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Mobile network data for public 
health: opportunities and challenges
Nuria Oliver*, Aleksandar Matic and Enrique Frias-Martinez

Telefónica Research, Barcelona, Spain

The ubiquity of mobile phones worldwide is generating an unprecedented amount of 
human behavioral data both at an individual and aggregated levels. The study of this 
data as a rich source of information about human behavior emerged almost a decade 
ago. Since then, it has grown into a fertile area of research named computational social 
sciences with a wide variety of applications in different fields such as social networks, 
urban and transport planning, economic development, emergency relief, and, recently, 
public health. In this paper, we briefly describe the state of the art on using mobile phone 
data for public health, and present the opportunities and challenges that this kind of data 
presents for public health.
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Introduction

Since 2014, and according to the International Telecommunications Union (1), the number of mobile 
phone subscriptions exceeds the world’s population. This high level of adoption applies to both 
developing and developed economies and to nearly all socio-economic statuses. As an example of 
how fast mobile phone adoption is growing, in 2014 the level of mobile penetration ranged from 90% 
in developing countries to 128% in developed economies, compared to 79–87% in 2011 (1). In fact, 
the mobile phone has become the most ubiquitous piece of technology in our recent history. What is 
interesting and powerful is the fact that mobile phones are connected, leaving a digital trace behind, 
which can be used to analyze and model human behavior at an individual and aggregate levels. The 
analysis of these digital traces has already been successfully applied in a variety of fields, including 
urban planning (2); modeling human mobility (3); understanding social network structure (4) or 
measuring economic development (5).

In this paper, we outline the immense opportunities that mobile data – as it is captured from the 
mobile network infrastructure – presents for public health. In particular, Section “Mobile Network 
Data” presents the different sources and types of mobile network data available and describes their 
advantages and limitations. Sections “Mobile Network Data” and “Behavior and Public Health” 
outline how mobile data can be used for public health. Finally Section “Challenges of Using Mobile 
Data for Public Health” highlights the main technical, regulatory, legal, and ethical challenges that 
come associated with this opportunity and presents possible strategies to overcome them.

Mobile network Data

A mobile (or cellular) network is a wireless network composed of towers, called Base Transceiver 
Stations (BTS), which give coverage to a geographical area. The coverage area of each individual 
BTS is called a cell and is typically divided in three sectors each one covering 120°. Although this is 
the typical case it is possible for a BTS to have just one-directional sector or more than three sectors 
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to handle areas with high density of population. The geographi-
cal area covered by a BTS depends mainly on the power of the 
individual antennas. Depending on population density, BTS 
coverage typically ranges from <1  km2, in dense urban areas, 
to >4  km2, in rural areas. For simplicity, it is common in the 
literature to assume that the cell of each BTS is a 2-dimensional 
non-overlapping polygon, which is typically approximated using 
Voronoi diagrams. Simply, this approach gives a good approxima-
tion of the coverage area of each BTS. In practice, to build the 
“real” diagram of coverage, one has to consider several factors 
in the mobile network, including the power and orientation of 
each antenna.

In order to optimize signaling, BTS are grouped in Location 
Area Networks (LACs), which typically contain multiple BTS, 
ranging from 10 to more than 100, depending on the commu-
nication needs. LACs help determine the current location of a 
mobile phone within a cellular network without having to go 
down to the BTS level. Figure 1A depicts a set of BTS with the 
original coverage for each cell, Figure 1B the simulated coverage 
obtained using Voronoi diagrams and Figure 1C the grouping of 
BTS into LACs (3 in the Figure).

When a cell phone is connected to the network, it notifies the 
BTS where it is located in order to be able to provide communi-
cation services to the user. There are two types of notifications 
which generate two different types of data: (1) Event-driven cell 
phone network data, which refers to information collected when 
a service (e.g., call, SMS, MMS, Internet access, etc.) is actively 
requested by the user; and (2) Network-driven cell phone network 
data, which captures periodic location information triggered by 
updates requested by the network in order to know where the cell 
phone is located.

event-Driven cell phone Data
Traditionally, event-driven cell phone network data have been 
referred to as Call Detail Records (CDRs), which store infor-
mation that is needed for invoicing purposes. The information 
stored in a CDR is not necessarily standardized, and can vary 
between different mobile operators. In general, once a mobile 
subscriber connects to the network and uses a service (such 
as sending or receiving a call, an SMS, an MMS, etc.) the BTS 
logs, among other data, the encrypted originating and destina-
tion phone numbers, a timestamp, the call duration, and the 
identifier of the sector and the cell tower that provided the 

FIgURe 1 | (A) Original coverage areas of BTS, (B) approximation of coverage areas by Voronoi diagram and (c) geographical representation of LACs.

communication to both cell phones. These identifiers give an 
indication of the geographical location of the mobile phone 
at that specific moment in time. However, no information 
about the position of the mobile phone within a cell is known. 
Additional information, such as error codes, identifiers of the 
network operators, type of contract, etc. can also be included in 
the CDR. Also, if the service is a phone call, the CDR typically 
contains the set of cells used during the conversation if there is a 
change of area of coverage because the user is on the move, i.e., 
the handover information between BTS. CDRs have databases 
for associating sectors to longitude and latitude, and also for 
identifying network operators, error codes, etc. Note that if the 
phone is not actively using mobile network services, there will 
be no information generated in the CDRs.

