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We describe a data-driven unsupervised machine learning approach to extract geo-
temporal co-occurrence patterns of asthma and the flu from large-scale electronic
healthcare reimbursement claims (eHRC) datasets. Specifically, we examine the eHRC
data from 2009 to 2010 pandemic H1N1 influenza season and analyze whether different
geographic regions within the United States (US) showed an increase in co-occurrence
patterns of the flu and asthma. Our analyses reveal that the temporal patterns extracted
from the eHRC data show a distinct lag time between the peak incidence of the asthma
and the flu. While the increased occurrence of asthma contributed to increased flu
incidence during the pandemic, this co-occurrence is predominant for female patients.
The geo-temporal patterns reveal that the co-occurrence of the flu and asthma are
typically concentrated within the south-east US. Further, in agreement with previous
studies, large urban areas (such as New York, Miami, and Los Angeles) exhibit co-
occurrence patterns that suggest a peak incidence of asthma and flu significantly early in
the spring and winter seasons. Together, our data-analytic approach, integrated within the
Oak Ridge Bio-surveillance Toolkit platform, demonstrates how eHRC data can provide
novel insights into co-occurring disease patterns.

Keywords: disease co-occurrence, non-negative matrix factorization, public health surveillance, asthma, flu,
electronic healthcare reimbursement claims

Introduction

The digitization of health records has spurred the systematic collection and archival of massive
datasets, both within hospital and government computer systems (1–6). Therefore, digital public
health surveillance is emerging as an important tool for tracking, monitoring, and driving decisions
regarding emerging infectious disease spread within geographically distributed populations (7).
Many bio-surveillance systems rely on the use of event-based, unstructured digital data, such as
news feed aggregators, internet search patterns of users, and social media (7). However, with the
availability of electronic health records (EHR) and electronic healthcare reimbursement claims
(eHRC), there is a tremendous opportunity to seek, collect, monitor, and analyze these large-scale
datasets for public health surveillance. While EHRs capture a patient’s full medical history, eHRCs
capture only the healthcare reimbursements processed by insurance companies. In particular,
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eHRCs serve as a data warehouse that include claim transac-
tions processed: (a) when patients visit their providers’ (e.g., doc-
tor’s/nurse practitioner’s) office and/or (b) when retail pharmacies
dispense prescription drugs to patients.

In this paper, we present a novel data-driven approach to
extract co-occurring patterns of influenza-like illnesses (ILI) and
asthma using eHRC datasets. While both conditions represent
significant respiratory ailments, ILI occurs seasonally and asthma
is a chronic condition that can result in wheezing, breathless-
ness, and cough. With an increasing number of patients being
diagnosed with asthma since 2000 (8–10), we wanted to explore
the relationship between the occurrence of asthma with the flu
during the 2009–2010 pandemic flu season. In particular, the risks
associated with influenza in young children susceptible to asthma
have been well studied (11–14). However, the co-occurrence of
flu and asthma in adults is less understood (15, 16). Therefore,
we hypothesized that during the 2009–2010 H1N1 pandemic flu
season, people who were more susceptible to asthma were likely
to also be affected with the flu. Further, we hypothesized that the
continued incidence of asthma within specific geographic regions
in the US would predict which regions could be significantly
affected by the flu.

To evaluate these hypotheses, we describe a novel unsuper-
vised, machine learning approach to automatically identify spatial
and temporal patterns from large-scale eHRC datasets for the
2009–2010 influenza and study its inter-relationship with asthma
incidence during the same time period. Apart from discovering
a small number of distinct geo-temporal patterns, our analysis
shows a distinct lag in the temporal patterns of asthma and flu, i.e.,
we find that a peak in the number of diagnosed flu cases followed a
peak in the number of diagnosed asthma cases. Our results further
include an exploratory analysis into the demographic features
of why such a peak may have been observed. In particular, we
observe a behavior of the epidemic within large urban areas where
environmental factors may have a significant impact (in addition
to other factors) in influencing the total number of patients with
flu and asthma.

