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Public health statistics recorded an increasing trend in the incidence of tick bites and ery-
thema migrans (EM) in the Netherlands. We investigated whether the disease incidence
could be predicted by a spatially explicit categorization model, based on environmental
factors and a training set of tick absence–presence data. Presence and absence of Ixodes
ricinus were determined by the blanket-dragging method at numerous sites spread over the
Netherlands.The probability of tick presence on a 1 km by 1 km square grid was estimated
from the field data using a satellite-based methodology. Expert elicitation was conducted
to provide a Bayesian prior per landscape type. We applied a linear model to test for a linear
relationship between incidence of EM consultations by general practitioners in the Nether-
lands and the estimated probability of tick presence. Ticks were present at 252 distinct
sampling coordinates and absent at 425.Tick presence was estimated for 54% of the total
land cover. Our model has predictive power for tick presence in the Netherlands, tick-bite
incidence per municipality correlated significantly with the average probability of tick pres-
ence per grid.The estimated intercept of the linear model was positive and significant.This
indicates that a significant fraction of the tick-bite consultations could be attributed to the
I. ricinus population outside the resident municipality.

Keywords: lyme, risk mapping, ticks, Borrelia

INTRODUCTION
Borrelia burgdorferi s.l. is the bacteria that causes Lyme disease
in humans. In Europe, the main vector is the tick Ixodes ricinus.
In the Netherlands, Lyme disease is on the rise; there has been a
threefold increase in consultations of general practitioners (GP)
for tick bites and Lyme disease since 1994 (1). This rise can be
partially explained by spatiotemporal increases in the abundance
and activity of questing ticks, as the total area suitable for tick
persistence including forest areas expanded in the Netherlands
(2). The concomitant increase in these time series data sets indi-
cates that tick activity might be explained based on environmental
factors.

Risk mapping was used to predict the spatial distribution of
tsetse flies in Africa based on environmental factors (3). The
methodology also accurately delineated the areas of mosquito
presence, both regionally and globally (4). It was the modeling
tool of choice for identifying the distribution of malaria (5), tick-
borne encephalitis (6), blue tongue epidemic in Europe (7), and
Lyme disease in Belgium (8). While all surveillance targets a spe-
cific microorganism involved in a specific infectious disease, the
algorithms, and the satellite images in the risk mapping methodol-
ogy are generally applicable in a broad range of infectious disease
contexts, including Lyme disease in the Netherlands. A com-
plex interplay of vegetation, climatic conditions, and vertebrate
hosts determine where the disease-transmitting vector, I. ricinus,
can maintain its lifecycle. Nymphal and adult ticks for example,
start questing after the winter season once the daily maximum

temperatures during a week exceeds 7°C on average (9). Vegetation
provides different degrees of shelter for ticks. Satellite images of
vegetation and climatic variables are expected to provide necessary
information to identify tick suitable areas.

I. ricinus requires three blood meals (choosing from a plethora
of warm and cold blooded vertebrates) to complete their life cycle.
Larvae feed primarily on small animals while nymphs and adults
preferably feed on larger vertebrates such as hare and deer (10).
The abundance of ticks greatly depends on the abundance of feed-
ing and propagation hosts (11, 12). Here, regional roe deer popu-
lation densities are utilized to identify the presence of I. ricinus, in
addition to the satellite images.

Experts on ticks are able to estimate the tick density and activ-
ity for a particular land type. It is possible to quantify this prior
knowledge. The methodology, expert elicitation, has been applied
to a food-risk-assessment study (13). We applied the method to
estimate the tick densities and activities for heterogeneous Dutch
land surfaces, and used the estimates as Bayesian priors in our
analyses of the field data.

Standard blanket dragging (14, 15) is the method to collect ticks
searching for a blood meal. Although the blanket fails to catch
molting, resting, and feeding ticks, it is currently the best method
for measuring public health risk. Here, we predicted the presence
of I. ricinus based on the field surveillance, satellite images, and
host population densities. The number of tick-bite consultations
by GP in the Netherlands (16) is a measure of tick presence, inde-
pendent of field surveillance. The tick-bite consultation statistics
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are an empirical input into the analysis to validate the predicted
tick presence.