Table 1 presents an example of CDRs for three calls where 
handover information has been also collected. It contains the 
originating encrypted phone number, the destination phone 
number, the date and time of the phone call, and identifier for 
the network operator of the originating phone number, and 
identifier of the network operator of the destination phone 
number, the duration in seconds, the sector or sectors of the 
originating phone number while the call took place, the sector 
or sectors of the destination phone number while the call took 
place, and a code that indicates if there was an error during the 
communication. In this example, we assume that CDRs are gen-
erated by the network provider identified with 1, which implies 
that the CDR will only be able to collect sector information if 
the phone number is in the network of provider 1. The first call 
is from encrypted numbers 3643533533 to 5643786412 where, 
the originating phone number belongs to network operator 1 
but the destination to network operator 3. This implies that 
only the sector or sectors for the originating phone number 
will be available. The second call is between two cell phones 
of operator 1, and as such the sectors of both phones can be 
captured. In this case, the destination phone was moving dur-
ing the call and the list of sectors is given in the corresponding 
field. The third entry corresponds to a call from encrypted 
number 5643786412, which is a phone from network operator 
3–3643533533. In this case only the sectors for the destination 
phone are available. Note that because handover information 
is being collected, the fact that there is only one sector implies 
that the phone did not change sectors during the duration of 
the phone call.
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Moreover, when a mobile phone connects to the Internet, the 
BTS also creates a record of the data connection events. As in 
the case of CDRs, the content is not necessarily standard, but 
typically contains an encrypted identifier of the mobile phone, 
the time and date of the event, information about the website 
visited, number of bytes transferred, control codes, etc. The 
logs that contain Internet access information are referred to as 
Internet access logs.

Both CDRs and Internet access logs constitute longitudinal 
digital traces of human behavior from, which we can infer com-
munication patterns, location, social network links, and brows-
ing history. In particular, four types of variables are computed 
from CDRs and Internet access logs: (1) consumption; (2) social; 
(3) mobility and (4) personal interests. We refer the reader to 
Sections “Modeling Mobility from Mobile Network Data” and 
“Building Behavioral Models from Mobile Network Data” for 
examples of the variables that are typically computed from these 
data logs.

This information  –  anonymized and in many cases aggre-
gated – allows to model human behavior at both individual and 
aggregate levels. At an individual level, previous work has inferred 
behavioral changes (6), user demographics (7), credit scores (8), 
personal characteristics (9) and sleeping patterns. From an aggre-
gated perspective, researchers have been able to characterize the 
mobility of an entire population (10), transportation flows (11), 
the exposure to air pollution (12), predict crime (13), and infer 
socio-economic indicators of regions (5, 14).

network-Driven cell phone Data
A cellular network needs to be aware of where cell phones are 
located in order to provide services (e.g., routing calls, deliver-
ing SMS, etc.). For this purpose, network events are generated 
to update the location of the cell phones. Network-driven cell 
phone data, sometimes referred in the literature as passive 
monitoring (15), is generated by events triggered by the net-
work, even if the user did not necessarily request any services. 
As a result, there is an entry for each event of the network, with 
its associated timestamp and the BTS that handled it. As with 
CDRs, no information about the position of a mobile phone 
within a cell is known. The set of fields typically stored include: 
(a) an identifier for the type of event; (b) the encrypted phone 
number that triggered the event; (c) the identifier of the BTS 
or set of BTS that handled the event; (d) the date and time 
of the event and an (e) error code. A network-event database 
will also contain tables that associate the identifier of the event 
with the event and the error codes with the description of  
the errors.

Typically, there are three main types of events that the network 
captures. Note that different network providers capture all or only 

TABle 1 | exemplary cDRs representing three different calls.

originating Destination Date/time op-orig op-dest Duration Sector-orig Sector-destin code

3643533533 5643786412 01–01–14/17:22 1 3 56 2354626 0

3643533533 8641278633 01–01–14/19:22 1 1 432 2354626 2354666 0
2354667

5643786412 3643533533 01–01–14/19:56 3 1 167 2354626 0

a subset of this information, depending on the sensor infrastruc-
ture deployed on the network:

• Changing LACS: e.g., following the case of Figure 1, if one 
phone moves from a BTS in LAC1 to a BTS in LAC2 an 
event will be generated indicating that the mobile phone 
was connected to a BTS in LAC1 and has moved to a BTS in 
LAC2.

• Switching the phone on and off: in this case, the BTS where the 
phone was last connected is registered.

• Periodic location update request (paging): if none of the above 
took place in the last few hours, a location request will be 
issued which will register the identifier of the BTS and the 
corresponding LAC that the mobile phone is connected to. 
The time parameter is typically between 2 and 4 h, i.e., if the 
network lacks information from the phone for the last 2–4 h, 
a location request will be issued.

Finally, making or receiving calls or SMS, and the handover 
between BTS during a call, also generate an update in the net-
work, which is also captured and included as network-driven 
data. In this case, and contrasting with CDRs, the event only 
generates the location of the phone and the date and time, with no 
information about the other side of the interaction (i.e., the other 
cell phone) or its location. As a result, the location information 
contained in network-driven datasets is much denser than when 
only considering CDR information, but cannot be used to derive 
social variables.

Up to now network-driven data have been used mainly for 
estimating traffic congestion, raising alerts, and inferring average 
travel speeds (11, 16, 17).

Additional network Data
In this section, we present additional mobile data that has been 
used in the literature, namely: (1) simulation of CDRs and/or 
network-driven data; (2) synthetic generation of CDRs; and (3) 
signal triangulation of mobile data. The first two can be used when 
it is not possible to have access to real cell phone network data, 
while the third one addresses the limitation of location resolution 
by considering extra information from the network.

Simulation of CDRs or Network-Driven Data
This case implies locally capturing with a mobile app the interac-
tion of the cell phone with the network. The identifier of the BTS 
to which the mobile phone is connected is available to the phone. 
This information can be locally stored in combination with other 
information, such as the signal strength, other available BTS, 
etc. and can be used to simulate the network-driven data that 
the cell phone network would generate. Moreover, if the mobile 
app captures interactions – such as calls and SMS – CDRs can be 
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simulated and used for later studies. An example of this approach 
can be found in Ref. (18).