Materials and Methods

Data
Prior to our study, we obtained internal Institutional Review
Board approval for analyzing the IMS Health datasets. In this
study, we analyzed the IMS Health ambulatory care reimburse-
ment claims data from the 2009–2010 pandemic (H1N1) flu sea-
son; the details of the datasets are provided in our previous paper
(17). Note that the data from IMS Health are already processed
by a third party to remove any form of personally identifiable
information before it receives the claims data from its suppliers.
The study included eHRC from April 1, 2009 to March 31, 2010
with a total of nearly one billion records. We processed the ambu-
latory care reimbursement claims data and parsed out influenza
(ICD9 codes 486XX and 488XX) and asthma (ICD9 codes 493XX)
related records. We specifically chose those ICD9 codes that
corresponded to hospital diagnosed cases of the flu. For flu, we
obtained a total of over six million individual records (throughout

the US). For asthma, we obtained a total of over 10 million
individual records. We used the zip code corresponding to the
patient’s service provider (i.e., a medical practitioner/physician),
since the provider’s five-digit zip code is more specific than the
patient’s three digit zip code directly accessible from the data. Only
0.0001% of the total records had different three-digit zip codes
available for the patient and service provider.

The resulting flu and asthma datasets were stored as matrices,
Af and Aa, respectively, where the rows represent the number of
days and the columns represent the total number of zip codes.
Note that the datasets are proprietary to IMS Health and therefore
we cannot freely share the derived datasets used in this analysis.
In order to characterize the co-occurrence of asthma and flu,
we obtained a list of common zip codes between Af and Aa and
considered only those zip codes that had more than 10 reported
cases of either diagnostic code set. The IMS diagnostic dataset
covered 14,098 zip codes with statistically significant data for both
flu and asthma, covering about 47% of the US.

Identifying Geo-Temporal Patterns Using
Non-Negative Matrix Factorization
Our primary hypothesis from the flu and asthma incidence pat-
terns was to observe if the people susceptible to asthma were
more likely to be infected with the flu, during the 2009–2010
H1N1 pandemic flu. We also wanted to understand if the contin-
ued presence of asthma within specific geographic regions would
be predictive of the flu incidence in that area. To answer these
questions, we used non-negative matrix factorization (NMF) to
extract a small set of spatial and temporal patterns from the flu
and asthma eHRCs. As we have shown in our previous paper
(17), we chose NMF as an unsupervised machine learning tech-
nique to analyze the data primarily based on several empirical
observations about the data. First, the data matrix A consists of
only non-negative entries – because the total number of patients
at any given zip code will be ≥0. Further, we observed that the
individual zip codes exhibit a small number of distinct patterns
in the occurrence of the flu (17), suggesting that in spite of a
high dimensional setting of the Aasthma and Aflu matrices (with
more than 14,000 individual zip codes and 365 days), there might
be only a small number of geo-temporal patterns that could
best capture the co-occurrence of these two conditions. Second,
while several other types of analyses are possible to examine
the data, our choice of analysis was motivated by the need to
discover the underlying geo-temporal patterns in an unsuper-
vised manner. Techniques, such as principal component analy-
sis, which represents one of the most widely used unsupervised
analysis technique, pursue variance blindly (18, 19) may fail to
capture the intrinsic orientations in the high dimensional data
space.

Given a data matrix A, with non-negative entries, Nz ×Nt
dimensions where Nz represents the number of zip codes and Nt
represents time (in days), NMF finds low-rank approximations
in s dimensions of the form A ≈WH, where W with Nz × s
dimensions represents spatial patterns andHwith s×Nt captures
temporal patterns within the data matrix. We used the alternate
least squares algorithm proposed by Paatero (20, 21), available
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as part of the Matlab package. We ran NMF for a total of 1,000
iterations. To find the appropriate low-rank approximation (s), we
varied s= 1, . . ., 15, dividing the original data into training and
testing data (50% training and 50% testing). Tracking the residual
errors using the Frobenius norm for both training and testing data,
we performed a total of 250 iterations. In our analysis, as shown
in previous work (17, 22), we identified s to be 5. Once we chose s,
the most stable version of the basis matrices (W,H) by computing
the Kullback–Leibler (KL) divergence between every pair of the
250 instances of W (or H) from the training set and picking W
(or H) with the lowest KL divergence value.

