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Health impact assessment (HIA) has been promoted as a means to encourage transpor-
tation and city planners to incorporate health considerations into their decision-making. 
Ideally, HIAs would include quantitative estimates of the population health effects of alter-
native planning scenarios, such as scenarios with and without infrastructure to support 
walking and cycling. However, the lack of baseline estimates of time spent walking or 
biking for transportation (together known as “active transportation”), which are critically 
related to health, often prevents planners from developing such quantitative estimates. 
To address this gap, we use data from the 2009 US National Household Travel Survey 
to develop a statistical model that estimates baseline time spent walking and biking as 
a function of the type of transportation used to commute to work along with demo-
graphic and built environment variables. We validate the model using survey data from 
the Raleigh–Durham–Chapel Hill, NC, USA, metropolitan area. We illustrate how the 
validated model could be used to support transportation-related HIAs by estimating 
the potential health benefits of built environment modifications that support walking and 
cycling. Our statistical model estimates that on average, individuals who commute on 
foot spend an additional 19.8 (95% CI 16.9–23.2) minutes per day walking compared 
to automobile commuters. Public transit riders walk an additional 5.0 (95% CI 3.5–6.4) 
minutes per day compared to automobile commuters. Bicycle commuters cycle for an 
additional 28.0 (95% CI 17.5–38.1) minutes per day compared to automobile commut-
ers. The statistical model was able to predict observed transportation physical activity in 
the Raleigh–Durham–Chapel Hill region to within 0.5 MET-hours per day (equivalent to 
about 9 min of daily walking time) for 83% of observations. Across the Raleigh–Durham–
Chapel Hill region, an estimated 38 (95% CI 15–59) premature deaths potentially could 
be avoided if the entire population walked 37.4 min per week for transportation (the 
amount of transportation walking observed in previous US studies of walkable neighbor-
hoods). The approach developed here is useful both for estimating baseline behaviors in 
transportation HIAs and for comparing the magnitude of risks associated with physical 
inactivity to other competing health risks in urban areas.

Keywords: transportation, walking, environment and public health, health impact assessment, environment 
design
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inTrODUcTiOn

Physical inactivity is a leading cause of premature mortality in the 
United States, contributing to an estimated 234,000 premature 
deaths annually (1). In addition, physical inactivity is associated 
with increased risk for chronic diseases including type 2 diabetes, 
cardiovascular disease, and colon cancer (2–4). Recognizing the 
risks associated with physical inactivity, the Centers for Disease 
Control and Prevention (CDC) recommends that individuals 
accrue a minimum of 150  min of moderate intensity physical 
activity per week (5). One important source of physical activity 
is walking and biking for transportation (known as “active trans-
portation”). For example, a study of respondents to the National 
Household Travel Survey (NHTS) found that the median time 
spent walking to or from public transit among individuals who 
use public transportation was 21 min per day (6).

Transportation agencies in the United States are increasingly 
recognizing the importance of active transportation in pursuit of 
broader public health goals (7, 8). To support the incorporation 
of health considerations into decision-making in sectors such 
as transportation, health impact assessment (HIA) has emerged 
in recent years. A number of recent transportation HIAs have 
sought to estimate the health impacts of investments that sup-
port walking and biking for transportation (9). However, active 
transportation HIAs are often conducted with limited data. While 
a large body of work has linked active transportation behaviors 
to characteristics of the built environment, such as population 
density, the diversity of land uses, and access to public transit (10), 
baseline data on walking and biking for transportation are not 
routinely available at the local level. Baseline active transporta-
tion data are important in targeting interventions to increase 
transportation physical activity and are essential in estimating 
the expected population-level health benefits of infrastructure 
and other investments to promote active transportation. Lacking 
readily available baseline data on walking and biking behaviors, 
active transportation HIAs must rely on potentially inaccurate 
estimates or costly primary data collection, the latter of which 
often is not possible within the budget of the HIA.

While baseline active transportation data are scarce at the 
local level, a number of US national surveys collect data on 
transportation behaviors. However, a recent CDC summary of 
these surveys revealed differences in methods used, geographic 
scale, and estimates of active transportation (11).

Travel and time-use surveys, including the NHTS and the 
American Time Use Survey, contain detailed travel information, 
including the frequency of walking and biking trips for different 
purposes, but only for a single day (12, 13). Both the National 
Health and Nutrition Examination Survey and the National 
Health Interview Survey assess habitual physical activity behav-
iors, including walking and biking for transportation, and ask 
respondents to recall activity over the previous week (14, 15). 
The American Community Survey (ACS) collects data on typical 
mode of transportation to work, including walking and biking, 
but does not gather information from respondents regarding 
typical walking and biking duration (16).

The geographic scale of surveillance also varies greatly across 
surveys. While large national surveys such as the NHTS offer great 

detail at the individual level, geographic resolution is  limited. 
Conversely, the ACS offers much greater spatial resolution but 
limited information at the individual level.