Synthetic CDRs
In this case, synthetic traces are generated from real human 
behavioral models  –  typically in the form of calling patterns 
and/or mobility patterns. There are commercial tools available 
for such purposes such as the Call Detail Record Generator 
(19) and the CDR-Generator (20). The technical complexity of 
these approaches lies in the creation of models that capture real 
human behavior. The work done by Isaacman et al. (21) presents 
a synthetic generation tool called WHERE that creates synthetic 
models by capturing the statistical properties of real CDR traces. 
The main advantage of this approach is that there are no privacy 
concerns as the information being used is synthetic and does not 
correspond with any real mobile phones.

Signal Triangulation of Mobile Data
Both CDRs and passive network information cannot determine 
the location of a mobile phone within a cell. In order to be able 
to obtain a more refined location of the cell phone within the 
network additional information needs to be collected, such as the 
attenuation from the antennas and the strength and the length 
of travel time of the signal. With that information triangulation 
techniques can be applied to estimate the distance of a phone 
from the BTS tower.

Strengths and limitations of the  
Different Types of network Data
Each one of the previous types of mobile data has its own techni-
cal strengths and limitations that we discuss in this section. Other 
limitations such as privacy or ownership of the data are discussed 
in Section “Challenges of Using Mobile Data for Public Health.”

Regarding CDRs, we can identify two inherent limitations: (1) 
location is captured only when a service takes place, resulting in 
low temporal resolution, and (2) the captured location approxi-
mates the actual position, resulting in coarse spatial granularity. If 
Internet access information is also captured in the CDRs, then the 
temporal granularity limitation is not as strong, because typically 
the frequency of access to data by users and apps installed on their 
smartphones is high (e.g., several times per hour). Moreover, a 
variety of models have been proposed in the literature to estimate 
location at each moment in time, covering also all the time in 
between two consecutive entries in the CDRs. Song et  al. (10) 
demonstrated that the location at each moment can be estimated 
with 93% accuracy, assuming that the phone is used an average 
of 0.5 times per hour and that an individual visits more than two 
locations during the acquisition of a training set.

Note that network-driven cell phone data have higher 
temporal resolution than CDRs, as the information is captured 
independently of the use of the mobile phone, i.e., the network 
has information even if a phone is not being used. Nevertheless, 
it still has coarse spatial granularity. Triangulation techniques 
are typically carried out to address this limitation. However, it is 
extremely complex to capture triangulation information for all 
the mobile phones in a network. Therefore, it is usually applied 
only to a small sample of phones.

The main strength of network-driven data is the fact that infor-
mation is captured for all users independently of their actual use 
of the phone, which implies that mobility models can be created 
for all mobile phones. Nevertheless, no information regarding the 
social network of the individual is captured in network-driven 
data as previously explained.

CDRs do contain the information needed to construct social 
interactions but the mobility models that can be computed from 
CDRs are much more limited when compared to those built from 
network-driven data due to the sparse temporal granularity of 
CDRs.

In the context of public health, both types of mobile network 
data provide immense opportunities, in particular in developing 
economies where the acquisition of public health-related infor-
mation is costly and limited.

In the remainder of the paper, we discuss the opportunities 
and challenges to leverage mobile network data for public health. 
In particular, we focus on the ability to model mobility (to e.g., 
monitor human migrations and target interventions in the case of 
e.g., epidemics or natural disasters) and to capture behavioral rou-
tines from this data (e.g., to infer significant behavioral changes 
and to assess mental health status).

Mobility and public health

The mobility of individuals and entire populations is of paramount 
importance for public health, particularly in the case of potential 
pandemics, environmental risks, and natural disasters. Mobility 
characterization is key to predict the spatial and temporal risk of a 
human-transmitted infection; to model the spatial spread of drug 
resistance by pathogens, such as malaria; to understand human 
migrations after natural disasters or emergency situations; and 
to quantify exposure to air pollution or other environmental 
chemicals, with major implications in control and elimination 
programs in public health (22).

The traditional approach to analyze mobility patterns is based 
on household surveys and information provided from census 
data (23). These methods allow for a clear understanding of 
demographic biases and motivations pertaining to mobility 
patterns. However, these traditionally collected datasets suffer 
from recall bias and limitations in the size of the population 
sample involved in the analysis, mainly due to excessive costs in 
the acquisition of the data (22). Moreover, survey or census data 
provide a snapshot of the population dynamics at a given moment 
in time. However, in the case of public health, it is of paramount 
importance to obtain a picture of mobility patterns and fluctua-
tions in a continuous manner, particularly during emergencies 
(such as an outbreak of a potential pandemic or disasters) in order 
to support decision making or assess the impact of government 
measures and restrictions to maximize the impact of interven-
tions. In such cases, public health workers typically count people 
at transportation hubs manually.

The work done by Tizzoni et  al. (24) and Wesolowski et  al. 
(22) focused on comparing traditional mobility surveys with the 
information provided by CDRs specifically to model the spread 
of diseases. The findings of both papers recommend the use of 
CDRs, by themselves or in combination with traditional sources, 
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to improve the accuracy of the epidemic situation under study. 
Moreover, Wesolowski et al. (22) focus the study in low-income 
settings and developing economies, where the availability of sur-
veys is highly limited, thus highlighting even more the potential 
of using mobile network data for public health.

Modeling Mobility from Mobile network Data
Human mobility models derived from mobile network data 
have the potential to overcome the shortcomings of traditional 
methods in the context of public health. Given the geolocation 
(longitude and latitude) of every BTS in the mobile network, 
CDRs and/or network-event data would enable to infer the 
approximate locations of mobile phones, which have served 
as a foundation to develop human mobility models both at an 
individual and a population level (25). With respect to mobile 
network data and mobility, there is an important consideration 
to take into account: its spatial and temporal resolutions as 
described in Section “Strengths and Limitations of the Different 
Types of Network Data.”