Results

Flu and Asthma Case-Counts During the
2009–2010 H1N1 Pandemic Season
We summarize the flu and asthma from the ambulatory care
reimbursement claims data as a function of daily incidence.While
influenza rates rise sharply during the August–September 2009
time-frame, the number of asthma cases observed from the data
shows more or less a uniform distribution throughout the year,
except for a slight increase and decrease around the time of the
pandemic flu season. Further, we find that the peak number of
asthma incidences lags behind by about 3weeks when compared
to the peak number of influenza incidences (Figure 1). Except for
the beginning of the winter season in Figure 1, highlighted as A3
and F3, where the asthma and flu incidence rates coincide, in the
other two cases, highlighted byA1,2 and F1,2, the peak incidence of
asthma occurs earlier than the peak incidence of the flu. Note that
for Figure 1, we present the data that were temporally averaged by
7 days (to account for lag times within diagnostic data reporting
within the IMS Health datasets). We note that even without the

temporal averaging, these trends are observed (both at state and
national levels).

Once we examined the temporal trends in the flu and asthma
datasets, we then extended the analysis to examine the demo-
graphic data for the total number of cases observed (both for
H1N1 flu and asthma). Note that the IMSHealth data include only
information regarding the age of the patient and their sex, but do
not include any other demographic information. As summarized
in Table 1, we find that a larger proportion of children show
increased co-occurrence of flu and asthma symptoms. Although
the number of adults diagnosed with asthma is higher, only
a small proportion of patients are co-diagnosed with both flu
and asthma during the 2009–2010 flu season. Interestingly, in
our analysis of the data, girls tend to exhibit a higher risk
(over 90% of girls are susceptible to both flu and asthma in
Table 1). Similarly, within adults co-diagnosed with the flu and
asthma, female patients tended to be higher in ratio compared to
men. Table 1 also indicates that the total number of diagnosed
cases with both flu and asthma conditions is very infrequent
and indicate that children seem to be at a greater risk than
adults.

An interesting question that arises from the above analysis
is whether there are specific geographic regions within the US
(or time windows), which exhibit a concurrent occurrence of
the flu and asthma. We present an approach to discover such
co-occurring patterns in the next section.

Temporal Patterns in Flu and Asthma Incidence
Identifying Optimal Subspace and Cross Validation
The dimensionality of the data for each of the matrices (Af,a)
is Nz ×Nt where Nz represents the total number of zip codes
(14,098) and Nt represents the time points (365 days starting

FIGURE 1 | Summary of temporal trends observed from the flu
(black line) and asthma (green line) case counts indicate a distinct
delay in the peak incidence of flu compared to asthma. Note that we
have reported the data using a moving average window of 7 days (to
overcome gaps in the IMS ambulatory care reimbursement claims data
based on reports received throughout the week) and normalized the results
based on the fraction of total case counts received at every zip code.

Dotted lines are used to the respective peak incidence rates of asthma
(green) and flu (black). Note that in both the spring season (April–May 2009)
and the fall season (September–October 2009), the asthma incidence
(indicated by A1 and A2, respectively) peaks before the peak in flu
incidence (indicated by F1 and F2, respectively). Only for the winter season,
the peaks in asthma and flu incidence rates coincide (highlighted by A3 and
F3 respectively).
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TABLE 1 |Demographic summary of H1N1 and asthma case count summary
observed from eHRC data.

