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Emergence of avian influenza viruses with high lethality to humans, such as the currently cir-
culating highly pathogenic A(H5N1) (emerged in 1996) and A(H7N9) cause serious concern
for the global economic and public health sectors. Understanding the spatial and temporal
interface between wild and domestic populations, from which these viruses emerge, is
fundamental to taking action. This information, however, is rarely considered in influenza
risk models, partly due to a lack of data. We aim to identify areas of high transmission risk
between domestic poultry and wild waterfowl in China, the epicenter of both viruses.Two
levels of models were developed: one that predicts hotspots of novel virus emergence
between domestic and wild birds, and one that incorporates H5N1 risk factors, for which
input data exists. Models were produced at 1 and 30 km spatial resolution, and two tem-
poral seasons. Patterns of risk varied between seasons with higher risk in the northeast,
central-east, and western regions of China during spring and summer, and in the cen-
tral and southeastern regions during winter. Monte-Carlo uncertainty analyses indicated
varying levels of model confidence, with lowest errors in the densely populated regions
of eastern and southern China. Applications and limitations of the models are discussed
within.
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INTRODUCTION
Emerging infectious diseases in wildlife are a growing concern
to human health. More than 75% of known emerging pathogens
are zoonotic, or transmissible from animal to humans (1, 2). An
increased global demand for meat products has caused rapid inten-
sification of the domestic livestock industry (3), and improve-
ments to transportation and market chains has brought humans
and their agricultural systems closer together (4–6). Coupled with
climate change and landscape fragmentation (7–9), incidence of
emerging zoonoses is likely to continue to rise, with particular
threat in developing regions such as China, India, and parts of
Southeast Asia (7–10).

Two currently circulating avian influenza viruses, highly path-
ogenic A(H5N1) and low pathogenic A(H7N9) (hereafter H5N1
and H7N9) are of particular concern due to their high case-fatality
rates (approximately 60 and 30% currently), and economic impact
to the livestock industry and public health system (11). H5N1 first
emerged in domestic geese in southern China in 1996 (12), and
has since infected 60 countries across Asia, Africa, and Europe
killing 374 people. It continues to persist with year 2013 reports of
animal infection in Bangladesh, Bhutan, Cambodia, China, India,
and Nepal (13) and human cases in Bangladesh, Cambodia, China,

Egypt,Vietnam (11). H7N9 was first reported in a man from China
who began showing symptoms in mid-February 2013. In the fol-
lowing 12 weeks, the number of human cases rapidly rose to 132 [as
of 7 June 2013, (11)], all within China. At the time of this writing,
human to human transmission is rare in both viruses, although
concern exists that genetic mutation or reassortment could cause
a human pandemic (14–16).

Wild birds, generally waterfowl and shorebirds (Orders Anser-
iformes and Charadriiformes), are the natural reservoir for low
pathogenic avian influenza viruses (LPAIV) (17). LPAIV can
mutate into lethal form, which commonly occurs upon entry
into a high density host population, such as a poultry farm (18).
This appears to have been the case with H5N1 (2), however,
H7N9 remains an LPAIV (as defined by pathogenicity to chick-
ens), despite having bridged the species gap and causing death in
humans. Although many questions remain unanswered in these
early months of H7N9 occurrence – such as which domestic or
wild species are the reservoir for this virus – there is a growing body
of knowledge from our H5N1 experience that might be applied
toward understanding H7N9. In particular, understanding where
wild and domestic birds have opportunity to interact on the land-
scape will be useful in identifying areas where disease transmission
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may be more likely to occur. These regions would become focal
areas for surveillance and prevention.

A recent review of H5N1 risk models (19) noted that few stud-
ies have explicitly incorporated wild birds in transmission risk
models, in part because obtaining adequate inputs for these popu-
lations is difficult. Our aim is to model regions where domestic and
wild birds co-occur on the landscape, thereby presenting an oppor-
tunity for disease transfer. We take an iterative approach to under-
standing the spatial relationships between wild and domestic birds
across the breeding and wintering seasons by building high spatial
resolution (1 km) deterministic models based on wild and domes-
tic bird co-occurrence, and subsequently by developing a model
that incorporates H5N1 risk factors. The first set of models (co-
occurrence) has broad utility for predicting areas for emergence of
novel viruses, and potentially toward understanding H7N9. The
second group of models provides insight on transmission potential
at the domestic and wild bird interface for H5N1.