MATERIALS AND METHODS
DATA COLLECTION
Sampling of I. ricinus
Ticks were collected by blanket dragging (blanket 1 m× 1 m) at
677 distinct coordinates in the Netherlands between April 2000
and September 2013 (the full list of coordinates is available on
request). The dataset in this analysis includes data described in
three publications. First, the study conducted each month from
April to October in the period 2000–2004 at forest, dune, heather,
and City Park (17). Second, the study conducted each month from
April to September in the period 2000–2008 at vegetation-rich
dune, City Park, heather, and forest areas (18). Third, the study
conducted each month from July 2006 to December 2007 at forest
areas (19). The rest of the dataset consists of three additional tick
collections. Firstly, a study conducted each month from April to
July in the 3-year period 2011–2013 at randomly generated sam-
pling coordinates over the whole nation. Only incomplete and
scarce information is available about the flora and fauna present
at these areas. Secondly, the studies conducted in June, July, and
August in the 2-year period 2012–2013 at City Parks, forest, and
the ground adjacent to a walking path. Thirdly, the studies con-
ducted in June 2012 and in May, June, July, and September 2013 at
dune, heath, and forest areas. Ticks were dragged over 200 m2 after
which an average per 100 m2 was calculated. The sum of nymphal
and adult ticks, the two active life stages of I. ricinus, was recorded
into the database. A sampling coordinate is assigned a state “tick
is absent” if the sum is below or equal to a set threshold (default
zero), and “present” otherwise.

Satellite images
We downloaded the satellite imageries from the MODIS ftp site
(20). Tile h18v3 covers the Netherlands. Satellite images from the
period January 2005 to June 2012 were downloaded and used for
subsequent analysis in this study. Table 1 summarizes the images
used.

To all satellite images and all following spatial maps, a water
mask and a mask removing neighboring countries has been
applied.

Roe deer population densities
Estimates on the regional roe deer population density per square
kilometer (2008) was extracted from the roe deer database (Royal
Dutch Hunting Association).

Soil moisture
Soil moisture maps were calculated by the hydrological bureau
FutureWater by means of the hydrological SPHY-model on a spa-
tial resolution of 250 m× 250 m (21). The soil moisture fraction
is the result of the hydrological budget equation, with precipita-
tion and upward seepage as incoming fluxes. Output fluxes are
evaporation, run-off, drainage from root zone and sub-zone, and
downward seepage. Furthermore, percolation and capillary rise
are taken into account.

MATHEMATICAL ANALYSIS
Our aim is to classify pixels as either suitable for ticks (an event
denoted C+) or not suitable for ticks (C−). This classification is
made using the data collected in the form of maps. The absence–
presence data of the ticks, with the values of the maps at their
locations, constitute the training set. For the satellite images, we
have many images per year. In order to obtain a manageable data
set that retains some of the seasonality, we employ a Fourier analy-
sis. The classification is based on a quadratic discriminant analysis
(QDA), aided by a Bayesian inclusion of expert opinion data.

Fourier analysis
A Fourier analysis is a technique for decomposing a signal into
oscillating components; we follow the exposition as detailed in
Ref. (22), chapter 7.7, and also Ref. (4). In the current context,
the signal is the time series of the satellite image at a pixel. Each of
these components represents a cosine with a certain frequency, and
has phase and amplitude coefficients. An efficient method for per-
forming a Fourier analysis is the “fast Fourier transform” (FFT).
It applies only to equidistant data points, and thus we linearly
interpolate the signal to daily values. We excluded time series with
more than 20% missing values (e.g., due to cloud cover), and set
the pixel to the symbolic value “NA,” this pixel does not contribute
to the model any more.

For all other pixels, we extract the phase and amplitude of the
yearly oscillation (emulating seasonal effects), the half-yearly oscil-
lation, and the bi-yearly oscillation. Finally, we include the average,
which has no phase, only amplitude. In total, the 8-year signal is
now represented by seven components.

Quadratic discriminant analysis
Since the method of QDA is not widely used, we will outline the
method briefly. The derivation is based on Ref. (23).

After the Fourier transform procedure, we evaluate the k
Fourier components at each pixel of each satellite image, at the

Table 1 | Summary of the MODIS products used.

