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WHY DO WE NEED A NEW APPROACH?

High-dose ionizing radiation (>1Gy) is an established human
carcinogen, with a linear relationship to cancer risk (1, 2). Its
major mechanism of carcinogenicity is DNA damage (1, 2).
In contrast, risk estimates from epidemiological studies exam-
ining low radiation doses (<0.2Gy) suffer from a significant
uncertainty (3, 4). The biological effects of low-dose radiation
differ from those observed at high doses and are mostly unre-
lated to DNA damage per se (5-13). In the absence of reli-
able estimates, the conventional approach extrapolates the linear
trend observed at high-dose radiation to low-dose exposures,
which is known as the “linear no-threshold hypothesis” (LNTH)
(1, 14-17). Such extrapolation has been criticized, because it
assumes the same carcinogenic mechanism as operating at high
doses, whereas the biological phenomena are specific to low-dose
exposure. These effects can be summarized as three compet-
ing hypotheses. The bystander effect hypothesis predicts a risk
greater than expected according to the LNTH, because irradiated
cells can transmit radiation effects to un-irradiated neighbor-
ing cells (9-13, 16, 18, 19). The threshold hypothesis considers
radiation-induced cancer risk at low doses to be close to zero
due to a threshold of radiation-induced damaging effects (17, 20,
21). Finally, the adaptive response hypothesis considers a ben-
eficial effect of low-dose radiation exposure via induction of
defense mechanisms that may improve resilience to hazardous
exposures overall (21-24). We believe that all three phenom-
ena might present a complex response to low-dose radiation
and these hypotheses are not mutually exclusive. In that case,
relative intensity of these responses may differ between individ-
uals; and the predominance of one or a balance between several

Currently, a linear no-threshold model is used to estimate health risks associated with
exposure to low-dose radiation, a prevalent exposure in the general population, because
the direct estimation from epidemiological studies suffers from uncertainty. This model
has been criticized based on unique biology of low-dose radiation. Whether the departure
from linearity is toward increased or decreased risk is intensely debated. We present an
approach based on individual radiosensitivity testing and discuss how individual radiosensi-
tivity can be assessed with the goal to develop a quantifiable measure of cellular response
that can be conducted via high-throughput population testing.
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response types would classify an individual as being extremely
sensitive, resistant, or even benefiting from low-dose radiation
exposure. On a population level, the risk estimates then would
depend on the proportions of highly sensitive and resistant
individuals, which in fact, may result in a linear no-threshold
relationship with cancer risk (or other health effects) observed
statistically. However, biologically such linear relationship may
represent a mix of different individual responses within human
populations.

It has been argued that the adherence to LNTH is useful as
it represents a conservative approach to the risk-benefit analysis
(25). However, this might be the case if LNTH is compared to either
the threshold or the adaptive response hypotheses. When one con-
siders the bystander effect scenario, reliance in policy-making on
the LNTH-based model does not provide adequate protection to
individuals with high radiosensitivity. Indeed, enhanced radiosen-
sitivity has been documented among children and individuals
with familial cancer predisposition (26-29). Therefore, protec-
tion of individuals and groups with high radiosensitivity requires
adoption of even more stringent guidelines.

On the other hand, the proponents of the threshold/adaptive
responses argue that the existing (conservative) approach has neg-
ative economical and societal implications and, therefore, should
be relaxed. It was said that LNTH model “imposes excessive costs
on the society,” “inspires radiophobia” resulting in “refusal of some
patients to undergo potentially life-saving medical imaging,” and
in “discouragement of the studies of low-dose radiation thera-
pies”; moreover, it “provides motivation for radiological terrorism”
(30). From either point of view, the LNTH model for radiation
risk—benefit analysis seems to be inadequate.
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INDIVIDUALIZED APPROACH TO RADIATION SAFETY AT
LOW-DOSE EXPOSURE PROMISES TO AVOID BOTH
ENHANCED RISKS AMONG THE RADIOSENSITIVE
SUBGROUPS AND AN EXCESSIVE ECONOMIC BURDEN OF
AN OVERLY STRICT REGULATIONS

