (55, 
56). Accordingly, we assumed that CBF reduction and BEN reduction 
in PTSD are independent, and that the correlation between PTSD 
severity and BEN may be related to emotional and cognitive symptoms.

Functional imaging studies of PTSD have reported hypoactivity 
in the ventromedial frontal cortex including in the R_MFOG (57, 58). 
Memory encoding and retrieval are affected by reduced activity of 
prefrontal cortex, resulting in difficulty in restructuring their 
traumatic memory in PTSD patients (59). The R_MFOG usually 
shows reduced connection in the EEG and fMRI studies, suggesting 

FIGURE 1

Two-sample t-test performed to test the differences in the brain 
entropy (BEN) maps between the posttraumatic stress disorder and 
major depressive disorder (PTSD-MDD) group and the traumatized 
controls (TCs) at each voxel. In addition, the false discovery rate 
(FDR) tests were performed for multiple comparison corrections 
(p < 0.05), PTSD-MDD group showed significantly reduced BEN value 
in the right middle frontal orbital gyrus (R_MFOG), left putamen, and 
the right inferior frontal gyrus, opercular part (R IFOG).
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that the reduced connectivity in the R_MFOG might be related to 
dysregulation of the default mode network or self-referential 
processing process in patients with PTSD (60, 61). Furthermore, 
several neuroimaging findings propose that combined with the limbic 
system the orbital and medial frontal cortex is critical in the MDD 
aberrant network (62–64). Previous studies have suggested that the 
dysfunctional orbital frontal cortex is associated with suicidal 
symptoms, as it plays a key role in decision-making (65). On the other 
hand, the orbital frontal cortex is also involved in stressful events and 
has increased functional connectivity (FC) especially in self-referential 
processes, that can cause depression and frustration (66, 67). 
Accordingly, we  believe the decreased BEN in the R_MFOG is 
associated with depression symptoms, and the BEN may reflect the 
severity of MDD.

Conversely, the reduced R_IFOG in this study are partly 
supported by a previous BEN study on MDD. A previous study found 
a decrease in the BEN value of the R_IFOG. However, they also 
observed a negative correlation between the HAMD-24 and the BEN 
value of the inferior frontal region (68). In addition, a previous task-
based fMRI study reported increased FC in IFOG (69), proposing that 
the increased connectivity is associated with the fronto-temporo-
parietal network, and the altered connectivity in this network may 
result from a compensatory mechanism, which is important for 
emotion regulation (70). There is evidence that IFOG is involved in 
cognition as well as emotional processing, including the association 
between MDD patients and the preference for processing negative 

information (71). A voxel-based morphometry study indicated that 
patients with MDD and patients with PTSD-MDD showed smaller 
volumes in the IFOG than in the healthy controls, and that the IFOG 
volume was normalized after medication and the depressive symptoms 
were also mitigated (72). Therefore, we assume that the reduced BEN 
in the R_IFOG might be associated with depression symptoms, and 
that abnormalities in the IFOG might indicate the depressed patients 
with anxiety comorbidities. Several structural studies have 
demonstrated that the reduced inferior frontal cortex in depressed 
patients is comorbid with anxiety symptoms (73, 74). In line with 
these studies, our findings provide evidence of the functional 
irregularity in the R_IFOG in patients with PTSD-MDD comorbidity.

The finding of reduced BEN in putamen is partly in agreement 
with a previous study of BEN in patients with MDD (68). Not only 
that, but a previous fMRI study showed a decreased FC between the 
basolateral amygdala and putamen in PTSD-MDD comorbidity 
versus PTSD alone. Furthermore, they found a negative correlation 
between the basolateral amygdala-putamen FC and the HAMD-24 
scores (75). These results indicate that the FC difference between the 
PTSD-MDD and PTSD groups may be more closely associated with 
MDD symptoms. Although we could not find correlations between 
the HAMD-24 scores and the BEN value in the putamen, several 
studies have suggested that putamen is associated with depressive 
symptoms (76, 77). In addition, a previous MDD study also showed 
weaker FC between the amygdala and the cortico-striatal-pallidal-
thalamic circuit, which maintains information in working memory 

TABLE 2 Comparison of SampEn between PTSD-MDD and HC.

Brain region Cluster size MNI coordinate AAL BA Peak t value

X Y Z

R MFOG 570 34 38 −16 Frontal_Mid_Orb_R BA11 −4.5913

L Putamen 178 −16 6 −6 Putamen_L −4.6276

R IFOG 313 62 16 2 Frontal_Inf_Oper_R BA47 −4.6032

L, left; R, right; MNI, Montreal Neurological Institute; AAL, Anatomical Automatic Labeling; BA, Brodmann Area; MFOG, Middle Frontal Orbital Gyrus; IFOG, Inferior Frontal Gyrus, 
Opercular part.

FIGURE 2

Correlation between right middle frontal orbital gyrus (R_MFOG) brain entropy (BEN) values and Clinician-Administered PTSD Scale (CAPS) and 
Hamilton Depression Scale-24 items (HAMD-24) scores. The BEN values of the R_MFOG were positively correlated with CAPS scores and HAMD-24 
scores (CAPS: r = 0.366, p = 0.036; HAMD-24: r = 0.479, p = 0.002).
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(78). There is a correlation between working memory, as a main 
cognitive deficit, and PTSD (79, 80). Accordingly, we believe that the 
reduced BEN in the putamen may meditate an impaired working 
memory in patients with comorbid PTSD-MDD.

This study had some limitations. First, this study lacked a PTSD-
only group or MDD-only group, making it impossible to evaluate 
whether patients with PTSD-only patients or MDD-only patients had 
different BEN than those with PTSD-MDD. Second, as all our patients 
were exposed to trauma, most people in the urban areas had home-
quarantine experience, and the social panic following the outbreak is 
an important traumatic factor. Third, the small sample size may have 
resulted in insufficient statistical power. Fourth, although previous 
studies have indicated the BEN reflects the human brain complexity 
of human brain, the exact neurophysiological basis remains unclear, 
limiting the interpretation of our findings.

In conclusion, this study revealed a decreased BEN in patients 
with PTSD-MDD who were home-quarantined for 1 month or more 
during the COVID-19 epidemic. Therefore, these results not only 
provide evidence for the BEN research on PTSD-MDD comorbidity 
but also provide evidence that pandemic-related psychiatric disease 
affects the brain irregularities in brain activity. Furthermore, the brain 
regions that show significant BEN alterations agree with previous 
fMRI studies, and correlations were established between the BEN in 
the right MFOG and the symptom severity (CAPS, HAMD-24), 
suggesting that MFOG is a potential marker for revealing the 
mechanism of PTSD and MDD and may inform future 
clinical interventions.
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