MATERIALS AND METHODS
STUDY AREA
Transmission risk models were developed for China based on the
importance of this region for H5N1 and H7N9, and the potential
for emergence of novel viruses. China’s anthropogenic and natural
landscapes differ greatly across the country, allowing for varying
levels of disease risk, both spatially and temporally.

In addition to developing nationwide models for China, we
focused on two areas of interest regarding transmission at the wild
and domestic bird interface: Poyang Lake (PYL) Region in south-
eastern China and Qinghai Lake (QHL) in northwestern China.
PYL, located in along the Yangtze River basin, is a complex wet-
land system that supports 8.8 million people, 14 million ducks,
and 100,000 wintering migratory waterbirds, including 90% of the
global population of endangered Siberian Cranes (Grus leucoger-
anus) (20). The majority of the human population at PYL lives in
village settings, well-integrated within the agricultural landscape.
Rice-cropping and free range duck farming are prevalent, and the
demand for “healthy” wild meat has led to the rise of farmed wild
waterfowl [Chinese spotbill (Anas poecilorhyncha), mallard (Anas
platyrhynchos), northern pintail (Anas acuta), etc.], increasing the
potential for wild and domestic populations to exchange virus (21,
Cappelle, in review). QHL in contrast, is a remote arid region on
the high-elevation Qinghai-Tibet Plateau with few poultry or free-
ranging duck farms. Surprisingly, H5N1 outbreaks are common
to both regions, and investigating the response using our trans-
mission risk models to these very different regions is of particular
interest.

MODEL DESIGN AND INPUTS
We developed three levels of models to predict risk for dis-
ease transmission between poultry and wild waterfowl in China
(Figure 1). As a first step (Level 1), we developed simple overlay
gridded maps that predict where poultry and wild waterfowl are
likely to co-occur on the landscape at 1 km resolution. Poultry is
defined as aquatic poultry (domestic ducks and geese) and terres-
trial poultry (chickens). Wild waterfowl is defined as wild duck
and goose species, and does not include farmed wild birds. The
Level 1 models show us where domestic and wild birds are likely to

FIGURE 1 |Three levels of spatial models implemented for assessing
H5N1 transmission risk between wild and domestic birds in China.
Level 1 and 2 deterministic models were developed to refine the
transmission equations (1 km resolution). Level 1 models are co-occurrence
models that predict where wild and domestic birds may come in contact.
Level 2 models incorporate uni-directional equations for H5N1 transmission
risk between poultry and wild birds. Level 3 models incorporate uncertainty
using Monte-Carlo simulations at 30 km resolution.

be present within close proximity (<1 km) to allow for potential
disease transfer via direct transmission or the environment.

Level 2 and 3 models incorporate H5N1 parameters. The
models include four basic components that relate to classic com-
partmental models in epidemiology (22): infected and susceptible
populations and their viral shedding and exposure rates (see equa-
tions below). These models use a hybrid density-dependent and
environmental transmission approach, whereby direct transmis-
sion is defined by bird to bird transmission (within poultry or
waterfowl) as well as the fecal to oral route facilitated by transmis-
sion through the land and water environment (23, 24). We first use
a deterministic approach to develop and refine the model equa-
tions (Level 2), then apply Monte-Carlo simulations to incorporate
estimates of uncertainty around the parameter inputs (Level 3).

Nine parameters were derived for the risk models (Table 1),
including spatial and non-spatial parameters: terrestrial poultry
density, aquatic poultry density, effective waterfowl population,
contaminant containment scalar, incoming biosecurity scalar, ter-
restrial poultry viral shedding rate, aquatic poultry shedding rate,
effective waterfowl population shedding rate, and viral uptake rate.
Spatial inputs include poultry and waterfowl densities and biose-
curity scalars. Non-spatial inputs, meaning parameters for which
the current state of knowledge does not allow for differentiation
across the spatial extent of our model, include viral shedding and
uptake rates. These parameters values, which were taken from the
literature (Table 1), were applied uniformly across each grid cell
in the model.