Child attributes Flu Asthma Flu and
asthma

Mean age 7 7
<1 year 109586 171117 6972
1–2 years 279806 663782 27206
3–5 years 466094 1109834 51155
>5 years 1241575 2870801 118951
Total 2097061 4815534 204284
No. (%) of girls 48 47 92

Adult attributes Flu case
counts

Asthma case
counts

Flu and
asthma

Mean age 42 51
18–24 years 226075 616275 12543
25–30 years 181821 536832 8962
31–35 years 138167 530525 7565
36–40 years 144418 648801 8543
41–45 years 133488 741015 8762
46–50 years 131245 856720 9093
>50 years 393298 4080939 25450
Total 1348512 8011107 80918
No. (%) of females 60 69 70

from April 1 2009 to March 31 2010). The subscripts f and a
for the A matrix represent the two conditions examined, namely
the flu and asthma, respectively. We hypothesized that the flu
incidence patterns would be composed of discrete spatial and
temporal patterns, given the geographic size and spread of the US.
Further, given prior knowledge that there were distinct “peaks”
associated with the 2009–2010 pandemic, it is reasonable to use
techniques that could elucidate discrete, yet sparse spatial and
temporal patterns from this high dimensional data. Additionally,
the entries within each of thesematrices are non-negative (i.e., it is
not possible to obtain a negative count for the number of patients
with the flu or asthma). For this purpose, we used non-negative
matrix factorization (NMF), a technique that can extract low-rank
approximations from the data.

Given a data matrix A with non-negative entries (Nz ×Nt
dimensions), NMF finds low-rank approximations of the form
A≈WH, where W (Nz × s) captures spatial patterns and H
(s×Nt) represents temporal patterns within the data. We used
the alternate least squares algorithm proposed by Paatero (20, 21),
available as part of standard Matlab (Mathworks, Inc.). Although
the size of Aa ,f are quite large, we did not find the speed of conver-
gence a significant problem. We used a stopping value of 1,000 as
the maximum number of iterations. To identify the appropriate
subspace (s) dimensions for the original data, we iterated over
s= 1. . .15 for both matrices, dividing the data into random yet
equal-sized training and testing data. We tracked the residual
errors using Frobenius norm for both training and testing data.
For each choice of s, we repeated this process 100 times. Using this
procedure, we chose the optimal s= 5, based on the most stable
version of the basis matrices by computing the Kullback–Leibler
(KL) divergence between every pair of the 100 instances of W
from the training dataset and picking the W with the lowest KL
divergence value.

FIGURE 2 | NMF captures temporal patterns (H) in both (A) asthma
(indicated by Ha) and (B) flu (Hf) showing a distinct lag time for the
peak of the flu incidence. The superscript indicates the respective
subspace s from NMF that we are depicting. Note that the flu incidence rates
have a distinct shift toward the spring/summer seasons (as indicated by the
peak incidence rates in each of the patterns H1,...,5

f , shown by a red dotted

line and an arrow). While H1
a and H2

a indicate a sustained occurrence of
asthma in the spring/summer and fall/winter seasons respectively, H3

a and
H4

a indicate peak incidence of asthma preceding the flu incidence
(corresponding to H3,4

f ). Further, the earlier onset of the flu observed in H5
f

during the summer of 2009 is also preceded by a distinct peak in the asthma
incidence observed in H5

a.

Distinct Break-out Patterns Govern Flu and Asthma
Incidence
NMF offers a convenient framework to interpret the incidence
of flu and asthma throughout the US during the 2009–2010
time period. In particular, it provides a small number of basis
vectors that describe temporal (Hf ,a) and spatial (Wf ,a) break-
out patterns. Note that the subscripts used, f and a, correspond
to the two conditions tracked, the flu and asthma, respectively.
Based on the procedure outlined above, we selected the optimal
subspace to be s= 5 as it sufficiently captured the underlying
spatial and temporal patterns in the data, while providing an
intuitive description how flu and asthma co-occurred at any given
time period (or spatial location). As shown in Figure 2, one of the
notable observations is that the temporal signatures are distinct
in capturing the occurrence of flu and asthma in the 2009–2010
season.