Due to the differences in methods and scales across currently 
available surveys, estimates of the prevalence of walking and 
biking for transportation in the US population vary widely:  
in the the 2012 ACS, which captures only active commuting 
behaviors, 3.4% or respondents reported walking or biking to 
work. Conversely, 31.4% of respondents reported some walking 
or biking in the previous week in the 2011–2012 National Health 
and Nutrition Examination Survey, which captures all active 
transportation behaviors (11). Nonetheless, the NHTS and ACS 
collect a number of shared variables, including individual demo-
graphic characteristics, typical transportation mode to work, and 
basic built environment metrics (12, 16). These shared variables 
provide an opportunity to use the NHTS and ACS in tandem to 
offer a more detailed understanding of walking and biking for 
transportation at fine spatial resolution.

To address the gap in understanding the influence of 
transportation choices on physical activity, we use data from 
the 2009 NHTS to develop a statistical model that estimates 
weekly time spent walking and biking for adults in the US as a 
function of demographic and built environment variables rou-
tinely collected in the ACS. We then validate the model using 
data from a separate household travel survey conducted in the 
Raleigh, NC, USA, metropolitan area. We demonstrate how 
the statistical models can be combined with readily available 
ACS data to estimate baseline active transportation time across 
the Raleigh–Durham–Chapel Hill, NC, USA, region. Finally, 
we illustrate how the statistical model could be used to support 
transportation-related HIAs by applying the model to estimate 
the health impacts of multiple hypothetical scenarios in which 
changes to the built environment increase transportation  
physical activity.

MaTerials anD MeThODs

Data from the 2009, NHTS were used to estimate a set of regres-
sion models: daily walk and bike trip count models, trip purpose 
probability models, and trip duration models. These models 
were estimated separately for walk and bike trips for working 
and non-working adults. These models were then combined to 
estimate weekly walking and biking time based on individual 
and built environment data from the ACS. Statistical analysis was 
performed using Stata 13 (College Station, TX, USA), and the 
model was applied in the study region using Analytica 4.3 (Los 
Gatos, CA, USA).

national household Travel survey
The NHTS, last administered in 2009, collects travel information 
from households across United States. Household, personal, and 
vehicle characteristics are collected via an initial telephone inter-
view. Subsequently, participants use a travel diary to record all 
travel for an assigned day, and these travel data are collected in a 
follow-up phone interview. The 2009 dataset contains information 
on 1,116,321 trips taken by 308,901 individuals living in 150,147 
households and is organized into four files (household file, person 
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FigUre 1 | Flowchart illustrating data cleaning and stratification of the 2009 nhTs dataset into working and non-working adults.
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file, day trip file, and vehicle file). The data are weighted to match 
national demographic characteristics.

Data Preparation
To prepare the 2009 NHTS data for our purposes, we first summed 
walk and bike trip counts in the day trip file for each individual in 
the person file and generated two new variables to store walk and 
bike trip counts in the person file. We then collapsed commute 
mode to work and trip mode data into four categories: private 
vehicle (including all vehicle types and carpool), public transit 
(including fixed-route and paratransit), walk, and bike. In the 
day trip file, trip purpose was collapsed into five categories (work, 
shopping, social, recreational, and personal/family business), 
using roundtrip purpose definitions (the 1990 trip purpose defini-
tions variable). Race and Hispanic status were combined into a 
single race/ethnicity variable (Hispanic, non-Hispanic White, 
non-Hispanic Black, non-Hispanic Asian, and non-Hispanic 
other). The month variable was collapsed into four seasons, and 
a weekend dummy variable was generated using the travel day of 
week variables. Finally population density was divided by 1,000. 
We then merged the person and day trip data files as described 
in the NHTS supporting documentation (17). The data were then 
stratified into two sub-groups: working adults (individuals aged 
18 and over who report working in the previous week) and non-
working adults (individuals aged 18 and over reporting no work 
in the previous week).

Outliers
Because we focus on routine active travel among adults, we 
removed observations from the NHTS that do not represent 
typical transportation behaviors. In the person file, we dropped 
individuals who reported being out of town when the survey 
was administered, commuting to work via airplane or “other” 

travel modes, or having work commutes lasting longer than 
2  h. From the trip file, we dropped all non-active trips, 
vacation-related trips, and trips with durations in the highest 
1% of the mode-specific trip duration distributions. In total, we 
removed 4,585 persons and 3,420 active trips from the sample 
of working adults and 3,632 persons and 2,574 active trips from 
the sample of non-working adults due to atypical responses 
(Figure 1).

Missing Data
We dropped observations from the person file if race, education, 
presence of a medical condition restricting travel variables, or com-
mute mode to work (for working adults only) were missing. Due 
to missing data, we removed 23,243 persons and 9,682 active trips 
from the sample of working adults and 2,967 persons and 1,170 
active trips from the sample of non-working adults. Commute 
mode to work was the most common missing variable (15.9% of 
the remaining sample) due to a skip in the survey questionnaire 
triggered when the respondent reported not traveling to work in 
the previous week, potentially indicating that the week was atypi-
cal for that individual.