We modeled terrestrial (P te) and aquatic poultry (Paq) popula-
tions by disaggregating census data and applying regression mod-
els for China’s top three poultry species: chickens, ducks, and geese
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Table 1 | Parameters of 1 km resolution transmission risk equations including the range of values, approach for sensitivity analyses, and

reference for each.

Parameter Description Value range for 1 km (mean, SD) Value range for 30 km Notes (Reference)

P te Terrestrial poultry density 0–9418 (379.4, 745.7) chickens/km2 0–5871 chickens/km2 Chicken densities for China (25)

Paq Aquatic poultry density 0–2796 (86.2, 164.7) ducks and

geese/km2

0–2796 Ducks and

geese/km2

Duck and goose densities for China (25)

WEF Effective waterfowl

population

WEFbr: 0–0.32 (0.01, 0.04) Wprbr: 0–0.29 Distributions from (Prosser, in review)

Breeding season: WEFbr WEFwi: 0–0.39 (0.006, 0.025)

watefowl/km2

Wprw i 0 to 0.39 Population estimates from (43, 44)
Wintering season: WEFwi Prevalence rates from (45–49)

C te Contaminant containment,

terrestrial poultry (biosecure

threshold P te=5000

birds/km2)

Biosecure=0.75 and 0.25;

non-biosecure=1 (unitless)

Biosecure=0.5;

non-biosecure=1

Biosecure threshold of 5000 chickens per

km2. Reduction of population by 0.25 or

0.75 given biosecure designation

Bte Biosecurity, terrestrial poultry

thresholds:

P te ≤50: Pbackyard=P te×1.0

50 < P te ≤1000, Pbackyard:

P te×0.5, P te > 1000,

Pbackyard=1000

P te×Bte=0–1000 poultry/km2 P te×Bte=0–1000

poultry/km2

Tri-part equation:

At densities≤50, 100% of population is

backyard poultry

From 50 to 1000, half are backyard poultry

At greater than 1000, backyard poultry is

limited to 1000

V te Viral shedding rate, terrestrial

poultry

101.4 and 109.8 EID50 100, 109.8, 106.8 EID50 Viral shedding rates per individual per day

from (50–52)

V aq Viral shedding rate, aquatic

poultry

101 and 105.7 EID50 0, 106.5, 102.98 EID50 Viral shedding rates per individual per day

from (53–57)

V wf Viral shedding rate, wild

waterfowl

102.5 and 106.5 EID50 102.5, 106.5, 104.77

EID50

Viral shedding rates per individual per day

from (58)

U Viral uptake= consumption

rate of virus in the

environment/minimum load

for infection

10−15
/(104.7–101.8) EID50 1.58e−17, 1.99e−20,

1.99e−20
∑

50

Consumption rate of virus in environment

10-15 (37); minimum viral load of 104.7

EID50 (and 101.8 EID50) to initiate infection

with low pathogenic AIV (23, 59, 60)

(25, Prosser, in review). Poultry densities were modeled at 1 km
resolution across the extent of China with units of birds per km2.
For waterfowl, because the number of species and individual sus-
ceptibility to H5N1 is diverse (26), we aimed to derive an “effective
waterfowl population” for each 1 km grid cell. Here we first mod-
eled population estimates for each species by taking the total popu-
lation for a given species and distributing it evenly across the extent
of its range (Prosser, in review). We then applied prevalence rates
[from the literature, see Table 1; (Prosser, in review)] to estimate
the proportion of the population that may be (a) shedding virus if
disease is present, or (b) susceptible to infection if disease is present
in domestic species. To get the total effective waterfowl popula-
tion (W EF), we then summed the resulting numbers of wild birds
for each grid cell. Units for W EF are birds per km2. This process
was conducted separately for the breeding and wintering seasons
(W EFbr and W EFwi) as population distributions vary greatly due
to the migratory patterns of waterfowl (Prosser, in review).