Name Data Short name HDF layer Resolution Time granularity

EVI Enhanced vegetation index MOD13Q1 2 250 m2 16 days

DLST Daytime land surface temperature MOD11A1 1 1 km2 1 day

NLST Nighttime land surface temperature MOD11A1 5 1 km2 1 day

MIR Middle infra red MCD43A4 7 250 m2 16 days

See also the online resource https://lpdaac.usgs.gov/products/modis_products_table. Briefly, EVI is a measure of vegetation density, DLST and NLST measure

temperature, and MIR is a measure of vegetation regrowth rate.
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n presence points and at the m absence points. This yields vectors
x+1 , . . . , x+n , each x+j ∈ Rκ containing all Fourier coefficients

taken at presence location j. Analogously for the absence points,
we have vectors x−1 , . . . , x−m . We assume that each vector is a
realization of a multivariate Gaussian distribution, one distribu-
tion for the presence points, and one for the absence points. Let X
denote a vector of Fourier coefficients, then,

X |C+ ∼ N
(
µ+,

∑+
)

X |C− ∼ N
(
µ−,

∑−
)

We construct the matrix X+ ∈ Rk×n by column wise concatena-
tion of the vectors x+1 , . . . , x+n . Similarly, we define for the absence
points a matrix X− ∈ Rk×m . We use these matrices for calcula-

tion of the estimators µ̂+,
∑̂+

, and µ̂−,
∑̂−

of the means and
covariance matrices.

Let f + and f − denote the corresponding probability density
functions. Now at a new point x∈Rk, corresponding to a loca-
tion where no tick presence or absence observation is available, we
wish to determine the probability of tick presence. Using Bayes’
theorem, and the symbolic notation P(C+) for the probability of
belonging to the positive group, we may write

P
(
C+| X = x

)
=

f + (x) P
(
C+
)

f + (x) P
(
C+
)
+ f − (x) P

(
C−
) (1)

Under the assumption of common covariance matrices
between groups, Σ+=Σ−≡Σ, and uninformed priors P(C+)=
P(C−)= 1/2, we arrive at linear discriminant analysis by check-
ing if

log

(
P
(
C+|X = x

)
P
(
C−|X = x

)) = (µ+ − µ−
)T∑−1

x

+
1

2

(
µ+ + µ−

)T∑−1 (
µ+ − µ−

)
is below or above zero. Thus, the decision boundary is a hyper-
plane, and the classifier is linear in x. We do not make these
assumptions, and work with separate covariance matrices for
absence and presence. Furthermore, we use expert opinions for
the prior probabilities. Instead of a classifier based on probability
ratios, we work with the QDA probability of presence, given by

P
(
C+|x

)
=

P
(
C+
)
|
∑
+
|
−

1
2 e−

1
2 D2(x ,C+)

P
(
C+
)
|
∑
+
|
−

1
2 e−

1
2 D2(x ,C+) + P

(
C−
)
|
∑
−
|
−

1
2 e−

1
2 D2(x ,C−)

with the Mahalanobis distance defined by

D2 (x , C+
)
=
(
x − µ+

)T
(∑+

)−1 (
x − µ+

)
We estimate the mean and covariance matrices by the sample mean
and covariance as stated above. A straightforward implementation

of the algorithm would be computationally expensive, as the
number of covariates and the number of pixels are both large.
However, by diagonalizing the covariance matrices, and some
further time saving application of linear algebra [detailed in
Ref. (23)], the calculations simplify tremendously. Next, observe
that

D2 (X , C+
)
=
(
X − µ+

)T
(∑+

)−1/2(∑+
)−1/2 (

X − µ+
)

Thus, since conditional on C+, X is normally distributed, observe
that Z = (X −µ+)T(Σ+)−1/2 ~ N (0, 1) and D2

(
Z , C+

)
=

Z T Z =
∑n

i=1 Z 2
i . Since the sum of n standard normal ran-

dom variables is distributed as χ2
n , we have a criterium for

prediction uncertainty by comparing D2 to a set percentile of the
chi-squared distribution with n degrees of freedom. We exclude
pixels below this percentile, and set them to a symbolic “no-
prediction” value. Those pixels will be colored as white in the
figures. We use a default of 90%, but evaluate other settings in the
supplementary material.

Expert elicitation
Thirteen individuals were selected based either on their affinity to
tick research or on their affiliation to landscapes where ticks are
expected to be found (e.g., experts from forest services). We asked
the experts a probable range of questing nymphal plus adult tick
densities per 100 m2 for a number of specific landscape types. The
Netherlands is partitioned into 39 land types (24). The experts
were asked to provide a range between 0 and 200 ticks per 100 m2.
At the start of the elicitation, we instructed an expert that the ques-
tionnaires contain one or more questions in order to calibrate the
participant’s expertise.