Individualized approach to radiation safety has an immediate
practical implication affecting a large part of the general pop-
ulation in the field of medical imaging. The widespread use of
computerized tomography (CT) scans has greatly increased pub-
lic exposure to ionizing radiation (31). It has been estimated that
over 70 million/year CT procedures may cause as many as 30,000
new cancer cases in the US alone (32). Because of its superior diag-
nostic value (33), there is no doubt that the use of CT scans will
continue to grow. In this situation, knowing individual radiosen-
sitivity can help to make an informed decision on the risk—benefit
ratio in treatment of those who are very sensitive to radiation
(34). Similar logic can be applied to other medical and non-
medical situations that involve ionizing radiation exposure. For
example, evacuation of residents from areas of low-dose exposure
due to radiologic accidents may cause “non-radiogenic disaster-
related premature deaths,” such as “officially registered among the
evacuated population” in Fukushima (30). Individual approach
provides little help in identification of most sensitive individuals
after a nuclear catastrophe; however, screening of the popula-
tion working on and living around nuclear power facilities can
inform the urgency of evacuation from the areas with low-dose
ionizing radiation (LDIR) exposure. Another example of areas
where individualized approach can guide the risk—benefit analysis
is testing candidates for spacecraft missions or atomic submarine
crews.

INDIVIDUAL VARIABILITY IN RESPONSE TO LOW-DOSE
RADIATION HAS BEEN DOCUMENTED

The phenomenon of individual differences in radiosensitivity has
been known since the beginning of the twentieth century (35)
and extensively reviewed in previously published reports (28, 36—
38). However, the majority of previous studies examined human
radiosensitivity to relatively high radiation doses. Regarding LDIR,
studies of individual responses are less numerous and inconclusive.
Here, we discuss the main advantages and limitations of these stud-
ies with the intention to pinpoint specific barriers to establishing
population-based research in this area.

It has been suggested that cell and cellular processes are the
main targets of the LDIR effects. Naturally, an analysis of individ-
ual variability should involve a comparison of cellular responses
to LDIR in different individuals. Such a comparison can be con-
ducted using various experimental designs. For example, in vivo
biodosimetry studies estimate the frequency of binucleated cells
in peripheral blood lymphocytes, comparing individuals with dif-
ferent levels of exposure (39). Biodosimetry studies may help
to detect the level of radiation exposure in human population.
However, radiation dosimetry may not be appropriate to pre-
dict the risk associated with LDIR in un-irradiated population
or help to decide whether a substitution of a radiation-based
imaging technique should be prescribed to one or another indi-
vidual. In a more direct manner, individual in vivo response to
irradiation was studied by Goldberg et al. (40). Specifically, a small

area of skin was irradiated and then a skin biopsy was analyzed
for transcriptomic responses. This study yielded two important
results: it established that measurable cellular changes occur in
the intact human tissues in response to a single low-dose radi-
ation exposure and confirmed the great individual variability of
such response. In this setting, individual variability can arise both
from genetic predisposition that determines intrinsic radiosensi-
tivity and individual exposures to different factors. For example,
differences in diet (41-43), tobacco use (44, 45), or prescribed
medications (46) can affect individual response (47). Such con-
founding background factors cannot be easily controlled, compro-
mising comparisons of radiation responses between individuals
in vivo. Another disadvantage of the in vivo approach relates to
the main goal of such studies, i.e., to predict potential health risks
associated with low-dose radiation. The study by Goldberg et al.
(40) was conducted among prostate cancer patients scheduled to
undergo radiotherapy, i.e., the study population that was to be
exposed to higher radiation doses. Obviously, such a direct in vivo
radiation test cannot be applied to the general population and
especially to individuals suspected to be very sensitive to ionizing
radiation.

Alternatively, individual radiosensitivity can be detected using
primary cell cultures isolated from different individuals. This
approach most importantly evades ethical concerns related to
direct irradiation of human subjects. Furthermore, such study
design allows a better control of the background factors via
standardization of cell culture conditions.

Traditionally, primary cultures of peripheral blood lympho-
cytes, fibroblasts, or keratinocytes were used as models to study
individual response to low-dose radiation (36, 37, 48). These stud-
ies definitely established that even a single very low dose of radi-
ation exposure (<0.1 Gy) can produced a cellular response. Mea-
surements of the DNA-related effects focused on DNA-damage
response (49, 50) and alterations in chromatin structure (51).
Others studied gene expression (8, 52-56), and proteomics (57).
Similarly to the studies in vivo, this line of research demonstrated
a significant individual variability of cellular responses but has not
identified a unified measure of such response that can be used to
rank individuals in their radiosensitivity. The main problem with
the DNA-targeted and transcriptional responses is their transient
nature, which complicates their application to population stud-
ies. In addition, these traditional cellular models have limitations
either due to low-proliferation potential (primary lymphocytes) or
the invasive process of primary cell procurement (as for fibroblasts
or keratinocytes).