Two biosecurity scalars were developed to reduce the effective
poultry populations: a contaminant containment parameter (C te)
that moderates virus flow from poultry farms to the environment,

and a biosecurity parameter (Bte) that moderates exposure of
poultry to virus [Table 1; (Prosser, in review)]. The parameters
were derived based on the assumption that more biosecure farms
control the flow of potential pathogens from the farm to the
environment (C te term), and protect themselves from incoming
pathogens from the environment and other farms (Bte term); for
example by cleansing vehicles before entering the farm, housing
animals in structures secure from wild species, etc. Due to the
difference in farming systems for chickens versus aquatic poul-
try [housed versus free range (27)], the biosecurity scalars were
applied to the terrestrial poultry populations only. C te was given a
value of 1 for cells with less than 5,000 terrestrial poulty/km2 (i.e.,
no change in effective population) and 0.5 for cells with higher
concentrations of birds (i.e., reducing the effective population by
one half). Bte uses a tri-part scalar to reduce the effective popula-
tion of chickens based on an estimate of the proportion of birds
in backyard farms versus larger chicken houses [details in (28,
Prosser, in review)]. The assumption made here is that if virus is
transferred through the environment, only the free-ranging“back-
yard” poultry would be exposed to virus coming from wild birds.
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However, from our field studies, we also understand that move-
ment of poultry feces and usage of water from different sources
is complex and provides opportunity for virus transfer even to
housed poultry. Therefore, we also ran the models using the entire
poultry population as the effective population size (removing the
Bte term from the model).

Virus shedding rates for terrestrial poultry (V te), aquatic poul-
try (V aq), and waterfowl (V wf) were taken from the literature
(Table 1). Units are EID50 (amount of virus that causes infec-
tion in 50% of embryos) per individual per day. The virus uptake
term (U ), was taken from the literature (Table 1), and includes the
consumption rate of virus in the environment (per day per bird)
divided by the minimum load to infection (in units of EID50).
The U term acts as a contact rate modifier for the number of
susceptible birds in the population.

TRANSMISSION RISK EQUATIONS
Level 1 models
We developed two Level 1 models, both of which are based on
presence or absence of bird groups and not effective population
numbers. The first model generated a simple binary risk map with
the assumptions that (a) transmission risk is bi-directional (equal
probability) between poultry and waterfowl and (b) transmission
would only occur if both poultry and waterfowl were predicted to
be “present”:

T01A = P01 ×W01 (1)

where P01 and W 01 are the predicted presence of poultry and
waterfowl, respectively. Parameter values are 1 or 0 (present or
absent). A T 01A value of 0 indicates no transmission risk (i.e.,
no co-occurrence) between domestic and wild species because
both are not present within a cell. A transmission risk value of
1 indicates the potential for virus transmission between wild and
domestic populations. The second Level 1 model measures the
co-occurrence of waterfowl with one or both types of poultry.
Transmission potential of these varying combinations may have
implications for surveillance and control,which is why we included
this iteration of the models. Pt 01 is predicted presence of terrestrial
poultry, and Pa01 is predicted presence of aquatic poultry. Para-
meter values are 1 or 0 (present or absent), and model output is 2,
1, or 0 represented in decreasing threat of transmission risk for the
three output values (both types of poultry are present along with
waterfowl; one type of poultry is present along with waterfowl; or
either poultry or waterfowl are not present in the grid cell):

T01B = (Pt01 + Pa01)×W01 (2)

Level 2 and 3 models
Level 2 and 3 models are based on where poultry and waterfowl
are found together on the landscape, but also include effective
population size, H5N1 shedding rates, and virus uptake for each
group. We developed uni-directional equations for transmission
potential from poultry to waterfowl versus waterfowl to poul-
try (Eqs 3 and 4) due to differences in farming structure and
movement of virus through the environment (see above). The
equations include compartments (grouped by brackets below)

for the amount of virus entering the environment from infected
birds (effective populations of infected birds times shedding rates)
and amount of virus being taken up by susceptible individuals
(effective susceptible populations times the uptake rate):

TP to W =
[
(Pte × Cte × Vte)+

(
Paq × Vaq

)]
× [WEF × U ] (3)