We represent the answer of expert i to question q by the vector,
νi,q= (p0, . . ., p200) where pj is the probability that the questing
nymphal and adult tick density equals j. We set

Pi,q,j =

{
(bi,q − ai,q + 1)−1 j ∈ [ai,q , bi,q]

0 otherwise

where [ai,q, bi,q] is the response of expert i to question q.
First, we determine a weight for each expert by calibration

using their answers p′i,q to control questions. Control questions

are the measurements on the densities of nymphal plus adult ticks
(H. Sprong, personal communication) in the following land types:
salt water (0 ticks per 100 m2), corn (<2 per 100 m2), heather
(2–20 per 100 m2), and deciduous forest (20–200 per m2). We rep-
resented a control question by the vectors c1 to c4. We determine a
weight for each expert by,

Wi =

4∏
q=1

p′i,q . cq

then normalizing the weight over all experts wi =
Wi∑n

j=1 Wj
(we use

the lower case letter for the normalized weights). This is a strict
weighting, which invalidates an expert who gave an answer dis-
joint to one of the control questions. Responses from the experts
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to the actual questions were weighted by the wi and combined to
obtain an empirical probability density function for the number
of ticks,

P
(
tick density = j |q

)
=

n∑
i=1

wipi,q,j

Finally, from this probability we construct the Bayesian prior, by
setting a threshold t to distinguish absence and presence (very low
numbers may be accidental, non-endemic, presence),

P
(
C+|q

)
= 1−

t−1∑
j=0

P(tick density = j|q)

Our default threshold is t= 1 but we evaluate other scenarios in the
supplementary material. For each pixel, we determine the land-use
type, and use the corresponding P(C+ | q) as a prior.

Independent support using EM consultation statistics
Estimation of the number of tick-bite consultations in the Nether-
lands was as described elsewhere (1). In short, we use Dutch GP
consultation data over 2009, regarding erythema migrans (EM),
an expanding skin lesion occurring after several days or weeks at
the site of the tick bite. This dataset was aggregated on a munic-
ipality level, and we used it to validate our predicted presence of
ticks. For this purpose, we changed the spatial unit in our predic-
tion to a municipality by averaging the probability of tick presence
over all 1 km by 1 km grids enclosed by the municipality bound-
ary. We only include pixels that were significant at the 90% level.
We applied a linear model and calculated the P-value for the slope
being significantly different from zero.

RESULTS
OBSERVED ABSENCE AND PRESENCE OF I. RICINUS
Ticks were sampled at 677 distinct geographic coordinates
(Figure 1). Sampling was conducted only once at the majority
of sampling coordinates and up to three repeated samplings at
few sampling coordinates. Ticks were present at 252 distinct sam-
pling coordinates: one tick (either nymphal or adult stage) or more
were found on the blanket at these sampling coordinates. Ticks
were absent at 425 distinct sampling coordinates. Some distinct
sampling coordinates fell into the same pixel, and aggregating the
sampling coordinates by pixel resulted in 177 presence pixels and
163 absence pixels. In one absence pixel, I. ricinus was absent at all
sampling coordinates within the pixel.

PRIOR TICK PRESENCE PROBABILITIES PER LAND-USE TYPE
We applied expert elicitation to estimate a Bayesian prior for the
probability of presence of nymphal plus adult ticks per unit area of
a specific land type. The prior probability of tick presence was less
than 0.5 at 12 land types, mainly cultivated areas and vegetation-
poor grounds. Prior probability of tick presence was greater than
0.5 at 25 land types of a wider variety (Figure 2).

FIGURE 1 | Absence (white circle) and presence (black dot) of ticks in
the Netherlands.

ESTIMATES ON TICK SUITABLE GRIDS
The blanket dragging, covering 100 m2 each, at 677 distinct coor-
dinates during our multi-year surveillance for I. ricinus is approx-
imately equal to 7 ha of the investigated area in total. For the
remaining land surface (99.98% of the total land surface), the pres-
ence of I. ricinus needs to be extrapolated from the outcomes of
the sampling coordinates. Classifying all the sampling coordinates
into either presence or absence, we estimated the probability that
I. ricinus is present, for each 1 km by 1 km square grids enclosed
by the nation border (Figure 3). Summing all the 1 km by 1 km
grids by the weighs of the presence probabilities, we estimated
that total tick suitable area is 20,698 km2. By counting pixels, we
estimate the total land surface of the Netherlands as 35,001 km2.
Hence, an estimated 54% of the land surface meets the conditions
for maintaining the tick life cycle.