The temporal patterns for asthma incidence, H1
a and H2

a, show
a seasonal rise in summer and winter season, respectively. In
particular, the orange rectangles highlight the rise and sustained
occurrence of asthma cases for the respective seasons. Inter-
estingly, there is a very short overlap (of about 30 days from
September toOctober) between the summer andwinter where the
asthma occurrence from one season overlaps with the other. This
intersecting time period is captured as increased incidence rates
in both H3

a and H4
a. Additionally, in basis vector, H5

a, we observe
a high incidence of asthma around days 10–45 (April–May 2009)
time-frame.

The break-out patterns for the flu across the US indicates at
least three distinct peaks, ranging from days 180 to 210 (Septem-
ber–October 2009), 150 to 180 (August–September 2009), and
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90–100 (June–July 2009). The temporal patterns from the flu data
indicate that there is a distinct early onset of the epidemic (H5

f ),
followed by several waves at later time-periods (H1−4

f ), which all
have their own distinct temporal signatures. Thus, each of the
basis vectors (in the flu dataset) captures a unique temporal break-
out pattern that captures a different phase of the 2009–2010 flu
epidemic, similar to previously reported studies in the spread of
influenza (23).

Comparing the flu and asthma break-out patterns suggests that
there is an overlap in the incidence of flu and asthma around
August–September, described byH3,5

a andH3,4
f , respectively. Fur-

ther, comparing H5
a and H5

f also indicates that even during the
early onset of the flu (days 90–100; June–July 2009), there is a
marked increase in the asthma incidence rates around days 10–45
(April–May 2009). Although from Figure 1, we see that the overall
trend indicates that the peak of asthma incidence precedes the
peak of flu season, the analysis presented here further suggests
that this precedence may be a distinct factor influencing the
susceptibility of flu occurrence within some regions.

Geographic Patterns of Flu and Asthma
Incidence
The spatial patterns summarized byNMF depict a distinct separa-
tion between the asthma and flu incidence. As shown in Figure 3,
each W can be mapped onto the specific zip code and provides
a geographic interpretation of the results presented above. Each
dot represents a specific zip code examined, and the intensity of
the color indicates a higher occurrence of the flu/asthma (blue
indicates lower and red indicates higher incidence). Note that both
the asthma and flu incidence maps are drawn to the same color
scale (as indicated by the color bar in Figure 3).

We note that densely populated areas (such as New York,
Florida, and California) constitute common grounds for the co-
occurrence of the flu and asthma. In particular, throughout the
north-east, southeast, west, and central US, asthma patterns are
widespread. The spatial patterns for influenza across the entire
US are, however, discrete. Several of the north-east states do not
exhibit any patterns observed in W2−4

f , meaning that during the
latter half of the year, there were no many cases of the flu reported
(except in urban areas). Within the urban areas of the north-east,
however, the occurrence of asthma is quite widespread and occurs
throughout the year.

The occurrence of W4
f is almost exclusive in the southern

regions, with cases detected in both southeast and southwest
(California). The temporal patterns from the south-east constitute
the time-frame of August–September 2009, which signified the
beginning of school season within the same region, leading to
the unique spatial patterns observed here. Within the north-east
(specifically in New York), the H1N1 pandemic was detected
early (in April 2009) and a suitable warning was also issued (24),
perhaps leading to a low number of observed flu cases during the
peak time (September–October 2009) of the flu in these regions.
The other interesting aspect observed fromour analysis is the early
onset of the flu in some north-eastern states (notably New York
and New Jersey) as well as southwest (California), is captured by
W5

f , indicating that this early onset also meant a sustained flu

in the later part of the season (around February–March 2010) in
these regions (Figure 2B, H5

f ).
We also examined the zip codes where flu and asthma patterns

occur concurrently. These regions include urban areas within
the north-east (specifically, southeastern New York, New Jersey,
Delaware, southern parts of New Hampshire, Connecticut, and
Pennsylvania), southeast (Tennessee, Georgia, North and South
Carolinas, Florida, and south central parts of Virginia), and
the west-coast area (California, Oregon, and Washington states).
These urban areas constitute a majority of the places where
the co-occurrence of the flu and asthma exhibit a clear trend,
i.e., a peak in asthma diagnoses is subsequently followed by a
peak in the flu diagnoses. This is in agreement with previous
studies that have showed that air quality, local weather, and
pollen fluctuations, as well as presence of environmental pollu-
tants within urban areas can significantly impact patients with
asthma (25).