TW to P = [WEF × Vwf]×
[(

(Pte × Bte)+ Paq
)
× U

]
(4)

where P te and Paq represent densities of terrestrial and aquatic
poultry; C te and Bte as biosecurity scalars; V te, V aq, and V wf as
viral shedding rates for terrestrial poultry, aquatic poultry, and
waterfowl; W EF as the effective waterfowl population; and U as
the virus uptake rate. Model output is a measure of the trans-
mission risk between poultry and waterfowl in units of predicted
number of cases. Due to limits in the state of knowledge of shed-
ding and uptake rates, we do not presume to use the model outputs
as direct measures of the risk of transmission within a grid cell at
this time; alternatively, we expressed the output in relative format
by grouping the choropleth legend into 0 risk and 4 quantiles rep-
resenting low, medium, high, and highest risk (29, 30). The Level 3
models used Monte-Carlo simulations to incorporate uncertainty
around model inputs and to map estimates of error on a spa-
tial basis (31, 32). Uncertainty for the poultry variables, P te and
Paq, was described using a normal distribution. This was deter-
mined by fitting a random sample of poultry estimates across 25
bootstrapped layers for 100 spatial locations [fitdistrplus package,
R, (33, 34)]. We used best estimates and minimum – maximum
limits within triangular and truncated normal distributions for the
remaining variables [mc2d package, R, (34, 35)] to perform the tri-
angular and truncated normal distributions. Each simulation was
run for 10,000 iterations to ensure model convergence. We calcu-
lated the coefficient of variation (CV= standard deviation divided
by the mean) to estimate uncertainty of model predictions using a
bootstrap procedure for the poultry models (25) and Monte-Carlo
analysis for the waterfowl indices (Prosser, in review).

SPATIAL AND TEMPORAL SCALE OF ANALYSIS
The Level 1 and 2 deterministic equations were modeled at 1 km
resolution in a geographic framework using ArcGIS 10.0 (ESRI,
Redlands California) and Python (www.python.org). The Level 3
models, which incorporated the Monte-Carlo-based uncertainty
(31, 32), were run at the coarser resolution of 30 km, approximately
the average county size for China. Models were run separately
for two temporal seasons relating the annual chronology of wild
waterfowl to transmission risk: the breeding season (spring and
summer months, generally April to July) and the wintering season
(November to March).

RESULTS
RISK MODELS
Level 1 models, identifying locations where poultry and wild
waterfowl co-occur showed distinct patterns across China
(Figure 2). Dense concentrations of positive risk grid cells were
present across much of southeastern China during both seasons.
Northeastern and western China showed more localized patterns
of transmission risk, and wider extent for the breeding season
than the wintering season. The spatial pattern was similar when
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FIGURE 2 | Hotspot regions of potential disease transmission between
domestic and wild birds in China. Models are 1 km resolution co-occurrence
for China’s domestic poultry and wild Anatidae waterfowl: (A) domestic

poultry and wild Anatidae are predicted present (Eq. 1), and (B) terrestrial and
aquatic poultry are predicted present in combination with wild Anatidae (red)
versus presence of one poultry group (blue) with wild Anatidae (Eq. 2).

considering the areas of co-occurrence of poultry with wild birds
(Eq. 1) and presence of one or both poultry groups in combina-
tion with wild waterfowl (Eq. 2). Localized regions existed in the
west where only one poultry type (usually chickens) was present
in combination with wild waterfowl (Figure 2, lower panel).

Transmission risk for the 1 km deterministic poultry to wild
equations (Eq. 3, T P to W) ranged from 0 to 164.8 e−9 with units
of predicted number of cases per day. Wild to poultry determin-
istic transmission risk was lower (0 to 5.19 e−11). Ranges for the
30 km Monte-Carlo models were 0 to 67.0 e−9 and 0 to 16.3 e−12
for Eqs 3 and 4, respectively. The mean level of risk was greater
for the poultry to waterfowl models (Eq. 3) by approximately two
orders of magnitude (Table 2). Spatial patterns of disease risk
were similar across the broad scale of China (Figure 3). Both
the 1 km deterministic and 30 km Monte-Carlo models showed
distinct spatial patterns between seasons (Figures 3 and 4, respec-
tively). During the breeding season, highest levels of risk (in both
directions) were localized patches in northeastern China and along
the Yangtze River plain of south-central China. For the winter-
ing season, higher levels of risk were confined to southern and
eastern China, particularly along the major river basins. Winter
models had higher means than breeding season models by 46%
Eq. (3) and 53% Eq. (4). Focused model predictions for the PYL
and QHL sub-regions showed contrasting results between seasons
(Figure 5). PYL had moderate to high transmission risk in both
the winter and summer seasons whereas QHL showed low risk

during the winter season and moderate risk during the summer
breeding season.