INDEPENDENT SUPPORT USING EM CONSULTATION STATISTICS
The number of tick-bite consultations by GPs in the Netherlands
(16) is an alternative measure of tick presence, independent of field
surveillance by the blanket-dragging method. Hence, the estimated
probability of tick presence is expected to correlate positively
with the consultation statistics. Figure 4 shows the aggregation
of EM incidence and predicted risk to the municipality level.
To assess linear correlation we also performed a linear regres-
sion at this municipality level (Figure 5). The linear relationship
between our prediction and the consultation statistics was posi-
tive (slope 137) and significant (P-value <0.001). The estimated
intercept of the linear model was also positive (95) and significant
(P-value <0.001).

ALTERNATIVE SCENARIOS
In order to assess the impact of modeling choices, we ran the
model with other parameter settings, and an alternative corrobo-
rating scenario. Firstly, we varied the number of ticks below which
a sampling occasion is marked as negative. The rationale for this
is that a very low number of ticks may indicate ticks that are

Frontiers in Public Health | Epidemiology November 2014 | Volume 2 | Article 238 | 4

http://www.frontiersin.org/Epidemiology
http://www.frontiersin.org/Epidemiology/archive


Swart et al. Tick riskmap

FIGURE 2 | Summary of the expert elicitation, showing the probability of tick presence for several land-use types.

not from an established population, but rather ticks that acciden-
tally ended up in a tick-free area. Secondly, we varied the cutoff
for the value for “no prediction.” Table S1 of the supplementary
material gives the results in terms of the P-value of the compari-
son with EM-cases. The tick presence threshold of zero is clearly
superior. For the no-prediction cutoff, it seems that even very low
cutoff values still yield good results. This is probably since the
validation is at the municipality level, while inclusion or exclu-
sion due to “no-prediction” is at the pixel level. Misclassifications
may cancel out by this procedure. A second alternative scenario
set consisted of replacement of the EM notifications by tick-bite
notifications (with, or without EM). This yields the results as given
in Table S1 of the supplementary material. We observe P-values
much lower than for tick-bite consultation, indicating that tick
presence correlates better with EM consultations than with tick
bites in general. Figures associated to these tables may also be
found in the supplementary material.

DISCUSSION
We applied a quadratic discriminant model (QDA) for predict-
ing suitability for ticks, based on environmental covariates. The
model was trained using a set a tick absence/presence points. Prob-
abilities of tick presence were averaged over each municipality of
the Netherlands, with the aim to validate the prediction with an
independent measure of tick presence: estimated numbers of con-
sultations of EM per municipality. The estimate for the intercept
of the linear model was positive and significant. We observe that
even in the municipalities where the mean probability of tick pres-
ence is near zero, tick bites were recorded, with an average of 95
consultations per 100,000 residents (the intercept of the linear
model, Figure 5). In municipalities where the mean probability of
tick presence is close to one, tick-bite consultations reached 232
consultations per 100,000 residents, almost a tripling compared to
the municipalities where the mean probability of tick presence is
predicted to be almost zero. We interpret the intercept as cases that
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FIGURE 3 | Estimated map of tick presence based on the sampling
coordinates (Figure 1), roe deer densities, soil moisture, and the
satellite images: EVI, NLST, DLST, and MIR. The risk is indicated by
colors ranging from 0 (green, no risk) to 1 (red, maximum risk). White

pixels indicate “no prediction.” Pixels not within Dutch land surface
(e.g., water bodies) are indicated in blue. The leftmost (A) has the
“no-prediction” pixels censored; the rightmost (B) shows all
predictions.

FIGURE 4 | EM consultations (A) and tick presence per municipality (B). Averages were taken over all pixels in a municipality, and numbers were scaled
between zero and one.

obtained their tick-bite outside of the municipality of residence;
hence this part of the risk of a tick-bite might not be explained
by local risk factors. The increase over the entire range of the risk
of a tick bite, 137 per 100,000 residents can be explained by the
local risk factors. Roughly speaking, our model explains 2/3rd of
the risk of a tick bite.

