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Smooth tubercle bacilli (STB) including “Mycobacterium canettii” are members of the 
Mycobacterium tuberculosis complex (MTBC), which cause non-contagious tubercu-
losis in human. This group comprises <100 isolates characterized by smooth colonies 
and cordless organisms. Most STB isolates have been obtained from patients exposed 
to the Republic of Djibouti but seven isolates, including the three seminal ones obtained 
by Georges Canetti between 1968 and 1970, were recovered from patients in France, 
Madagascar, Sub-Sahara East Africa, and French Polynesia. STB form a genetically 
heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes, which 
may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission 
suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory 
tract route of contamination and the digestive tract as an alternative route of contami-
nation. Further epidemiological and clinical studies are warranted to elucidate areas of 
uncertainty regarding these unusual mycobacteria and the tuberculosis they cause.

Keywords: Mycobacterium tuberculosis complex, “Mycobacterium canettii”, smooth tubercle bacilli, Djibouti, 
Horn of Africa, amoebas, cellulases

inTRODUCTiOn

In 2013, 9 million people developed tuberculosis (TB) and 1.5 million people infected with TB 
died (1). The vast majority of cases were caused by Mycobacterium tuberculosis stricto sensu, a cord-
forming organism exhibiting rough colonies (2–4) while a few cordless isolates, referred as “smooth 
tubercle bacilli” (STB) were reported to form smooth colonies (5). The first three STB isolates made 
by Georges Canetti in 1968–1970 (6) were further named “Mycobacterium canettii” following the 
isolation of an additional STB isolate from a tuberculous lymph node in a Somali child (7). Then, a 
total of 93 STB have been isolated from patients exposed to tropical countries, mainly the Republic 
of Djibouti, which reports the highest prevalence and incidence of STB (5, 7–17). The reason for this 
geographical specificity is not really understood. Despite its rarity, STB deserve special attention due 
to their epidemiological, clinical, and microbiological characteristics, which are unique among the 
M. tuberculosis complex (MTBC).

PARTiCULARiTieS OF THe STB inFeCTiOn

No environmental or animal STB isolates have been identified, contrary to that of M. tuberculosis 
(18). Indeed, the three seminal STB isolates were not reported by Canetti himself, but were rather 
identified through two indirect sources (6, 19). Accordingly, the precise history of these seminal 
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FiGURe 1 | (A) Geographical sources for STB infection in 93 patients. (B) Aspects of STB and M. tuberculosis H37Rv colonies on 7H10 solid Middlebrook medium 
and Ziehl–Neelsen staining of mycobacteria. STB present smooth colonies and distribution of bacilli in singlets or aggregated small clumps instead of the cord-like 
aggregates usually seen with the rough H37Rv strains. (C) MALDI-TOF spectrum for “M. canettii” (a) and M. tuberculosis H37Rv (b).
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isolates is poorly known, although it began prior to 1969, as 
deduced from a study on M. tuberculosis var. hominis, Canetti 
strain mycolic acids submitted for publication in 1968 (20). This 
first isolate was obtained from a 20-year-old French farmer suf-
fering from pulmonary TB although he had apparently never left 
France (6, 19). Canetti obtained a second isolate from a 54-year-
old farmer also suffering from pulmonary TB in Madagascar, 
then a third isolate from a man suffering tuberculous adenitis 
in Papeete, Tahiti (6, 19). Surprisingly, the first ever reported 
STB isolates were therefore from three patients with no reported 
contact with the Horn of Africa, where the vast majority of cases 
had been reported. In 1997, a fourth STB isolate (So93 strain) was 
reported as “M. canettii” (7). The more general term “STB” used 
here was quoted in a report on M. tuberculosis smooth variants 
in Djibouti (5). Since 1997, a survey of the literature found a total 
of 93 STB isolates, mainly obtained from patients exposed to 
tropical countries (Table S1 in Supplementary Material). Indeed, 
82/93 (88%) isolates were obtained from patients exposed to the 
Republic of Djibouti, 2/93 (2%) from patients exposed to Uganda 
including one also exposed to Kenya, 2/93 (2%) from patients 
exposed to Somalia, 3 other patients exposed to France, French 
Polynesia, and Madagascar, and 4 cases with unknown geographi-
cal exposure (Figure 1A). With the notable exception of the three 
seminal isolates, all isolates were obtained between the 23° 26′ 16″ 
N and 23° 26′ 16″ S parallels in tropical countries with a coastline 
(Figure 1A). Following the description of the first cases in 1969 and 
1970, few cases were reported between 1991 and 1997, although 
29/93 cases were described from 1998 to 2000. A second peak in 
case reporting was observed between 2002 and 2003, with 17 cases 