Patterns in uncertainty of the Level 3 Monte-Carlo simulation
models were similar across seasons and uni-directional equations.
We carefully investigated mean input and output for the models
between the Level 2 deterministic and Level 3 Monte-Carlo simula-
tions (36). Means were nearly identical for the 1 and 30 km models,
indicating a lack of bias in the resampling process (Table 3); we
also noted higher means for the input parameters that were mod-
eled using the triangular distribution of the Monte-Carlo models
(Table 3, Section B). These models initially used a global (fixed)
minimum and maximum value for all cells which is less computa-
tionally intensive but has the effect of increasing the mean values.
We then reran the models using individual minimum and maxi-
mum values for each cell which reduced the mean values to match
the 30 km deterministic models; however, to avoid negative values
for input parameters such as waterfowl abundance and preva-
lence, we truncated the triangular distributions to fit within each
parameter’s input range (Table 1). Truncating the distributions
increased means for each parameter (Table 3, Section B); however,
the values were closer to the 30 km deterministic models than the
models using a global min/max, and thus used in the final models
reported. The most uncertain areas of prediction were located in
the western part of the country, and the least uncertain areas were
located in the south and east (Figure 4). Models encompassing
virus flow from wild birds to poultry (Eq. 4) had CVs that were
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Table 2 | Differences in mean values across all cells for two modeling approaches (Level 2 and 3) and four transmission scenarios.

Model Eq. 3 breeding season Eq. 3 wintering season Eq. 4 breeding season Eq. 4 wintering season

Level 2 (deterministic) 3.82E−10 7.13E−10 1.48E−13 3.13E−13

Level 3 (Monte-Carlo) 1.18E−09 1.66E−09 6.03E−13 8.39E−13

Coefficient of variation 144 147 219 223

Units of Level 2 and 3 model output are predicted number of cases per day.

FIGURE 3 | Highly pathogenic H5N1 transmission risk between domestic poultry and wild Anatidae waterfowl at 1 km resolution for China. Level 2
models include H5N1-specific transmission factors and are uni-directional with (A) representing transmission risk from domestic to wild birds (Eq. 3), and (B)
from wild birds to domestic (Eq. 4).

40% higher than models describing virus flow from poultry to
wild birds (Eq. 3).

DISCUSSION
MODEL SUMMARY AND INTERPRETATION
The objective of this study was to lay the foundation for a
systematic modeling approach to investigate and predict spa-
tial and temporal patterns of disease transmission risk between
poultry and wild waterfowl populations in China. We explic-
itly took a multi-level approach toward modeling transmission
risk between wild and domestic waterfowl in China. The Level 1
deterministic models demonstrated, at a fine resolution, predicted
locations of co-occurrence of wild and domestic waterfowl dis-
tributions. High risk hotspots during the wintering season were
observed in the southern and eastern lowland regions of China
(Figure 2). These areas have concentrated poultry populations,
particularly free-grazing ducks in association with rice farming,

and are important wintering areas for many migratory waterfowl
species. Hotspot regions of risk during the breeding season were
observed in the northeastern and central-eastern China and had a
greater geographic extent but more localized pattern in compar-
ison to the winter risk models. The difference in pattern can be
explained in part by waterfowl that tend to breed in the north and
high-elevation western regions – areas where wetland habitat is
distributed in a patchier, more localized pattern than the extensive
lowland wetlands and rice paddies of the southeast (Prosser, in
review).

Level 2 and 3 models, although unrealistically simplistic for
predicting absolute risk of transmission, takes a first attempt at
incorporating H5N1-specific parameters and population numbers
for the different bird groups. Virus shedding and uptake rates were
included as constants in the model. As our knowledge increases,
these constants can be replaced with inputs parameterized to
reflect geographic heterogeneity. In particular, the numerator of
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FIGURE 4 | H5N1 transmission risk between wild and domestic birds
in China and associated uncertainty predictions at 30 km resolution.
Risk maps represented as mean and CV (left and right in each pair of
maps, respectively). (A) Top panel represents transmission risk from

poultry to wild waterfowl; (B) bottom panel represents transmission risk
from wild waterfowl to poultry. Maps are symbolized using quantiles.
Black boxes correspond to the Qinghai Lake and Poyang Lake Regions
outlined in Figure 5.