Typical mobility variables that can be computed from CDRs 
include the total number of commonly used BTS, the radius of 
gyration (i.e., the root mean squared distance between the set 
of BTS’s and their center of masses), the total distance traveled, 
the diameter of the area of influence (i.e., the geographical area 
where the user spends his/her time doing daily activities, which is 
computed as the maximum distance between the set of BTS’s used 
to make/receive calls), all of them over a specific time period. 
We direct an interested reader to Ref. (26) for details on human 
mobility models from mobile network data.

Moreover, recent work has combined mobility and social 
information, which is of paramount importance for public health, 
particularly in the context of humanly transmitted infectious 
diseases. Calabrese et al. (27) and Wu et al. (28) have found that 
calling people while being connected to the same BTS is a good 
proxy for face-to-face interactions: people are more likely to 
physically interact before and after such an event happens. They 
also discovered that the number of inferred face-to-face meetings 
decreases as the distance between the homes of the two users 
increases and were able to predict when and where people would 
meet. In related work, Farrahi et al. (29) showed that a wide range 
of contact tracing strategies may significantly reduce the final size 
of an epidemic, by mainly affecting its peak of incidence.

Selecting a representative population sample and aggregating 
individually inferred mobility patterns are a first and necessary 
step when characterizing population mobility dynamics. An 
important advantage of mining mobile network data for this 
purpose is the ability to discard the CDRs of the individuals who 
do not use their phone often enough to generate a meaningful 
sample (30). Another advantage is that the aggregated nature of 
the analysis minimizes privacy concerns while is still of great 
value for public health.

State of the Art
Frías-Martínez et al. (25) proposed an epidemic spread model that 
captures population’s mobility and social patterns and quantifies 
the changes of these patterns over time. The analysis of individual 
mobility patterns was based on computing the location of mobile 

users at the BTS level and estimating locations at each moment 
in time. The users’ social networks were modeled by inferring 
close relations in the communication patterns reflected in the 
CDRs. The epidemic spread model assumed that two users that 
belong to the same social network are more likely to be physi-
cally close if detected in the vicinity of the same cell tower, which 
increases the probability of an infection transfer between them. 
The approach was validated using CDR data collected during the 
H1N1 outbreak in Mexico in 2009, and it showed that the peak of 
the infection was reduced by approximately 10% and postponed 
for approximately 40 h as a result of the government actions.

Similarly, in a series of studies (30–32), the authors analyzed 
the CDRs of almost 15 million Kenyan mobile subscribers in an 
effort to understand the transmission of malaria; the approach 
was grounded in the fact that human mobility significantly 
contributes to the spatial spread of malaria, even more than 
mosquito dispersal. Mobile network data collected over the 
course of 1 year was analyzed to establish the primary locations 
of individuals (i.e., where they spent the majority of time) and 
destination and durations of each journey thus building the 
population mobility model. The mobility patterns were coupled 
with malaria prevalence data to infer both the residents’ and visi-
tors’ probability to be infected, and ultimately to map the routes 
of parasite dispersal – regions where the disease originated and 
where it was transmitted and to locate high-risk spots in order 
to improve malaria control programs. Tatem et  al. (33) and 
Chuquiyauri et al. (34) also explored the transmission of malaria, 
though on a smaller scale, and focused on the parasite importa-
tion rates from Tanzania to Zanzibar, revealing that a few people 
account for most of the risk for imported malaria. Le Menach 
et  al. (35) combined cell phone data and ferry traffic between 
Zanzibar and mainland Tanzania, and concluded that Zanzibar 
residents traveling to malaria endemic regions were estimated to 
contribute 1–15 times more imported cases than infected visitors.

Human travel is investigated also in the context of the Dengue 
virus transmission in Iquitos, Peru (36, 37). The study in Peru 
was conducted on a small scale, involving 126 individuals, and 
relying on global positioning system (GPS) to locate the individu-
als. In addition to exploring the potential of quantifying mobility 
patterns with respect to the risk of transmission of Dengue in 
resource-poor settings, the authors also focused on the acceptance 
of GPS devices in longitudinal studies and identified a number of 
issues, namely: health effects, care of the units, and privacy and 
confidentiality of the information (36).

After Haiti’s earthquake in January 2010, followed by a cholera 
outbreak in October 2010, researchers at the Karolinska Institute 
in Sweden analyzed daily movement data from two million mobile 
phones and were able to: (1) identify critical areas of the cholera 
outbreak (38), and (2) quantify the population that was affected 
by the disaster and their movements in the following period (39). 
This study illustrated the tremendous value for public health and 
emergency services officials of mobile network data when made 
available right after a disaster takes place.

In 2014, we faced the worst Ebola outbreak in our history. 
Given the relevant previous work and the ubiquity of mobile 
phones, a small group of researchers – including ourselves – and 
Big Data experts advocated the use of aggregated and anonymized 
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CDRs to help fight against the disease. However and despite these 
efforts (http://techcrunch.com/2014/11/08/using-big-data-to-
fight-pandemics/), we did not succeed, mainly due to regulatory 
and legal limitations, combined with possible lack of incentives, 
potential unintended consequences (e.g., the affected areas are 
areas with current or recent civil unrest) and lack of technical 
expertise (40).