Discussion and Conclusion

Comparison with Previous Work
The use of EHR and eHRC datasets for bio-surveillance is rel-
atively new (26). Privacy and security concerns within EHR
and eHRC systems have made it tremendously challenging to
engage local and public health departments in effectively collect-
ing, sharing, and disseminating bio-surveillance-related data (27).
Although eHRC transaction datasets have been routinely used
in the context of tracking and analyzing pharmacy prescriptions
and understanding drug efficacy [e.g., Ref. (28–32)], very little
research has been carried out in terms of using them as potential
data sources for digital public health surveillance. eHRCs have a
distinct lag time associatedwith claims processing and beingmade
available for analysis. Therefore, the timeliness of their availability
from the claims processormay have a significant impact on assess-
ing the data real-time, i.e., as epidemics are spreading through
the population. A recent study showed that retail pharmacy sales
data can be used as a reliable measure for syndromic surveillance;
specifically, the aggregate counts of prescription sales of four anti-
viral drugs for influenza correlated well with Google Flu Trends
(33, 34). However, given the concerns with Google Flu (35), there
is a need to develop alternate strategies to evaluate eHRCs in
tracking flu (and other diseases). It should be noted here that
these papers make use of standard time-series algorithms and/or
other signal processing techniques to model the temporal trends
and report correlations with existing and available CDC ILINet
datasets.

Of the many approaches used to analyze bio-surveillance-
related datasets, supervised and unsupervised machine learning
techniques have been made use of in classifying text messages
from various social media sources (such as Twitter) (36, 37).
In addition, these techniques are used to rank search results
of various bio-surveillance terms (from either a pool of Twit-
ter documents or other internet-based surveillance sources) (38)
to aid analysts in identifying the most relevant documents for
decision making. However, these techniques have not been used
in the context to identify co-occurring disease patterns for bio-
surveillance.
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FIGURE 3 | Spatial patterns from NMF indicate distinct pockets of urban
areas showing co-occurrence of flu and asthma. A geographic incidence
map of the flu (W1,...,5

f ) and asthma (W1,...,5
a ) shows the common areas of

co-occurrence as described in our analysis of the diagnostic data. The spatial
incidence is summarized in increasing color intensity shown on the color map. It

is interesting to observe that the flu incidence gradually progresses to the
south-east from W1

f through W4
f . Further, W

5
f almost exclusively describes the

occurrence of the flu in only large urban areas of the country. Similar patterns
are also observed in the asthma incidence with local incidences being
concentrated around urban areas.
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In our previous work, we showed how diagnostic eHRC trans-
actions are comparable to standard public health surveillance data,
such as the CDC ILINet (17). Further, we also showed that the
consolidated eHRCs at local (zip code level information), regional
(county, metropolitan, city, state, etc.), and national levels can be
used to assess how infectious diseases like the flu may spread.
Unlike aggregating web-based search patterns by users (33, 35),
or the use of social media (39–42), where the use of such data
can significantly overestimate the flu incidence patterns (43, 44),
using eHRCs provides a more accurate indication and potential
predictors. To our knowledge, this study is perhaps the first to use
eHRCs for identifying co-occurrence patterns of flu and asthma
at the national scale.