FIGURE 5 | Comparison of model outputs for Qinghai Lake (QHL) and Poyang Lake (PYL) sub-regions for (A) 1 km deterministic and (B) 30 km
Monte-Carlo model outputs using Eq. 3 (poultry to wild transmission risk) for the winter season. Insets (C,D) show comparisons for the breeding season
Eq. 4 (wild to poultry transmission).
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Table 3 | Comparisons of mean model outputs for 1 km deterministic, 30 km deterministic, and 30 km Monte-Carlo models of H5N1

transmission risk between wild and domestic birds in China.

(A) Parameter 1 km

Deterministic

30 km

Deterministic

30 km Monte-Carlo

TRUNCATED NORMAL DISTRIBUTIONS

P te (chickens/km2) 379 378 379

Paq (ducks and geese/km2) 86 86 86

(B) Parameter 1 km

Deterministic

30 km

Deterministic

30 km Monte-Carlo

global min/max

30 km Monte-Carlo individual

min/max truncateda

TRIANGULAR DISTRIBUTIONS

WEFbr (waterfowl/km2) 0.01 0.01 0.13 0.03

WEFwi (waterfowl/km2) 0.006 0.006 0.099 0.037

P te×Bte (chickens/km2) 183 184 395 227

C te (poultry/km2) 1.00 1.00 0.83 0.83

aThe 30 km Monte-Carlo individual min/max truncated values were used in the final models, and were closer to the 30 km deterministic means than the models that

used a global min/max value for the distributions. (A) Notes values for parameters using truncated normal distributions for the Monte-Carlo simulations. (B) Notes

values for parameters using triangular distributions for the Monte-Carlo simulations.

the uptake term seems unrealistically low (10−15). This term was
taken directly from a traditional compartmental epidemiological
model (37) which is designed to run iterative steps through time.
This term has a large affect on the output value of our model, which
is represented by a single risk value (in time). Improvements to this
term would improve the overall output of our model. In light of
these issues, we have used the model to highlight regions of H5N1
transmission risk in relation to other locations.

The effect of the addition of seasonal bird population size
was apparent in the model results for QHL and PYL focal areas
(Figure 5). Hundreds of thousands of migratory waterfowl return
to the PYL region in the winter and reside amongst some of
the highest poultry densities in the country. In the QHL region,
waterfowl migrate away from the cold and arid plateau for the
winter months and risk is lower year-round due to the low poultry
densities in the area. Risk for QHL changes during the breed-
ing season (Figure 5C) with the return of tens of thousands of
nesting waterfowl to the region. The differences in risk could
not be predicted without explicitly incorporating the ecology of
the wild bird populations, which is one of the strengths of our
approach.

Although waterfowl species were considered as a composite, the
contribution of significant species was still evident in certain areas.
A concentrated section of risk was observed in northeastern China
wintering models (Figures 2 and 3, right panel) which followed
the distribution of a single species, the greater white-fronted goose
(Anser albifrons). The effect of this species was most noticeable in
the Level 1 risk models (Figure 2) because input values from the
poultry and wild bird populations were given equal weight. The
pattern was present in Level 2 models to a lesser degree (Figure 3)
since prevalence rates for the greater white-fronted goose were low
in comparison to other species (2.2%).

The virus shedding and uptake rates spanned four to ten
orders of magnitude. Due to the large range in values, and that
we extracted them directly from the literature, we chose to keep

these rates fixed in the Monte-Carlo models so we could more
clearly assess the effects of our modeled input parameters (wild
bird and poultry distributions, and biosecurity and contaminant
containment parameters). One term of particular interest was the
biosecurity term (P te×Bte), which had a substantial effect on the
model results. Until data are available to generate a better estimate,
we developed two sets of models have been developed for use (28).