In addition to understanding population mobility in case of 
epidemics or natural disasters, mining mobile network data can 
provide valuable information for ongoing routine public health 
surveillance (i.e., regardless of the crisis outbreak). One such 
example is the analysis of individual exposure to air pollution and 
the implications for public health impact assessments (12). Liu 
et al. (12) have proposed to evaluate the impact of traffic-related 
air pollution on public health by analyzing individual trajectories 
assigned to both people and vehicles. The model takes into account 
the vehicle type, speed, and emission rates. Although the study 
was not based on empirical evidence, the authors argue that this 
approach could help identify trajectory patterns of particularly 
exposed groups of individuals, and allow for new perspectives in 
public health research.

Orange has launched two public challenges to the research 
community where they have shared aggregated and anonymized 
CDRs from Ivory Coast and Senegal in the D4D challenges (41). 
While not focused exclusively in public health, there are a num-
ber of interesting scientific papers from the D4D challenges that 
use CDRs for the containment of epidemics, such as the work by 
Lima et al. (42), that shows that information campaigns are more 
effective in limiting the epidemic than quarantine measures; and 
the work by Kafski et al. (43) according to which messages recom-
mending people not to cross into other communities, even if only 
followed by a fraction of the population, can have a big impact on 
the spread of an epidemic.

Behavior and public health

Individual and aggregated human mobility is certainly a key vari-
able to measure, model and predict in public health. As we have 
seen in the previous section, human mobility models can be built 
from passively collected mobile network data, with great promise 
to help decision making in public health, particularly when fight-
ing against an infectious disease, facing the risk of a pandemic or 
when dealing with the consequences of a natural disaster.

However, mobility is not the only human characteristic that 
can be inferred from mobile data. As previously seen, consump-
tion patterns and social variables can be inferred from CDRs and 
Internet logs, enabling the construction of rich models of human 
characteristics and behavior. One area of public health where we 
believe this kind of data could have significant impact is mental 
health, for which monitoring behavior becomes central in the 
treatment and management of mental disorders (44).

Mental health problems account for 20% of the disease 
burden worldwide; one out of four individuals suffers mental 
health problems in a given year (45), it is the third most common 
reason to visit a health center (46), in addition, suicide – with a 
yearly rate of 800,000 worldwide –  is recognized to be a major 
public health issue (47). Though mental health has long remained 

outside the public health practice (48), it has been receiving an 
increasing level of attention in public health action plans that 
suggest the strategy to be shaped around its prevention (49). 
However, the traditional model of episodic care is suboptimal 
to prevent mental health outcomes and improve chronic disease 
outcomes (50–52).

In order to assess human behavior in the context of mental 
wellbeing, the standard clinical practice relies on periodic 
self-reports that suffer from several shortcomings, including 
memory dependence, recall bias, subjectivity, and influence 
of the current mood of an individual. Besides, individuals 
with mental conditions typically visit doctors when the crisis 
has already happened or is underway thus reporting limited 
information about precursors and making it impossible to 
eventually prevent the crisis onset. The challenge of diagnosing 
a crisis or a disorder is further exacerbated in low and middle 
income countries where 75–85% of patients with severe mental 
disorders are unable to access appropriate health care services 
and to receive treatment (53).

Thanks to the ubiquity of mobile devices, today, we have the 
ability to monitor human behavior outside of clinical settings 
and without having to depend on self-reported information. The 
opportunity to passively collect large-scale human behavioral data 
is key to diagnose early and prevent mental conditions, mitigat-
ing the pressure on healthcare systems, and ultimately bringing 
important benefits for public health. One of the main functions 
of public health is the assessment and monitoring of the health 
of communities at risk to identify health problems and priorities, 
the promotion of health and the delivery of disease prevention 
services (48). Human behavior monitoring and understanding is 
a key enabler of these functions.

Building Behavioral Models from  
Mobile network Data
The role of mobile technology in healthcare has been recently 
emphasized for its opportunity to extend health interventions 
beyond the reach of traditional care – the approach referred to as 
Mobile Health (mHealth) (54, 55). Mobile phones can have a sig-
nificant impact on mental healthcare through sensing, analyzing, 
and affecting human behavior (56), enabling the development of 
mental health prevention, promotion, and management tools. 
The ultimate goal would be to move some of the mental healthcare 
tasks to daily life outside of clinical settings. Although mHealth 
applications have shown the potential to overcome the limitations 
of self-reporting methods, the widespread adoption of mobile 
health applications is still limited due to (a) a lack of historical 
information about a patient before installing the application, (b) 
considerable consumption of phone resources by the application 
(e.g., battery, CPU, memory), (c) limited reach – as only 1 out of 
5 persons worldwide owns a smartphone required for installing 
mobile health applications (57), and (d) lack of portability (e.g., 
app requiring a specific mobile OS). In this regard, passively 
collected mobile network data can overcome the drawbacks of 
mobile phone applications while still serving as an accurate proxy 
of human behavior (58).

As previously described, both CDRs and Internet access logs 
constitute longitudinal digital traces of human behavior from 

http://www.frontiersin.org/Public_Health/archive
http://www.frontiersin.org/Public_Health
www.frontiersin.org


August 2015 | Volume 3 | Article 1897

Oliver et al. Mobile network and public health

Frontiers in Public Health | www.frontiersin.org

which we can infer communication patterns, location, social 
network links, and browsing history. Different kinds of variables 
can be computed from CDRs and Internet access logs, including:

 (1) Consumption variables, such as the total number of incoming 
and outgoing calls received by a user; the average duration 
of incoming and outgoing calls; the total expenses in phone 
calls; the total number of incoming/outgoing SMS; the ratio 
of incoming/outgoing SMS versus all communications; the 
amount of data transferred and received; the amount of time 
spent on the Internet, all of them over a specific time period 
(e.g., day, week, month.);

 (2) Social variables, such as the in and out degree of the user’s 
social network, built from the call graph or the graph created 
from the CDRs, and the centrality and total degree of the 
network;

 (3) Mobility variables, such as the total number of commonly 
used BTS, the radius of gyration (i.e., the root mean squared 
distance between the set of BTS’s and their center of masses), 
the total distance traveled, the diameter of the area of influ-
ence (i.e., the geographical area where the user spends his/
her time doing daily activities, which is computed as the 
maximum distance between the set of BTS’s used to make/
receive calls), all of them over a specific time period; and

 (4) Personal interests variables, such as the topics or categories 
of the most accessed Web services and mobile apps over a 
specific time period.