being described, and a third peak took place 8 years later with 10 
new cases (Figure S1 in Supplementary Material). It should be 
noted that the number of published cases significantly correlates 
to the number of STB papers published over the same time period 
(P = 1.208e − 13, Pearson’s correlation), suggesting a positive bias 
in reporting cases (Figure S1 in Supplementary Material). Interest 
in STB isolates gained ground around the 2000s, suggesting that 
efforts were concentrated where the main strains were collected, 
mainly in the Horn of Africa. Furthermore, the unusual macro-
scopic phenotype of the STB strains may delay their diagnosis 
and may even result in them being underreported. Clinical data 
available for 85/93 patients (5, 7, 8, 10, 11, 13–17) indicate 44/85 
(52%) had the pulmonary form and 41/85 (48%) had the extra-
pulmonary form, including lymph node involvement in 32% of 
cases (Figure 2). In Djibouti, no significant difference was found 
in the prevalence of the pulmonary form between STB [17/30 
(56.6%)] and M. tuberculosis stricto sensu [2,188/3,772; (58%), 
P = 0, 88 > 0, 1, X2 test] (Plan National de Lutte Anti Tuberculeuse, 
1997). However, the prevalence of enlarged lymph nodes in STB 
(12/30; 40%) was significantly higher than in M. tuberculosis 
stricto sensu (717/3,772; 19%) (P = 0.038, X2 test). In Djibouti, 
a recent epidemiological investigation found that all STB lymph 
nodes were diagnosed in children and that all STB children had 
lymph nodes which were infected (8). Indeed, the So93 strain was 
also obtained from lymphadenitis in a 2-year-old Somali child (7). 
Of note, the age of children with STB lymph nodes in the Horn of 
Africa shows a bimodal distribution with 7/14 children ≤4 years. 
This is the median age reported for Mycobacterium avium homi-
nissuis lymph nodes (21). This observation suggests that young 
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FiGURe 2 | STB tuberculosis anatomical sites of infection and potential environmental sources and routes of contamination. Number of STB cases per 
site is indicated in brackets. Blue is for digestive tract, red for other anatomical sites. Question marks indicate hypothetical routes of contamination.
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children are infected by suction of contaminated fomites. These 
clinical observations suggest an oropharyngeal portal of entry for 
STB. Moreover, reports of STB-infected mesenteric lymph nodes 
(15) as well as one case of STB ascites (19) suggest a digestive 
tract route of infection in addition to the respiratory tract route. 
The establishment of an animal model using an oral route for 
STB infection could evaluate the possibility of STB infection 
through digestive tract route. Interestingly, in contrast to clas-
sical TB infection, there is no evidence of human-to-human 
transmission of STB infection, suggesting the existence of an as 
yet unknown environmental reservoir (5). Accordingly, “M. can-
ettii” (CIPT140010059) was shown to survive in experimentally 
infected soil for a minimum of 12 months (22). Taken together, 
these observations suggest that soil may be a direct or indirect 
source of STB through drinking water and food, entering and 
replicating at the oropharyngeal portal of entry and spreading 
into the respiratory and digestive tracts (Figure 2).