Level 3 models showed a similar pattern across China to the
deterministic models, confirming that the number of simulations
was sufficient for the mean values to converge toward results of
the deterministic models (32). This allowed us to identify areas
of greatest variability. The lowest predicted errors were in the
southeast (Figure 4), which can be explained in part by the high
poultry densities in this region (25). The highest predicted errors
were in the western regions where waterfowl populations are more
localized and sparsely distributed.

UTILITY AND LIMITS OF THE MODELS
These models should be considered as a starting point to refine
predictions of risk for H5N1 outbreaks. In contrast to existing
temporal dynamic models of H5N1 transmission (23, 24, 37),
our models focus on transmission risk at the interface of wild
and domestic species and illustrate that even simple incorpo-
ration of transmission parameters modify the risk map. These
are the first spatially based models to incorporate waterfowl dis-
tributions from population data. Our approach complements
existing dynamic epidemiological models as well as studies which
have mapped statistical relationships between outbreak events
and environmental or anthropogenic risk factors without hav-
ing complete information on an entire region or populations (19,
38–42). Our spatial characterization of the susceptible popula-
tions and the stepwise examination of the effects of adding model
complexity should form a basis for more sophisticated refine-
ment of transmission parameters as these are recognized in other
studies.
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With growing interest in predicting the risk of future trans-
mission of H5N1 or other emerging strains such as H7N9, all
three levels of model have utility. Level 1 models identify areas
where transmission can occur due to co-occurrence of wild and
domestic species. Level 2 models incorporate population size,
prevalence, transmission, and biosecurity parameters. The model
structure allows inputs to be changed and new maps to be created.
Level 3 models show that the coarser county scale is appropri-
ate for informing surveillance and prevention measures, and is
more realistic for assessment. Identification of locations of greater
uncertainty in the predictions also helps inform policy decision-
making. Applications for the findings of this study may include
use by health experts and wildlife officials who are interested in
using the poultry to wild risk models (Figure 4A) to identify
regions where wild migratory birds are at higher risk of exposure
to new and evolving virus strains from poultry. Poultry farm-
ers and health officials may use the wild to poultry risk models
to identify areas where farming practices or vaccination programs
should be enhanced to protect poultry from exposure to wild birds.
As the models take a combined density-dependent and environ-
mental transmission approach, the results may also help target
environmental surveillance programs.

A desirable step would be to validate the model predictions
using avian surveillance and outbreak data. A strong match
exists between outbreak locations and our predicted risk areas
(Figure 6), but this may be misleading as our model is intended
to predict risk at the interface between poultry and waterfowl, and
it is unknown whether these poultry outbreaks were caused by
transmission from wild birds (versus poultry) and whether wild
bird outbreaks were caused by poultry (versus wild birds). Vali-
dation would require geographic and temporal data on infections
in wild and domestic birds including information on the type of
host that caused the infection. Such detailed surveillance data do
not yet exist, and deriving the infecting population from the virus
isolates is difficult – even the use of phylogenetic analyses may not
definitively answer this question as intermediary transmissions
may occur between outbreak events. The spatial and temporal
relationships between the wild and domestic waterfowl distrib-
utions in our risk models do identify relationships that might
guide future targeted, more intensive sampling, and surveillance
studies.

Through a structured approach to predicting transmission
risk between domestic poultry and wild waterfowl in China, we
were able to separate the spatial relationships between poultry
and waterfowl from the disease-specific factors to better under-
stand the contributions of each to transmission risk. We explicitly

FIGURE 6 | H5N1 outbreak data (2003–2009) plotted against Level 2
deterministic 1 km resolution H5N1 transmission risk models (Eq. 4).
Wild bird cases shown by red circles, poultry by yellow circles. Although
spatial associations between outbreak data and risk map appear to be high,
since the model is intended to predict risk at the interface between poultry
and waterfowl, this type of presentation may be misleading as it is not
known whether yellow dots represent poultry cases caused by
transmission from wild birds (versus poultry) and whether red dots
represent wild bird cases caused by poultry (versus wild birds).

incorporated uncertainty measures with our risk predictions
and conducted sensitivity analyses to understand the effects of
uncertainty on the model outputs. It is the first analysis of its kind
and one of the few that focuses specifically on interactions between
the wild and domestic bird populations, providing a unique con-
tribution to our growing knowledge on the topic of wild birds and
avian influenza transmission.
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