In addition to the variables above, other aspects of human 
behavior can be inferred from these logs, such as sleep patterns 
(obtained from the timestamps of the last/first entries in a day) 
and commuting routines and distances (obtained after inferring 
the user’s home and work locations).

From these variables, we can build models of individual and 
aggregated human behavior that are relevant for mental health 
conditions, particularly to analyze aspects of daily routine and 
lifestyle that may be valuable to (a) monitor the condition, and 
(b) detect behavioral deviations that are indicative of a crisis (44).

From the perspective of public health, mining mobile network 
data can potentially enable us to identify populations and situa-
tions in which an intervention (such as a message, a phone call 
or a visit) can trigger positive behavioral change or encourage 
adherence to the therapy, which would contribute to improving 
public health and lower healthcare costs. In a recent report, the 
World Health Organization has emphasized the role of public 
health interventions to improve mental health (51) and in this 
respect mobile network data would enable to develop tools to 
support such public health actions.

State of the Art
Mobile applications have been proposed for symptom assessment, 
psycho-education, resource location, and tracking of treatment 
progress (55). To the best of our knowledge, there have neither 
been attempts in research nor in commercial services to leverage 
mobile network data for monitoring patients with mental condi-
tions and for identifying groups at a particular risk. This section 
provides an overview of related studies that rely on smartphones 

to either monitor behavior in the context of mental wellbeing or 
to deliver interventions.

Monitoring Human Behavior with Mobile Phones
The behavioral data collected through mobile phones has been 
exploited to recognize mood (59) and stress (60), to understand 
triggers of mood changes (61), and to help manage stress, anxi-
ety, and mood disturbances (55). Specifically related to mental 
disorders, the EU FP7 project MONARCA (62) investigated 
the feasibility of providing a smartphone-based platform to 
continuously acquire behavioral data of bipolar disorder patients 
to detect significant changes in their behavior related to maniac 
and depressive episodes. Gruenerbl et al. (63) demonstrated that 
a smartphone can be used as a “measurement device” for sup-
porting bipolar disorder patients, achieving high accuracy both 
in recognizing the current state and in predicting state change. 
In a similar line, there are a few recent off-the-shelf mobile 
applications, such as Ginger.io and Mobilyze, that aim to signal 
changes in one’s behavior (e.g., staying at home for several days) 
and present the inferred behavioral parameters to the specialists.

Delivering Interventions with Mobile Phones
Mobile phones have been increasingly emphasized as a platform 
that can be suitable for delivering feedback and providing behav-
ioral therapy thanks to the fact that people habitually carry mobile 
phones and that they are able to unobtrusively sense and analyze 
human behavior. Lathia et al. (56) proposed a system to provide 
large-scale behavior change interventions based on sensing a 
specific set of user’s activities, learning behavioral models, and 
delivering tailored behavioral change interventions at a suitable 
time. In particular, mobile applications that target mental health 
have demonstrated a high potential to be effective in providing 
interventions and improving treatment accessibility. The current 
literature reports several recent studies that have designed mobile 
intervention approaches to improve mental health conditions, 
including depression (64, 65), anxiety (66), stress (67), bipolar 
disorder, and schizophrenia (68). Most of these studies involved 
a small number of participants thus have limited scientific 
evidence about the efficacy of the interventions (specifically in 
the long term) (69, 70). However, considering these promising 
preliminary results and an increasing number of studies that aim 
to validate mobile-phone based interventions, they illustrate the 
potential to move toward preventative models, which can be of a 
particular benefit for public health (49).

When it comes to non-smartphone-based interventions, 
user-interaction possibilities become limited to the avail-
able channels (such as SMS or calls) as opposed to interactive 
interfaces in smartphone applications. Nevertheless, texting was 
been shown to be a simple but powerful way to achieve positive 
behavioral changes: Fogg et  al. (71) presented several health 
domains in which SMS-based interventions could be effective 
and they highlighted specific use-cases of using text messages 
to educate or notify people, collect user data – such as answers 
to specific questions or self reports – and connect individuals 
and groups.

Given the lack of prior work on using passively collected mobile 
network data for mental health, we believe there is a tremendous 
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opportunity to have positive impact in this domain. However, 
such an impact will only be achieved when technical, regulatory, 
legal and ethical challenges are addressed, as described below.

challenges of Using Mobile Data  
for public health

Using mobile network data for public health applications implies 
a series of challenges, not only technical but also regarding pri-
vacy, security, regulation, and legislation.

privacy, Regulation and Data Security
Despite the fact that mobile network data can provide ground-
breaking opportunities for public health, taking advantage of 
this data in practice is by no means trivial. Storing, accessing and 
processing data that contains personal sensitive information, 
such as location and mobility, Internet logs, call and messaging 
patterns, as well as information related an individual’s social 
network must adhere to data privacy laws and a clear ethical 
code of conduct. Even if the data is encrypted and it is processed 
with full informed consent from all users, there is still a risk of 
deducing identities from the data, particularly when combined 
with other data sources. Thus, ownership, transparency and 
control of personal data are important topics that would need to 
be addressed (72).