After removing atypical transportation behaviors and observa-
tions with missing, the final sample of working adults contained 
45,938 trips made by 109,250 persons, and the final sample of 
non-working adults contained 37,311 trips made by 119,743 
persons (Figure 1). Descriptive statistics of the final sample are 
presented in the Tables S1 (Person File) and S2 (Trip File) in 
Supplementary Material.

Transportation Physical activity 
estimation Framework
To estimate weekly time spent walking and biking for trans-
portation, count models were first used to estimate the number 
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of walk and bike trips taken by an individual during a typical 
day (see Daily Trip Count models). Because trip duration in the 
NHTS varies significantly with trip purpose, the distribution 
of trips among different purposes is also an important factor in 
estimating total transportation physical activity. Multinomial 
logistic regression models were used to predict the probability 
that a given walk or bike trip was for one of five purposes: (1) 
commuting to work; (2) shopping; (3) socializing; (4) engaging in 
recreation; or (5) tending to personal or family business (see Trip 
Purpose Probability Models). Finally, trip duration was estimated 
for each trip purpose (see Trip Duration Models). Estimated 
trip counts were combined with trip purpose probabilities and 
purpose-specific duration estimates to predict daily walking and 
biking time for individuals using Eq. 1:

 
TTm i

p
m i m i p m iE t Pr p d, , , , ,( )= ( )× ×( )( )

=
∑

1

5

 (1)

in which TTm,i is daily minutes spent traveling using mode m 
for individual i, E(tm,i) is the expected daily number of trips take 
using mode m for individual i, Pr(pm) is the probability that a trip 
taken by individual i using mode m is for purpose p, and dp,m is 
trip duration for a trip taken by individual i for purpose p using 
mode m.

Walking and biking time were combined by multiplying 
each activity by its intensity, measured by metabolic equivalents 
(METs). METs measure the intensity of physical activity relative to 
an individuals’ resting metabolic rate, which is equal to one MET. 
By multiplying the intensity of an activity by its MET value and 
its duration, total physical activity dose from a variety of activities 
with differing intensities may be calculated, expressed in METs 
multiplied by the duration of the activity to obtain MET-hours. 
Walking and biking for transportation have MET values of 3.5 
and 6.8, respectively (18). Equation 1 was thus used to transform 
biking and walking time into a daily physical activity dose:

 
TPA

TT TT
min/h

walk, bike,
i

m i m i=
×( ) + ×( )= =3 5 6 8

60
. .

 (2)

in which TPAi is daily physical activity from walking and biking 
for individual i in MET-hours, TTm=walk, i is daily time spent walk-
ing for transportation for individual i in minutes, and TTm=bike,I 
is daily time spent biking for transportation for individual i in 
minutes.

The following sections describe the three regression models 
used to estimate E(tm,i), Pr(pm,i), and dp,m,i. For all models, explana-
tory variables included both individual characteristics (commute 
mode to work, age, sex, and race) and built environment variables 
reported in the NHTS (population density and proportion of 
housing units that are rented in the block group in which the 
individual resides). Commute mode to work is intuitively related 
to active transportation behavior. Age, sex, and race are associated 
with transportation walking and biking (19). Population density 
has a well-documented relationship with walking and biking 
for transportation (13). Finally, percent of rental units may be a 
rough proxy for land-use diversity, also strongly linked to walking 
and biking for transportation (13). All models included controls 

for educational attainment, travel day of the week (weekday or 
weekend), the season in which the survey was administered, 
whether or not the respondent reported having a medical condi-
tion that may restrict travel, whether the interview was conducted 
with a proxy respondent, whether the metropolitan statistical 
area in which the respondent resided had heavy rail (which may 
influence urban form and trip-making in unique ways), and state, 
Census division, or Census region fixed effects. In all regression 
models, variables were retained if significant at the 10% level.

Daily Trip Count Models
Daily walk and bike trip count data contained high proportions 
of zeroes and displayed little evidence of overdispersion (Figure 
S1 in Supplementary Material). Specification tests (Vuong and 
Lagrange multiplier) were used to select an appropriate form for 
the daily trip count models (20). These specification tests revealed 
very strong (p < 0.001) evidence for zero-inflated Poisson models 
to represent both walk and bike trip counts for working and non-
working adults (Figure S2 and Tables S3 and S4 in Supplementary 
Material). Thus, daily walk and bike trip counts were estimated 
using the following model (21):
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where πi is the probability that daily walk or bike trip counts 
always equals zero, xi is a vector of individual-specific regressors, 
and β is a vector of regression coefficients. Variables were retained 
in the model if significant at the 10% level and robust SEs were 
used.