PARTiCULARiTieS OF THe STB 
ORGAniSMS

The generation time of STB is two to three times shorter than that 
of M. tuberculosis strains in both liquid media and solid media at 
30°C and 37°C (3 and 8 days for STB and M. tuberculosis H37Rv, 
respectively, at 37°C as measured by BACTEC 460 System in 
numerical growth units), a feature also of Mycobacterium microti 

(9). By definition, STB present smooth colonies, which are white 
to pale beige and glossy (Figure  1B) (5) correlating with the 
presence of a large amount of triglycosyl glycolipids (7, 23, 24). 
Through electron microscopy scanning, colonies were observed 
to vary from small, singular, flat and cone-shaped to larger com-
pound colonies formed by a homogeneous distribution of bacilli 
in singlets or aggregated in small clumps instead of the cord-like 
aggregates usually seen with rough MTBC strains (7) (Figure 1B). 
Specific biochemical traits, including antibiotic susceptibility 
patterns, are reported in Table S2 in Supplementary Material. 
Matrix-Assisted Laser Desorption Ionization-Time-of-Flight 
Mass Spectrometry (MALDI-TOF-MS) fingerprinting (25) yields 
a distinctive peptide spectrum for “M. canettii” (Figure 1C). Five 
available whole STB genomes indicate a 4.4202–4.52595  Mb 
chromosome larger than that of the other MTBC members. This 
difference is reflected by a set of 890 predicted coding sequences 
(~20%) present in STB and absent in the other members of the 
MTBC (17). However, 14/890 (1.6%) genes only are common to all 
five genome-sequenced STB strains (Table S3 in Supplementary 
Material) (17). The rest of these genes are variably distributed 
between the different STB strains (17). Whereas the evolution-
ary of M. tuberculosis is mainly characterized by a genome size 
reduction linked to gene loss and host adaptation, STB still carry 
traces of interactions with donor organisms suggesting that STB 
are environmental organisms, which retain a broad spectrum 
adaptative capability (17). No phages have been observed, but 
a controversial 55-kb prophage was identified in STB-I (17, 
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26), nine spacers matching the Mycobacterium marinum strain 
M prophage, and two spacers matching the Thibault or Redi 
Mycobacterium phages. Three additional prophages, phiBN42_1, 
phiBN44_1, phiMCAN_1, have been described respectively as 
“M. canettii” CIPT 140070010, “M. canettii” CIPT 140060008 and 
“M. canettii” CIPT 140010059 (26). These prophages may play a 
major role in the evolution of STB, as previously reported for M. 
abscessus (27). Further study found that some STB isolates lacked 
the insertion element IS1081, while a new ISMycA1 (GenBank 
accession number AJ619854) was discovered in the “M. canettii” 
CIPT140010059 genome (12). ISMycA1 encodes a transposase 
which, surprisingly, shares 48% amino acid sequence identity with 
IS-encoded transposases of the Mycobacterium ulcerans plasmid 
(28). ISMycA1 is a distinctive characteristic of STB in comparison 
with the other MTBC members (12). Indeed, the original “M. 
canettii” strain (CIPT 140010059) and So93 are indistinguishable 
from the other MTBC members as a result of sequencing of 16S 
rRNA and housekeeping genes (rpoB, katG, rpsL, and gyrA) (7). 
Nevertheless, further analysis of six housekeeping genes yielded 
14 (A-N) STB clonal groups (12, 17). The multiple locus variable 
number of tandem repeats analysis (MLVA) (10, 11) highlighted 
that ETR-A (allele 10), ETR-C (alleles 6 and 10), MIRU-02 (allele 
3), MIRU-40 (allele 8), and Mtub29 (allele 5) were unique to STB 
strains (10). Compared to M. tuberculosis H37Rv, investigations 
showed the presence of an intact region of deletion RD9 and the 
M. tuberculosis specific deletion (TbD1) (11, 29, 30). Indeed, 
TbD1 region is present in 59 STB strains tested including the 
seminal isolate “M. canettii” CIPT140010059; along with 11 
West African M. africanum isolates and 20 Mycobacterium bovis 
including two BCG strains. At the opposite, 40 of 46 tested M. 
tuberculosis strains were TbD1 deleted comprising representatives 
from major tuberculosis epidemics such as the Beijing, Haarlem, 
African M. tuberculosis clusters, and the seminal isolates made 
by Robert Kock in 1882 (11, 29). The region TbD1 contains 
two genes encoding two uncharacterized membrane proteins, 
mmpS6 gene (Mycobacterium Membrane Protein Small) and 
mmpL6 gene (Mycobacterium Membrane Protein Large). In M. 
tuberculosis H37Rv, mmpS6 is absent and mmpL6 is truncated.