We would like to note that donor-specific immortalized cell
lines also address the concerns related to controlling the back-
ground conditions and the ethical concerns of in vivo irra-
diation. These are good models for studying various cellu-
lar functions, except the mechanisms related to cell prolifera-
tion control, because immortalization of cells impacts natural
mechanisms controlling cell proliferation, and specifically, the
signaling pathways responsible for the cell cycle checkpoints.
Therefore, donor-specific immortalized cell lines are not suit-
able for studying potential pro-carcinogenic or anti-carcinogenic
responses to low-dose radiation that are related to cell proliferation
control.
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To summarize, advances in this research require a new cel-
lular model that satisfies two major requirements: (a) cells can
be non-invasively obtained on a population-based scale and (b)
produce long-term primary cultures. Such a cellular model would
permit search for a non-transient measurable response to low-dose
radiation that can rank individuals in their radiosensitivity.

SEARCH FOR A UNIFIED MEASUREMENT TO RANK
INDIVIDUALS IN SENSITIVITY TO THE EFFECTS OF
LOW-DOSE RADIATION

The ultimate goal is to develop a test that can be applied to a
non-invasively obtained biological sample to assist a medical or
a policy decision in risk—benefit analysis, radiation protection, or
other scenarios. Application of such test to clinical practice can be
similar to the routinely used allergy or antibiotic sensitivity tests.
Also, because radiation protection policy often relies on epidemi-
ological data, a radiation sensitivity test would be an important
epidemiological tool allowing risk stratification and thereby lead-
ing to more precise estimation of risks associated with exposure
to low-dose radiation.

This review does not present a comprehensive examination of
the existing assays that can be adapted to test individual sensitivity
to LDIR. We rather illustrate the concept of cell-based radiation
sensitivity testing by presenting several promising approaches.
An example could be formation of dicentric chromosomes and
gamma-H2AX foci in lymphocytes of human blood samples fol-
lowing exposure to a CT scanner as was shown by Golfier et al.
(49). This study found that gamma-H2AX foci formation presents
a more sensitive readout as compared to quantification of dicen-
tric chromosomes. However, the transient character of the former
would preclude the adoption of such an assay in a population-
based testing; in contrast, the persistence of dicentric chromosome
formation may present a more promising readout for the devel-
opment of a test. The next step would be evaluating the ability
of this assay to distinguish individual differences in response
to low-dose radiation. Similarly, other measurements related to
the cytokinesis-block micronucleus cytome assay in lymphocytes,
such as micronuclei (scoring chromosome breakage and/or whole
chromosome loss) and nuclear buds (scoring gene amplification)
(58) could present the basis for the development of a test, if they
prove to be sensitive enough to reveal inter-individual differences.
However, it is important to note that these assays are related to
DNA-damage effects, whereas LDIR effect on DNA is not sub-
stantial. Hence, the development of non-DNA-related cell-based
assays is critically needed for testing individual response to LDIR.

In general, the non-DNA-targeted approaches can be classified
into three main lines of research and ranked by their ability to pro-
duce interpretable information. The “omics” approach including
comprehensive analysis of transcriptional and proteome profiles
together with dynamic change in metabolome and epigenetics
presents a good starting point in cataloging individual responses
to LDIR (59). However, the main weakness of this approach is
interpretation of the data across different analytical platforms and
high variability of results related to assay execution and biospeci-
men handling conditions (60). As noted by the NCI scientists, so
far this approach did not generate data that would clearly lead to
the development of any test (60).

Collectively, the “omics” studies suggest that relatively long-
lived (>24h) changes in intracellular signaling should be eval-
uated in LDIR-related cellular responses. Studies focused on the
analysis of certain signaling pathways confirmed that LDIR expo-
sure indeed results in long-lived changes in intracellular signaling
(60-63). However, a measurable effect that can serve as a bio-
marker of individual differences in response to low-dose radiation
remains to be identified.

Finally, some integrated measurements of cellular functions
can lead to a desired outcome. As an example, induction or redi-
rection of cellular differentiation can be studied as an anti- or
pro-carcinogenic response, respectively (64, 65). This phenome-
non has been studied in hematopoietic stem and progenitor cells,
which are present at low frequency (<0.5% of mononuclear cells)
in peripheral and umbilical cord blood. These cells can be identi-
fied by the expression of a transmembrane protein CD34 (CD34+
cells) and their differentiation can be followed by appearance of
lineage-specific surface cell markers, thus, allowing quantifica-
tion of cell differentiation response using blood specimens (66).
Monzen et al. used purified CD34+ from cord blood to study
their differentiation in response to different types and doses of
ionizing radiation (66). This study did not find a difference in
the total number of mononuclear cells generated in the culture of
purified CD34+ cells in response to 0.5-Gy X-ray exposure but
the fraction of different lineages has changed: the fraction of cells
with eosinophil/neutrophil lineage markers decreased, whereas the
erythroid-related lineage fraction increased. This example demon-
strates that the analysis of cell differentiation response may present
the basis for the development of individual radiosensitivity test.