Trip Purpose Probability Models
Multinomial logistic regression models were used to predict 
the probability of different trip purposes based on individual 
characteristics and built environment variables. Accordingly, the 
probability that a trip is for purpose j is expressed as (20):
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x
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1 1
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where Pr(yi = p) is the probability of trip purpose p for individual 
i, P is the number of outcomes (in this case, five: work com-
mute, shopping, social, personal/family business), xi is a vector 
of individual-specific regressors, and β is a vector of regression 
coefficients.

Trip Duration Models
Generalized estimating equation (GEE) models with a log link 
were used to estimate trip duration based on individual character-
istics and built environment variables. Because an individual may 
take multiple trips during the day and trip characteristics may be 
correlated within and across individuals, the data are treated as a 
panel of individuals observed taking multiple trips. GEE models 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


5

Mansfield and Gibson Estimating Active Transportation to Support HIA

Frontiers in Public Health | www.frontiersin.org May 2016 | Volume 4 | Article 63

offer a robust approach to estimating SEs when using data that 
are correlated within clusters of observations (in this case, the 
relatedness of trips within individuals) (22). Trip duration may be 
influenced by different factors depending on trip purpose; thus, 
commute mode to work, travel time to work, population density, 
and percent rental units were interacted with trip purpose in 
trip duration models for working adults. Population density and 
percent rental units were interacted with trip purpose in trip 
duration models for non-working adults. These models may be 
expressed as (20):

 g dm i i
T( ), = x ββ � �  (5)

where dm,i is trip duration for individual i using mode m, g(dm,i) is 
the link function, xi

T  is a vector of trip-specific regressors, and β 
is a vector of estimated coefficients.

Marginal Effects
Average marginal effects of explanatory variables for each 
regression model (count, trip purpose, and trip duration) were 
estimated using the margins command in Stata. To calculate the 
combined marginal effect of explanatory variables on daily walk-
ing and biking time, a model was developed in Analytica that 
incorporated estimated regression coefficients for each model 
into Eq. 1. Monte Carlo simulation was used to develop SEs for 
combined marginal effects.

Model Validation
To validate model performance, model predictions were com-
pared to results from a 2006 household travel survey conducted 
in the Raleigh–Durham–Chapel Hill metropolitan area as part 
of routine transportation planning (23). Survey respondents 
provided demographic information and recorded all trips for 
1 week day. The full validation dataset contained 6,618 workers. 
We dropped 3,427 individuals due to missing data, largely due to 
missing race/ethnicity (n = 2,789). We then calculated observed 
daily MET-hours for all individuals with complete data in the 
validation dataset from their recorded trips using Eq. 2. Finally, 
we used Eq.  1 to estimate daily MET-hours for the validation 
survey (TPAi,est) sample and compared model predictions to 
observed values (TPAi,obs).

Descriptive statistics for the validation sample are presented 
in the Tables S1 and S2 in Supplemental Material. Compared to 
the NHTS, respondents in the validation survey reported fewer 
total walk and bike trips. The validation sample also has higher 
education levels, fewer proxy respondents, and only contains 
responses from the winter and spring. However, most differences 
between the two datasets are included as controls in the NHTS 
regression models.

applying the Model to estimate Physical 
activity for Population subgroups
To estimate weekly transportation physical activity across the 
Raleigh–Durham–Chapel Hill metropolitan region, we first used 
Eq. 1 to estimate TPAi for all possible combinations of variables 
that vary on the individual level and across block groups in the 

study area. We excluded recreational trip durations when sum-
ming total walking and biking time in Eq. 1 to focus on purpose-
oriented (non-recreational) transportation physical activity. 
Four of these variables –  commute mode to work c (including 
a category for non-workers), age a, sex s, and race/ethnicity 
r – vary on the individual level. The fifth variable, g, represents 
the combined effect of all variables and controls that are meas-
ured at the block group – population density, percentage of units 
that are rentals, travel time to work by mode, and educational 
attainment. Population density was calculated using block-group 
population counts obtained from the 2013 ACS and area obtained 
from Census TIGER files (24, 25). If household income and/or 
travel time to work data were missing at the block group level 
due to sampling limitations, tract-level data were used instead. If 
tract-level data were also missing, county-level data were used. In 
the block-group level Census data, time to work for bicyclists is 
combined with other modes (motorcycle, taxicab, and other). If 
the reported travel time to work by bicycle, motorcycle, taxicab, 
and other modes was greater than the travel time reported for 
private vehicles, the lower of these values was used. Missing data 
were treated as described above, still using the lower value if travel 
time reported at the tract or county level exceeded motor vehicle 
travel time.