Deducing Identities from Anonymized  
Individual Data
Despite the algorithmic advancements in anonymizing data 
and hashing identifiers, it has been shown that it is feasible to 
deduce identities from anonymized human behavioral data, 
particularly when combined with data from different sources. 
For example, Zang et al. (73) have shown that if home and work 
addresses were available for some users, up to 35% of users 
of the network could be de-identified just using the two most 
visited towers (which will probably be home and work). Taking 
this idea further, de Montjoye et  al. (74) have demonstrated 
how unique the mobility information is for each individual and 
how that information can be used to de-identify users with an 
accuracy of 95%.

As a consequence, the vulnerability of the mobile network data 
to malicious attacks represents one of the obstacles for granting 
access to this data to researchers for human behavior modeling. 
Nevertheless, the issue of deductive disclosure is a common 
problem with a wide variety of personal datasets. As argued by 
Eagle (72), data sharing protocols must be developed that could 
be similar to those long-used by the medical community. In 
addition, several privacy-enhancing technologies for mobility 
data have been proposed by the scientific community (75). Two 
solutions described by Krumm (76) are location obfuscation 
(77), which consists of slightly altering location information in 
irreversible ways such that it does not reflect the real location 
but is still representative of the phenomenon under study; and 
k-anonymity for trajectories (78), which ensures that individual 
trajectories can only be released if there are at least k-1 trajectories 
that are indistinguishable from the specific trajectory to be shared 
and analyzed.

An additional area of research consists of understanding the 
maximum levels of individual, spatial and temporal aggregation 
that would still enable to make accurate models and inferences 
while maximizing privacy preservation thanks to the aggrega-
tion. We leave this topic for future work.

Data Ownership
Mobile network data is generated by mobile subscribers as digital 
traces that are collected as a consequence of their longitudinal 
use of mobile network services. This raises questions that do not 
have clear-cut answers about who owns the data and who can 
control its usage. Even when the data is analyzed on an aggre-
gated level, the individuals are typically unable to opt out from 
the data analysis and to remove their data from the aggregated 
datasets (72). This issue requires legislation per se, and the lack of 
international standards in this area can result in public distrust in 
using this technology. Yet, the examples of storing and accessing 
extremely personal data about human behavior can be found in 
various domains such as banking, healthcare, education, social 
networks, and other online services, without a commitment to 
deliver the outputs for public good.

There is a need for updated technical standards, regulation 
and legislation before we can leverage this new type of human 
behavioral data for public health. To address privacy concerns, 
privacy-preserving technical solutions need to be adopted and 
users need to be given full control over which data they feel com-
fortable sharing for social good (72). As previously described in 
Section “Additional Network Data,” synthetic CDR data genera-
tion could be an alternate approach to address privacy and data 
ownership constraints while still adding value (79).

There are several successful examples of sharing aggregated 
and anonymized mobile operator logs to the research commu-
nity such as Telefonica’s Datathon for Social Good in UK (80), 
Orange’s D4D challenges (41), Telecom Italia Data challenge (81), 
and Digicel’s data access to researchers after Haiti’s earthquake 
in 2011 (39). These examples illustrate how obstacles related to 
privacy and data security can be resolved in certain cases. Such 
single-case agreements should evolve into a set of official proto-
cols that would expedite the process and also minimize the risks 
in providing access to this data (privacy related and non-intended 
consequences) (72).

In case of epidemics or natural disasters that would require 
prompt access to mobile network data, having regulation and 
legislation on the use of anonymized and aggregated mobile data, 
together with technical expertise, shared best practices and a clear 
code of conduct with dealing with mobile data would enable an 
appropriate response in near real-time when needed (40, 82).

Social considerations
Despite the wide adoption of mobile phones worldwide, there are 
still hundreds of millions of people who do not have a mobile 
phone or who make a very limited use of their devices. These 
people are at risk of being excluded by any mobile data-driven 
analyses. Researchers, decision makers and health officials work-
ing and making decisions based on the analysis of these large-
scale datasets should certainly keep this factor in mind. Moreover, 
as we change to a data-driven society where our decisions are 
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increasingly based on the results of data analytics, we need to 
make a conscious effort to avoid creating a digital divide between 
those who have access to data and those who do not; or those who 
have the expertise and knowledge to analyze this data and make 
sense of it, and those who do not.

Finally, as it has been evidenced by some of the proposals 
presented to the D4D challenge (41, 83) it is crucial to take into 
consideration potential unintended consequences that could 
arise from the public release of the insights gathered from the 
analysis of this kind of data even if it is for public health purposes. 
For example, the inference of migration patterns to better under-
stand and anticipate the spread of a pandemic could put certain 
populations at risk in areas with civil unrest or conflict between 
different ethnic groups.

Technical and Research challenges
Mobile network data offers tremendous advantages such as 
near-universal access and passive collection without the need for 
human intervention. However, it is also subject to limitations in 
data collection (e.g., gaps in location tracking, no access to the 
phone sensors such as accelerometers, light sensor, GPS, etc.) and 
in user-interaction (e.g., instead of interactive interfaces provided 
by an app or an online dashboard the interaction is reduced to 
mobile network communication channels such as SMS messages 
or calls). Therefore, further research is needed to provide a deeper 
understanding of the values and limitations of mobile network 
data for public health.

While the potential and the promise to have positive impact 
are large, there are significant technical and research challenges 
that would need to be addressed before we can fully leverage this 
data for public health, including:

Scientific Validation, Lack of Ground-Truth
The majority of mobile health applications are not scientifically 
validated thus cannot be officially included in the standard health-
care practice (70). Similarly, conducting further research and 
empirical validation of the approaches that rely on mobile net-
work data is a critical step toward the adoption of mobile network 
data based approaches in public health practice. A prerequisite is 
having reliable ground-truth that is often a non-trivial task.