This study is a first attempt to map tick presence in the Nether-
lands using environmental and biological factors. The tick-bite
incidence independently supports our predictions. Nonetheless, a
high variability in incidence of tick bites per municipality remains
un-accounted for by the presence of ticks only. To reduce the high
variability, the methodology implemented in this study could be
extended by considering additional biological and social factors
that are missing in our current approach.

First, a potentially better proxy for the Lyme-disease incidence
than the tick-presence would be the density of infected ticks.
The density of infected ticks is equal to the sum of densities of

larval, nymphal, and adult ticks weighted by instar-specific preva-
lence estimates of Borrelia burgdorferi. We leave tick abundance
as an option to investigate at a later stage. The analysis will be
more involved, since tick abundance will vary greatly over the
year.

Next, as small mammals are important for the Borrelia life
cycle their population density is a potential biological factor that
might reduce the variability. However, nationwide estimates on
local population densities for any specific rodent species in the
Netherlands are currently unavailable. Lastly, an inclusion of social
factors in our methodology (e.g., human activities) might help
to reduce the high variability in predicted disease incidence. An
example is an exposure map indicating where people are likely to
receive a tick bite. A source of information regarding human activ-
ities is an on-going study in the Netherlands in which any person
can report the location where they received a tick bite in a past day
by visiting a website (www.tekenradar.nl).
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FIGURE 5 | Scatterplot of risk (x -axis) versus incidence (y -axis). The
blue line is the linear regression line.

Note that in the current study, we do not attempt any model
selection. In principle, using for example cross-validation, we
could compare the explanatory power of models with different
sets of satellite data. Also, techniques exist that assess the impor-
tance of individual variables within fixed models. However, this
falls out of the scope of our current paper, which was simply to
demonstrate that a riskmap may be constructed, which has good
correspondence to independent incidence data. In the future, we
hope to further pursue model selection methods.

It is common to set up surveillance solely for catching and
identifying the disease-transmitting vector species. Due to this
common practice, a statistical methodology to estimate the vec-
tor distribution necessarily assumes pseudo-absence, a set of
geographic coordinates at which the vector is assumed absent.
For us, it was straightforward to eliminate the pseudo-absence;
we requested our trained volunteers to report absence when no
I. ricinus tick attached to the blanket. Absence of I. ricinus on a
blanket was recorded more than 400 times in our field surveillance
database.

Empirical observations of absence have limitations. An absence
record indicates that either: (1) the tick I. ricinus was absent at the
sampling coordinates, or (2) by chance the blanket-dragging failed
to catch any I. ricinus. An estimate on the fraction of false absence
records in our database is lacking, but the most sensible inter-
pretation of the hundreds of absence records in our database is
the former explanation. We expect furthermore that the statistical
algorithm is robust to a small fraction of false absent signals in our
surveillance database. A positive and significant correlation with
the independent indicator of tick presence, i.e., tick-bite consulta-
tions, further corroborates that this potential artifact in the data
collection procedure is a marginal limitation in this study.

Bayesian prior probabilities of the tick presence were estimated
from expert knowledge on all major land types in the Netherlands.
Effects on the predicted I. ricinus distribution, however, were not
visibly present. We might infer from this observation that our

model contains at least as much information as the prior distrib-
ution. To test this hypothesis, we ran the riskmapping model with
only the expert elicitation data, and used this as the only input.
We find that the significance of the correlation with human cases
is strongly reduced, but still highly significant (P-value <0.0001).
Also, the risk is highly clustered around one, and the number of
no-prediction points has grown to high numbers.

Concerning the modeling approach, we opted for QDA, a
robust and proven algorithm for unsupervised classification. Alter-
natives are certainly possible. For example, logistic regression may
be used to predict binary outcomes. However, since in logistic
regression the logit of the probability of presence is modeled by a
linear function, we expect the QDA algorithm to outperform logis-
tic regression. Also, for future work, state-of-the art techniques
like boosted regression trees, or random forests are promising
candidates for classification.

In summary, we identified large-scale areas in the Netherlands
where environmental conditions are likely to be suitable for main-
taining the I. ricinus life cycle. An independent proxy for the tick
presence, estimates on the number of tick bites on humans (1), is
consistent with our identification based on satellite images and the
host population densities. In conclusion, we presented a validated
statistical approach to identifying areas where the human’s expo-
sure to the Lyme-disease transmitting vector I. ricinus is expected
to be high.
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