Equation 1 was used to estimate TPAi for a typical weekday 
and for a typical weekend day for all possible unique combina-
tion of c, a, s, r, and g. Weekly estimates were then obtained by 
multiplying the typical weekday estimate by five and typical 
weekend estimate by two, and then summing the products. 
These estimates were stored in a five-dimensional matrix, TPA. 
This matrix contained approximately four million cells, each 
containing a unique estimate of TPAi associated with 1 of 5 pos-
sible commuting behaviors, 1 of 96 possible ages, 1 of 2 sexes, 
1 of 5 race/ethnicities, and 1 of 835 block groups. To reflect the 
uncertainty of regression coefficients, TPA was estimated using 
Monte Carlo simulation in Analytica. The SD of each estimate 
was stored in a second matrix, TPASD, with the same dimensions 
as the matrix TPA. TPASD, was used to model uncertainty and 
generate 95% confidence intervals for our estimates using Monte 
Carlo simulation in Analytica.

applying Physical activity estimates  
to the Population
Once the matrix TPA was generated, data from the 2013 ACS 
were used to develop joint distributions of population charac-
teristics across the four individual dimensions (c, a, s, and r) for 
each block group in the study area. To do so, the normalized 
distribution of age by sex was first multiplied by age- and gender-
specific labor force participation functions to define the age 
and sex distribution of workers and non-workers in each block 
group. Labor force participation rates by sex for each county were 
taken from the 2013 ACS (24). These data were smoothed over 
age by fitting fourth-order splines to the raw data for men and 
women in each county (Table S3 and Figure S6 in Supplementary 
Material). Then, the distribution of workers was multiplied by 
the distribution of reported commute mode to work, creating 
the five dimensions of c noted previously (private vehicle, transit, 
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walk, bike, and not in labor force). Finally, this distribution was 
multiplied by the distribution of the population by race/ethnic-
ity in each block group. When performed for all block groups 
in the study region, this process yielded a matrix NPD that 
contained normalized distributions of the populations in each 
block group across the same dimensions as TPA. Finally, NPD 
was multiplied by a vector P containing the aggregate popula-
tion of each block group in the region. This process resulted in 
a representation of block group populations distributed across 
age, sex, race/ethnicity, and commute mode to work (including 
a category for non-workers) based on the 2013 ACS (24). An 
example of this procedure for a single block group is provided in 
the Supplementary Material.

health impact estimates
We estimated health benefits of walking and biking in the study 
region by comparing predicted transportation physical activity to 
a counterfactual scenario in which individuals walked 37.4 min 
per week for transportation – the average level of walking observed 
in groups of high- and low-income walkable neighborhoods in 
Baltimore and Seattle (26). This calculation requires an estimate 
of the relative risk of all-cause mortality as a function of trans-
portation physical activity, denoted as RRM(TPA). According to 
a recent meta-analysis (27), this dose–response function can be 
estimated as:

 RR TPAM( ) .=








0 90
TPA

11.25 MET-hours  (6)

The fractional change in mortality under the counterfactual 
scenarios, in comparison to current conditions, was estimated 
from:
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where AFTPA is the fraction of mortality avoidable by additional 
active transportation in the study region, fest(TPA) is the current 
probability distribution of transportation physical activity as 
estimated in Eq. 2, and fcf(TPA) is a probability distribution of 
transportation physical activity in the counterfactual scenario 
(28, 29). Finally, the total change in mortality was calculated as 
follows:

 AM DR AFTPA TPA= ×b  (8)

where AMTPA is avoided mortality due to active transportation, 
and DRb is the age- and sex-specific baseline death rate for each 
county in the study region, taken from the North Carolina State 
Center for Health Statistics (30). To alleviate the small number 
problem (i.e., age groups with no observed deaths in a given year), 
a 5-year average death rate was calculated for males and females 
for each age group in each county (Table S6 in Supplementary 
Material). Equations  7 and 8 were employed across the same 
dimensions as TPA; thus, health impact estimates may be strati-
fied by age, sex, race/ethnicity, commute mode to work, and block 

group or any combination of these dimensions. The World Health 
Organization suggests applying Eq. 6 only for bicyclists between 
the ages of 20 and 64 and walkers between the ages of 20 and 74 
(31). Thus, we restricted our calculation of health impacts to these 
age ranges.

hypothetical hia application
To illustrate how our regression models could be applied to sup-
port active transportation HIA, we estimated health benefits for 
three hypothetical interventions to support increased walking 
and biking for transportation. A recent meta-analyses-derived 
elasticities linking changes in the built environment to changes 
in transportation behavior (10). According to this meta-analysis, 
five built environment dimensions  –  land use density, land 
use diversity, physical design, access to transit, and access to 
destinations  –  can affect transportation behavior and, in turn, 
transportation physical activity. For example, a 1% increase in 
the number of intersections per square mile is associated with 
a 0.39% increase in walking. Similarly, 1% increases in land use 
diversity and the number of transit stops per square mile are each 
associated with 0.15% increases in walking. A 1% increase in 
transit stop coverage also is associated with increasing transit use 
by 0.29%. In the first scenario, we assume that land-use diversity, 
transit stop coverage, and intersection density all increase by 10% 
across the study region, resulting in a 7.9% increase in walking for 
the entire population. For the second scenario, we assume that the 
same built environment changes result in 7.9% of current driv-
ers walking instead of driving to work. In the third, we assume 
that transit coverage increases by 50% across the study region, 
resulting in 14.5% of current drivers switching to public transit 
for their work commutes. We then used Eqs. 7 and 8, replacing 
fcf(TPA) with the new counterfactual distributions of transporta-
tion physical activity.