For example, in the case of mobility the difficulty in obtaining 
reliable ground-truth relates to the previously discussed short-
comings of surveys and census methods, including limited-size 
of population samples, obsolete data and recall bias. Wesolowski 
et al. (22) reported the discrepancy between the mobility reported 
through surveys and the one modeled through the CDRs analysis 
in Kenya, with the significantly lower volume captured by the 
former method. As possible reasons, the authors speculated about 
the fact that working age men are often absent during community 
hours, that the details about trips taken may be forgotten or not 
accurately reported and that it was challenging to conduct the 
survey on a large scale. Conversely, the sample of mobile phone 
subscribers could be biased toward more educated urban males 
(note that for privacy issues no demographic data about mobile 
subscribers was available) and also due to phone sharing and 
multiple SIM card ownership. In such cases, it becomes difficult to 
assess each of the methods as there isn’t an ultimate ground-truth. 

However combining the two data sets can give a more complete 
picture of human mobility than each of the methods can provide 
independently.

In terms of behavioral changes that are due to mental health 
conditions, the collection of ground-truth is currently limited to 
medical records (hospitalizations, doctor’s visits), which in many 
cases contain a lot of self-reported information. Diagnosing 
affective disorders, the patients’ episodes and current state is 
mostly based on both self-reports of behavior and mood and on 
direct observations by psychiatrists or informal caregivers, which 
suffers from subjectivity and human errors. Therefore, reliable 
ground-truth when it comes to mental health is also a challenge 
as there are neither firm biomarkers nor imaging techniques that 
reliably diagnose mental conditions (84).

Need for Interventions
A promising approach in the use of mobile data for public health 
would combine the detection of unusual patterns of behavior 
with interventions delivered directly to the population through 
mobile phones, specific government measures or their doctors or 
caregivers (in the case of mental health, for example). Only when 
we will be able to close the loop between the insights extracted 
from the data and the humans that generated such data we will 
be able to gather quantitative evidence of the value of the analyses 
in the real world and realize the full potential of this technology.

Temporal and Spatial Granularity
As previously described, data captured by the mobile network 
infrastructure has temporal and spatial limitations that need to 
be taken into account in the analyses. Spatial limitations imply 
that it is in general extremely difficult to assign a precise physical 
location to the user from the information contained in the mobile 
network. Temporal limitations imply that there is only a partial 
view of the user’s activity, i.e., we can have no information of a 
user for prolonged time periods. Therefore, it is of paramount 
importance to provide results that take into account this uncer-
tainty (85) and to develop algorithms that try to overcome the 
limitations in temporal and spatial granularity.

Biases in the Data. Generalization Ability
The tremendous potential of mining big data are undeniable, 
however the quantity of data does not guarantee the reliability 
and validity of the approach. Note that the vast majority of 
large-scale human behavioral data used today is used in an 
opportunistic manner as the data was originally collected for 
other purposes (86). A well-known example of this limitation in 
Big Data Analysis is the recent bias reported in Google Flu Trends 
when compared to the estimations carried out by the Center for 
Disease Control. According to Lazer et al. (86) one of the causes 
of these deviations is the dynamic nature of the algorithms that 
underlie Google search. However, while Internet services (such as 
Google, Facebook, Twitter) frequently change (thus making the 
logs not consistent overtime for e.g., the flu prevalence analysis), 
mobile network logs are more stable and their generation does 
not rely on algorithms that change overtime. Yet, mobile data still 
hides potential risks of overfitting to a small portion of cases for 
which the biased nature of mobile phone ownership is one of the 
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potential contributors to consider. Wesolowski et al. reported (32) 
a limited impact of the mobile phone ownership disproportion 
(toward urban educated males) on population mobility inference. 
Hence, the selection of the mobile data sample and the validation 
of the results should be carried out with caution as mobile phone 
ownership could be skewed due to socio-economic, cultural and 
demographic factors (87).

Real-Time Analysis
Certain public health scenarios, such the risk of a pandemic, 
require real-time decision making. Being able to access and ana-
lyze mobile data in real-time is still a challenge in most countries. 
Mobile network data is typically collected throughout a specific 
time period (e.g., one day) and only then pushed to databases 
such that it is not available in real-time. Data analytics algorithms 
for streaming data would be needed to be able to process real-
time mobile data (88).

Combination with Other Data Sources
As we have described in this paper, mobile network data enables us 
to characterize human behavioral variables that are of paramount 
importance to public health, such as mobility routines, consump-
tion patterns and social network characteristics. However, for 
many public health scenarios, it is necessary to combine these 
variables with variables coming from external data sources, such 
as public health information or medical records. The linkage of 
these different datasets poses both technical and privacy chal-
lenges that would need to be addressed.

conclusion

In this paper, we have described the potential of using different 
types of mobile network data for public health. In particular, we 
have focused on the opportunity to model individual and popula-
tion mobility and to characterize human behavior. The analysis of 
individual and population mobility patterns in a more objective 
way and with finer spatio-temporal resolution in comparison to 
traditional methods opens a door to revolutionize public health. 
Furthermore, mobile network data can also provide a continuous 
insight into human behavior that can support the assessment and 
monitoring of the health of specific communities at a risk, e.g., 
mental conditions, thus paving the way toward improved health 
promotion and prevention.

Since the acquisition of mobile network data was not purpose-
fully designed for scientific research and to support public health, 
its analysis entails technical, legal and regulatory challenges that 
could limit a practical implementation, including privacy and 
ethics, potential sample biases, limited temporal and spatial 
granularity, and real-time analysis.

In order to expedite the adoption of mobile data for public 
health, a global coordination is needed that would support an effi-
cient dissemination of best practices, establish and update exist-
ing regulation and legislation and improve technical standards.

In our vision, the ultimate goal would be to complement tradi-
tional approaches and to enable the shift from population-based 
and reactive healthcare to personalized, proactive, and preventive 
healthcare.
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