Genomic analysis revealed that the precorrin gene cobF, 
preserved in many environmental mycobacteria, including 
Mycobacterium kansasii (31), is also present in all STB but is 
absent in all other MTBC members (8, 17). In STB, repetitive 
sequences of the PE-PGRS families are highly diverse; in particu-
lar, PE_PGRS62 is polymorphic and positively selected in STB, 
while it is highly preserved in MTBC (31). Indeed, STB strains 
show unprecedented high genetic heterogeneity with traces of 
intra-species horizontal gene transfer (HGT) compared to the 
worldwide population of MTBC strains, which represent one of 
the most extreme examples of a genetically homogeneous group 
(8, 12, 17). Recently, distributive conjugal transfer was found to 
be a predominant mechanism for lateral gene transfer among 
STB, supporting the high heterogeneity observed in this group 
(32, 33). This mechanism provides an incomparable means for 
generating rapidly remarkable genetic diversity in a single step, 
which makes each strain uniquely different from the others (32). 
Thus a few STB isolates from a geographically restricted region, 
the Horn of Africa, show a larger genetic diversity than the 

world-wide population of MTBC strains. These observations led 
to a new evolutionary scenario for the emergence of pathogenic 
M. tuberculosis from an environmental organism, such as M. 
kansasii, through transitional “smooth” tubercle bacilli (34–36).