resUlTs

number of Walking and Biking Trips
To estimate the influence of means of transportation to work, 
individual characteristics, and built environment variables on the 
number of daily walking and biking trips, we fitted zero-inflated 
Poisson regression models to data from the 2009 NHTS. Results 
show that those who walk, bike, or take public transit to work are 
significantly more likely to be in the ‘‘not always zero’’ daily walk 
trip count group, compared to those who drive to work (Table 1, 
logistic model). This effect is the strongest for those walking to 
work (OR = 16.6) and also quite strong for those riding transit 
to work (OR = 4.73). Additionally, among individuals walking 
at least once per day, those who walk to work take 1.68 times as 
many walk trips as those commuting by private vehicle (Table 1, 
count model). Increased population density and percentage of 
housing units that are rented are both associated with a slightly 
higher probability of taking at least one walk trip and higher 
walk trip counts among those who walk at least once per day. For 
non-working adults, population density and percentage rental 
units are significantly associated with both increased likelihood 
of being in the ‘‘not always zero’’ daily walk trip count group 
and, for individuals in the “not always zero” group, increased 
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TaBle 1 | Model for estimating daily number of walking trips.

Variable Odds ratio

Working adultsa non-working 
adultsa

Lo
gi

st
ic

 m
od

el
 (p
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bi
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y 
no

t a
lw

ay
s 

ze
ro

)

Mode to work
Private vehicle (ref) –
Public transit 4.73*** –
Walk 16.6*** –
Bike 2.00** –

Population density 1.01** 1.03***
Percent rented 1.01*** 1.01***
Age 1.02** 0.99***
Age squared 0.9997** –
Race/Ethnicity

Non-Hispanic White (ref) (ref)
Non-Hispanic Black 0.64*** 1.03
Hispanic 0.89 1.21*
Non-Hispanic Asian 0.62*** 0.95
Non-Hispanic other 0.88 0.83

Constant 0.027*** 0.088***

C
ou

nt
 m

od
el

Mode to work
Private vehicle (ref) –
Public transit 1.09* –
Walk 1.68*** –
Bike 1.27** –

Population density 1.01*** 1.01**
Percent rented 1.002** 1.004***
Age – 1.01**
Age squared – 0.9999**
Constant 0.78** 0.79*

Wald chi-squared (df ) 854.05*** (68) 646.43*** (67)
McFadden pseudo R2 (adjusted) 0.15 0.12 

***p < 0.01.
**p < 0.05.
*p < 0.10.
aAdjusted for education, whether the respondent has a medical condition that limits 
travel, whether a proxy respondent was used, number of trips taken on travel day, 
season of travel day, day of week of travel day, presence of heavy rail in metropolitan 
statistical area, and state fixed effects in both stages (logistic and count model).

TaBle 2 | Model for estimating daily number of bike trips.

Variable Odds ratio

Working adultsa non-working 
adultsa

Lo
gi

st
ic

 m
od

el
 (p

ro
ba

bi
lit

y 
no

t a
lw

ay
s 

ze
ro

) Mode to work
Private vehicle (ref) –
Public transit 2.99*** –
Walk 1.31 –
Bike 300*** –

Population density 1.04* –
Age – 0.98***
Sex (ref: male) 0.29*** 0.23***
Race/ethnicity

Non-Hispanic White (ref) (ref)
Non-Hispanic Black 0.61 0.52**
Hispanic 0.88 0.49**
Non-Hispanic Asian 0.43** 0.50
Non-Hispanic other 0.49* 0.56

Constant 0.0039*** 0.059***

C
ou

nt
 m

od
el

Mode to work
Private vehicle (ref) –
Public transit 1.20 –
Walk 0.91 –
Bike 1.48*** –

Sex (ref: male) – 0.73**
Race/ethnicity

Non-Hispanic White (ref) (ref)
Non-Hispanic Black 1.22 1.28
Hispanic 1.02 0.65
Non-Hispanic Asian 1.36* 1.55***
Non-Hispanic other 1.06 0.67

Constant 1.51*** 3.03*

Wald chi-squared (df ) 79.5*** (28) 91.7*** (26)
McFadden pseudo R2 (adjusted) 0.29 0.12

***p < 0.01.
**p < 0.05.
*p < 0.10.
aAdjusted for education, whether the respondent has a medical condition that limits 
travel, whether a proxy respondent was used, number of trips taken on travel day, 
season of travel day, day of week of travel day, presence of heavy rail in metropolitan 
statistical area, and census division fixed effects in both stages (logistic and count 
model).
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daily walk trip counts. In sum, walk trip count models show that 
individuals who walk, ride transit, or, to a lesser extent, bike to 
work are likely to take more walk trips than those who drive to 
work. Increased population density and percentage of rental units 
both have additional significant, albeit small, impacts on daily 
walk trip counts.