In summary, cell-based research demonstrated that cellular
response to LDIR in vitro can be detected. In vitro donor-specific
cellular models have a potential to evolve into an individual
radiosensitivity test. However, there is an important caveat: these
models and assays should reveal inter-individual variability, be
sensitive to detect the response at a low dose, and be amenable to
high-throughput screening instrumentation and protocols (67).

AT THE INTERSECTION OF EPIDEMIOLOGY AND CELL
BIOLOGY: OUR EXPERIENCE WITH A MODEL FOR INDIVIDUAL
RESPONSE TO LDIR
An epidemiological cell-based model should (a) be donor-specific,
(b) allow for robust in vitro culturing, thus, amenable for high-
throughput screening, (c) produce highly viable cultures after
cryopreservation, and (d) be obtained in a least invasive manner.
Blood-derived CD31+4/CD34+ endothelial colony-forming
cells (ECFCs) were found to fulfill these requirements. ECFCs
form highly proliferative cell cultures originating from a single cell,
which forms a colony of progenitors (hence, the name) under cer-
tain growth conditions. These cells can be propagated over many
passages maintaining endothelial phenotype (68). We found that
ECFCs can be cryopreserved for many months and even years.
Therefore, we isolated ECFCs from cord blood of three donors
to search for quantifiable cellular responses to low-dose radiation
(69). We found that a single radiation dose of 0.05 Gy signifi-
cantly inhibits cell proliferation, a response that is not observed in
immortalized cell lines at such a low dose. The response appears
to be donor-specific (69). Importantly, this LDIR effect appeared

www.frontiersin.org

November 2014 | Volume 2 | Article 244 | 3


http://www.frontiersin.org
http://www.frontiersin.org/Epidemiology/archive

II'yasova et al.

Low-dose radiation and individual sensitivity

only 48 h post-irradiation. We have recently extended our obser-
vation to even lower dose of 0.01 Gy (data not published). We did
not find any indication of ECFCs’ death after irradiation. Thus,
LDIR inhibits ECFCs proliferation but does not kill the cells sug-
gesting that such a treatment promotes either cell senescence or
differentiation.

Our experience working with donor-specific ECFCs as a model
lead to several important conclusions. First, these cells are very
sensitive to low-dose radiation. Second, non-DNA-based readouts
such as proliferation can be used to analyze response to LDIR
because they can persist for several days. Third, the effects of LDIR
can be quantified in cell cultures that are donor-specific, thus, pro-
viding the bases for individual testing. Although this research has
been only recently initialized and is still at its infancy, it indicates
that donor-specific radiation sensitivity testing is achievable.

CONCLUSION

The LNT model of the health risk associated with low-dose radia-
tion has been criticized on the basis of different biological effects
induced by high- vs. low-doses of radiation. However, whether
the departure from linearity is toward increased or decreased risk
presents a hot point of the debate in the field of radiation risk—
benefit analysis and radiation protection. We hypothesize that both
increased and decreased risks are possible depending on the indi-
vidual response to LDIR. In fact, there is a consensus that individu-
als differ in their radiosensitivity. Although it has been recognized
that the main effects of LDIR are not related to DNA damage per se,
the initial search for indicators of individual radiosensitivity has
been rooted in quantification of DNA-damage responses. The low
levels and the transitory nature of DNA-damage related indica-
tors demonstrated the futility of this approach. The next phase in
this research addressed the question of which genes, proteins, and
pathways are responsible for specific responses to LDIR. This phase
entailed screening different “omics” platforms to catalog biolog-
ical responses induced by LDIR and confirmed first, that many
effects are transitory and second, that individual responses vary
indeed. However, these approaches could not capture quantifiable
indicators of individual responses. Currently, this search is focused
on cellular models that can be donor-specific and satisfy the non-
invasive requirement of cell procurement. We share our experience
working with blood-derived donor-specific ECFCs as a model to
find an indicator of individual radiosensitivity. Other assays using
blood-derived cells confirm that this can be a promising approach.
The goal now is to find a quantifiable measure of cellular response
amiable to high-throughput population testing that is sensitive
enough to rank individuals by their radiosensitivity.
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