STB inFeCTiOn MODeLS

Only amoebas have been used as a cell model for “M. canettii” 
infection (37). In this model, 89% of “M. canettii” organisms, 
which were co-cultured with free-living Acanthamoeba polyphaga 
ameba were ingested by trophozoites, a ratio which is significantly 
higher than for M. tuberculosis, M. bovis, and M. avium (37). This 
difference correlates with a 2.56 μm larger size for “M. canettii” 
and smoothness reflecting the specific presence of glycolipid 
containing triglycosyl. In a M. marinum–Acanthamoeba cocul-
ture model, it was shown that lipooligosaccharide modulates 
the phagocytosis of mycobacteria in Acanthamoeba (38). In 
contrast to M. tuberculosis and M. bovis, “M. canettii” survives 
into cytoplasmic vacuoles and escapes from encystment (37). 
This specific behavior could be related to the activation of cel-
lulases Cel6, Cel12 and CBD2 to lyse the cellulose cell wall of the 
amoebal exocyst (39, 40). In the absence of any known reservoir 
(5), further studies presenting animal models with contradictory 
results may not be relevant to natural human infection. A first 
model of guinea pigs, which were inoculated subcutaneously and 
intramuscularly with 1 mL 103 or 105 colony-forming units (CFU) 
of So93 or M. tuberculosis H37Rv did not show signs of clinical 
disease for 8  weeks (7). However, necropsy found overwhelm-
ing disseminated tuberculous lesions and severe loss of body 
fat deposits in guinea pigs inoculated with So93, in contrast to 
animals inoculated with M. tuberculosis H37Rv. In all animals, 
it has been found that the liver, spleen as well as the lungs were 
infected. Virulence, measured by microscopic and bacteriological 
examination and average root index of virulence calculation, was 
lower for M. tuberculosis H37Rv than for So93 (7). In a further 
study, BALB/c mice were infected intratracheally by 2 × 105 viable 
cells of “M. canettii” (strains CIPT 140010059 and So93) or M. 
tuberculosis H37Rv (41). Two and 3  weeks after infection, “M. 
canettii” induced larger perivascular infiltrates and significantly 
smaller areas of granuloma in the lung than M. tuberculosis 
H37Rv. Also, “M. canettii” CIPT 140010059 induced sustained 
TNF-α and iNOS expression in lungs combined with delayed and 
moderate IFN-γ expression. Four-week post-infection, “M. can-
ettii” strains yielded almost 100% survivals significantly higher 
than 40–50% survivals in M. tuberculosis-infected animals. In 
addition, lung replication of “M. canettii” strains was significantly 
lower than that of M. tuberculosis H37Rv at all time points. At the 
final time point, pneumonic areas induced by the “M. canettii” 
CIPT 140010059 were significantly smaller than those produced 
by M. tuberculosis H37Rv (41). In a further model, BALB/c mice 
were infected intratracheally with 2.5  ×  105 viable cells of “M. 
canettii” CIPT 140010059 or ten major genotypes of M. tuber-
culosis (H37Rv, Africa, Amesterdam, Beijing, Erdman, Haarlem, 
IS-in-Ori, Less-trans, Somalia, Zerocopy) (42). “M. canettii” and 
M. tuberculosis H37Rv did not induce lung pathology for 3 weeks, 
and “M. canettii” caused limited pneumonia with mild peribron-
chiolitis, perivasculitis and alveolitis in the absence of granuloma 
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formation at day 56 post-infection; at day 120 post-infection, 
“M. canettii” and M. tuberculosis H37Rv yielded a similar 10% 
death rate (42). Additional animal models were conducted by 
infecting BALB/c and C57BL/6 mice with 103 CFUs of STB-D, 
STB-L, STB-K, or STB-J, M. tuberculosis TbD1 positive or M. 
tuberculosis TbD1 negative by intranasal aerosol (17). The STB 
strains effectively multiplied in the lungs and disseminated to the 
spleen 3 weeks after inoculation, but consistently persisted for less 
time during the chronic infection phase (30 weeks), compared to 
both M. tuberculosis strains. Furthermore, 128 days after inocula-
tion, histopathological analyses revealed less severe lung lesions 
and inflammation in STB-infected mice than in M. tuberculosis 
infected mice (17). The lower virulence and persistence of STB 
strains correlated to differences in both innate and adaptive 
immune responses (17). In infected SCID mice, recruitment 
of activate innate cells was observed in the lung parenchyma 
3-week post-infection with STB to a lower extent compared to 
M. tuberculosis infection. In addition, 13-week post-infection 
lung recruitment of activated CD4+ and CD8+ lymphocytes 
was quantitatively lower in STB-infected mice compared to M. 
tuberculosis-infected mice (17).

COnCLUSiOn

With <100 reported cases, STB infection remains a neglected 
infectious disease in tropical countries in East Africa. Indeed, 
their unique morphological features, which are unusual among 
the MTBC, with smooth, shiny luxuriant, and rapidly growing 
colonies, may lower their presumptive identification as MTBC 

members. Their cordless appearance observed after Ziehl–Neelsen 
staining further complicates first-line identification in endemic 
countries. The reservoirs and mode of transmission remain 
unknown but comparing clinical data with scarce experimental 
data suggests contaminated drinking water and food as potential 
sources, with local replication in the oropharynx and cervical 
lymph nodes and further dissemination in the respiratory and 
digestive tracts. In terms of this hypothesis, looking for STB in 
the stools of patients would be of interest, as it has been observed 
in patients with M. tuberculosis pulmonary tuberculosis (43, 44). 
Likewise, genetic and genomic data including large genome size 
and the abundance of phage sequences, suggest that STB form a 
heterogeneous group of tuberculosis organisms with intermediate 
features in between mammal-adapted M. tuberculosis organisms 
and environmental organisms such as M. kansasii (36). By means 
of conclusion, the data reviewed here could form the foundation 
of efforts toward elucidating the reservoirs and sources of STB, 
along with the development of laboratory tests aimed at a point-
of-care diagnosis of STB infection (45).
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