Similarly, individuals who bike or take public transit to work 
are significantly more likely to be in the “not always zero” daily 
bike trip count group, compared to those who drive to work 
(OR  =  300 and 2.99, respectively) (Table  2, logistic model). 
Increased population density is significantly associated with 
increased odds of taking at least one bike trip for working adults 
but not for non-working adults. Among individuals who take at 
least one bike trip per day, bicycle commuters take 1.48 times 
as many bike trips as those commuting by car (Table 2, count 
model).

Individual characteristics (age, sex, and race/ethnicity) have 
mixed associations in both the logistic and count portions of 
the models. Among employed adults, non-Hispanic Blacks and 
non-Hispanic Asians are less likely to be in the “not always zero” 

daily bike trip count group (OR = 0.64 and 0.62, respectively). 
Non-Hispanic Asian individuals are also less likely to be in 
the “not always zero” daily bike trip count group (OR = 0.43); 
however, those who are in the “not always zero” daily bike trip 
count group take 1.36 times more bike trips than non-Hispanic 
Whites (Table 2, count model). While gender has no significant 
effect on walking, men are much more likely to report biking for 
transportation, regardless of employment status.

Walking and Biking Trip Purposes
To test the influence of explanatory variables on the distribu-
tion of walking and biking trip purposes, we fitted multinomial 
logistic regression models to NHTS data. Relative to a working 
adult who walks to work, a walk trip taken by an individual 
who commutes using a private vehicle, public transit, or bike is 
significantly more likely to be for a non-work purpose (shopping, 
social, recreational, or other purposes) (Table 3, top portion). For 
working adults, increased population density is associated with 
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TaBle 3 | Model for estimating walk trip purpose.

sUB-grOUP: WOrKing aDUlTsa

Variable Odds ratio for trip purpose (base outcome:  
work trip)

shopping social recreational Personal/
family 

business

Mode to work
Private vehicle 22.7*** 35.2*** 84.0*** 28.1***
Public transit 11.3*** 11.9*** 12.8*** 10.4***
Walk (ref) (ref) (ref) (ref)
Bike 19.5*** 26.0*** 25.1*** 13.1***

Population density 1.002 1.02 0.965*** 0.992
Percent rent 1.009** 0.998 1.00 1.00
Age 1.003 0.985** 1.01* 0.996
Race/ethnicity

Non-Hispanic White (ref) (ref) (ref) (ref)
Non-Hispanic Black 1.12 0.587 0.427** 0.477***
Hispanic 1.04 0.790 0.914 0.752
Non-Hispanic Asian 0.745 0.360*** 0.732 0.457**
Non-Hispanic other 0.718 0.713 0.929 0.570

Constant 0.038*** 0.049*** 0.035*** 0.111***

Wald chi-squared (df) 1,610*** (124) McFadden R2 (adjusted) 0.15

sUB-grOUP: nOn-WOrKing aDUlTsa

Variable Odds ratio for trip purpose (base outcome: 
recreational trip)

shopping social Personal/
family 

business

Percent Rental 1.02*** 1.02*** 1.02***
Age 0.994* 0.984*** 0.984***
Sex (ref: male) 1.10 1.01 1.30*
Race/ethnicity

Non-Hispanic White (ref ) (ref ) (ref )
Non-Hispanic Black 3.32*** 1.72** 1.36
Hispanic 1.37 1.00 1.00
Non-Hispanic Asian 0.637 0.403** 0.895
Non-Hispanic other 1.30 0.687 0.842

Constant 0.291*** 0.712 0.404**

Wald chi-squared (df ) 525.7*** (84) McFadden R2 (adjusted) 0.09

***p < 0.01.
**p < 0.05.
*p < 0.10.
aAdjusted for education, whether the respondent has a medical condition that limits 
travel, whether a proxy respondent was used, number of trips taken on travel day, 
season of travel day, day of week of travel day, presence of heavy rail in metropolitan 
statistical area, and census division fixed effects.

TaBle 4 | Model for estimating bike trip purpose.

sUB-grOUP: WOrKing aDUlTsa

Variable Odds ratio for trip purpose (base outcome: 
work trip)

shopping social recreational Personal/
Family 

Business

Mode to work
Private vehicle 21.0*** 18.5*** 165*** 28.9***
Public transit 7.81*** 0.908 8.71*** 6.23**
Walk 10.0** 15.3*** 20.6*** 6.60
Bike (ref) (ref) (ref) (ref)

Age 0.934 0.924 0.902 0.806***
Age squared 1.001 1.001 1.002** 1.002***
Race/ethnicity  

Non-Hispanic White (ref) (ref) (ref) (ref)
Non-Hispanic Black 3.35* 0.529 2.39 1.70
Hispanic 5.41*** 1.93 3.18** 1.10
Non-Hispanic Asian 4.48 0.143 2.51 1.90
Non-Hispanic other 1.05 5.30 4.33 4.09