Another body of literature examines how asthma and the
flu represent syndemic conditions, meaning that both afflictions
are linked and interact synergistically contributing to an excess
burden of disease (14, 25, 45, 46). In this context, the mecha-
nisms by which influenza can exacerbate asthma in patients have
been well documented (47, 48). Studies have examined clinical
strategies to vaccinate patients (both children and adults) against
influenza that have asthma so that adverse reactions can be pre-
vented (11, 15, 49–52) and also evaluated the general safety of
the influenza vaccines and other treatments (such as anti-viral
drugs) for patients with asthma (53, 54). Although our study did
not examine whether the flu and asthma are syndemic within
particular patient populations, we showed that the girls and, in
general, female patients were more susceptible to be co-diagnosed
with the flu and asthma during the 2009 H1N1 pandemic season.
We believe that further analysis would be necessary, including the
use of prescription eHRC datasets to glean whether treatments,
such as anti-viral medicines or vaccinations for these suscep-
tible patient sub-populations, were effective in controlling the
pandemic spread.

From the analysis of the diagnostic data, we showed that it
is possible to summarize the spatial and temporal patterns from
these two conditions into a small number of categorical dimen-
sions, each showing a distinct (temporal and spatial) signature
with respect to the occurrence of asthma and flu. By examining the
demographics of flu and asthma occurrence in both children and
adult populations, we observed that a major proportion of girls
and women were more susceptible to their co-occurrence. While
it is widely acknowledged that older women are more susceptible
to asthma in later ages (25), the co-occurrence of asthma and flu
within younger females correlates well on the statistics in recent
years, showing a higher percentage of girls affected with asthma
attacks (10). Further analysis into the nature of incidence and
reports would be needed, and we propose to examine this as part
of future publications.

Perspective and Potential Limitations
The analysis of the spatial patterns for flu and asthma revealed
that there are distinct geographic locations (albeit a very small
number of them, about 4,000/14,000 zip codes) that show more
than one temporal signatures in the flu/asthma incidence patterns.
Further analysis of these regions will be necessary to understand
the origins of such “mixing.” In particular, as part of our analysis,
we did not examine patient age or history to understand how

a specific group of patients (or a demographic) may be more
susceptible to asthma or the flu. Patients with one or more pre-
existing respiratory conditions can be more susceptible to either
flu or asthma and hence these factors would have to be taken
into account to further understand the co-occurrence patterns
observed during the 2009–2010 flu season. At the time of writing
this paper, this information was not available.

We note here that a more detailed analysis of the spatio-
temporal patterns is required. In particular, for this paper, we have
not quantitatively examined how these temporal patterns match
up against other known temporal mining algorithms and even
other unsupervised machine learning techniques, such as princi-
pal component analysis. We also note that the predictive aspects
of our algorithm have also not been fully explored for two reasons:
(1) the data available to us are only from the 2009–2010 flu season
and (2) it is difficult to obtain a baseline behavior based on a year
that showed highly anomalous behavior in terms of the overall
flu incidence across the entire country. We will explore these
questions in greater detail in a following publication. Another
potential limitation of our study is that we chose to aggregate
our data based on individual zip codes. While the use of other
aggregation techniques (e.g., HHS regions, or state-level) aremore
appropriate for epidemiological purposes, our goal within this
study was to demonstrate how we can extract constituent patterns
of asthma/flu incidence and observe correlated behaviors at this
spatial resolution. We propose to examine standard approaches of
epidemiological data aggregation in further studies.

The analytic techniques outlined here are part of the data
analytic platform for public health surveillance that we have been
developing (22). The platform was designed specifically to bring
together heterogeneous datasets, such as social media and eHRCs,
and analyze these datasets to gather insights into emerging public
health concerns. In this study, we used asthma and influenza as
specific examples to understand co-occurrence patterns across
the US. However, the techniques are quite general and can be
integrated with visual analytic tools to summarize, navigate, and
interpret large volumes of complex healthcare datasets.We believe
that the availability of unique datasets and data analyses tech-
niques outlined above can lead to better public health surveillance
systems and have a positive impact on the nation’s health.

Source Code and Availability
The Oak Ridge Bio-surveillance Toolkit (ORBiT) (17, 22) and the
tools implemented as part of this paper will be made available
as a open source Python-based package from our website (http:
//cda.ornl.gov). Data (used as part of this paper) can be requested
through IMS Health Institute.
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