Constant 0.0044*** 0.080 0.0023*** 2.19

Wald chi-squared (df) 503.3*** (100) McFadden R2 (adjusted): 
0.38

sUB-grOUP: nOn-WOrKing aDUlTsb

Variable Odds ratio for trip purpose (base outcome: 
recreational trip)

shopping social Personal/
family 

business

Population density 1.11** 1.04 0.993
Percent rental 1.01 1.01 1.02**
Age 1.03*** 0.995 0.972***
Race/ethnicity

Non-Hispanic White (ref ) (ref ) (ref )
Non-Hispanic Black 1.86 1.67 0.77
Hispanic 0.518 0.571 0.21*
Non-Hispanic Asian 6.65** 2.25 8.01**
Non-Hispanic other 0.0304** 0.669 0.0622***

Constant 0.114** 1.49 4.09

Wald chi-squared (df) 327.7*** (84) McFadden R2 (adjusted) 0.28

***p < 0.01.
**p < 0.05.
*p < 0.10.
aAdjusted for education, whether the respondent has a medical condition that limits 
travel, whether a proxy respondent was used, number of trips taken on travel day, 
season of travel day, day of week of travel day, presence of heavy rail in metropolitan 
statistical area, and Census region fixed effects.
bSame adjusted as above, with the exception of census division fixed effects in place of 
Census region fixed effects.
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reduced odds that a given walk trip will be for recreation, and 
increased percentage of housing units that are rented is associated 
with increased odds that a given walk trip will be for shopping. 
For non-working adults, increased percentage of rental units 
is associated with increased odds that a given trip will be for 
non-recreational purposes  (shopping, social, or personal/family 
business) (Table 3, bottom potion).

Relative to a working adult who bikes to work, a bike trip taken 
by an individual using another commute mode is significantly 
more likely to be for a non-work purpose (shopping, social, 
recreational, or personal/family business) with two exceptions: 

no significant difference is found for the likelihood that a transit 
commuter takes a social bike trip or for the likelihood that some-
one who walks to work takes a personal/family business bike trip 
(Table  4, top portion). For working adults, built environment 
variables have no significant effects on bike trip purpose prob-
abilities, while individual characteristics have mixed effects. For 
non-working adults, the proportion of trips that are for shopping 
increases significantly with population density, while the propor-
tion of trips for business increases with percentage of rental units 
(Table 4, bottom portion).
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Variable regression coefficient

Working 
adultsa

non-working 
adultsa

Shopping trip × bike to work 1.26*** –

Social trip × private vehicle 1.07*** –

Social trip × transit to work 1.03*** –

Social trip × walk to work 1.25*** –

Social trip × bike to work 1.28*** –

Recreational trip × private vehicle to work 2.08*** –

Recreational trip × transit to work 2.05*** –

Recreational trip × walk to work 2.13*** –

Recreational trip × bike to work 2.13*** –

Personal/family business trip × private 
vehicle

1.30***

Personal/family business trip × transit to 
work

1.21*** –

Personal/family business trip × walk to work 1.29*** –

Personal/family business trip × Bike to work 1.32*** –

Interaction: log of time to work with trip 
purpose

Log time to work × work trip 0.537*** –

Log time to work × shopping trip 0.063** –

Log time to work × social trip 0.080*** –

Log time to work × recreational trip −0.020** –

Log time to work × personal/family business 0.070*** –

Interaction: population density with trip 
purpose

Population density × work trip 0.004* –

Population density × shopping trip −0.003 0.001

Population density × social trip 0.008** 0.011***

Population density × recreational trip −0.004** −0.003

Population density × personal/family 
business

−0.001 0.002

Interaction: percent rental units with trip 
purpose

Percent rental × work trip 0.002*** –

Percent rental × shopping trip 0.002** 0.003***

Percent rental × social trip −0.0003 0.001

Percent rental × recreational trip −0.001* −0.001

Percent rental × personal/family business trip −0.0001 −0.0001

Age 0.002*** 0.006***

Age squared – −0.0001***

Sex (ref: male) – −0.083***

Race/ethnicity

Non-Hispanic White (ref) (ref)

Non-Hispanic Black 0.084*** 0.103***

Hispanic 0.121*** 0.136***

Non-Hispanic Asian 0.008 0.036

Non-Hispanic other 0.006 0.053

Constant 0.94*** 3.20***

Wald chi-squared (df) 4,841*** (102) 2,680*** (81)

***p < 0.01.
**p < 0.05.
*p < 0.10.
aAdjusted for education, whether the respondent has a medical condition that limits 
travel, whether a proxy respondent was used, number of trips taken on travel day, 
season of travel day, day of week of travel day, presence of heavy rail in metropolitan 
statistical area, and state fixed effects.

TaBle 5 | Model for estimating walk trip duration.

Variable regression coefficient

Working 
adultsa

non-working 
adultsa

Trip purpose
Shopping trip – −0.711***
Social trip – −0.763***
Recreational trip – (ref)
Personal/family business trip – –0.459***

Interaction: trip purpose with mode to work

Work trip × private vehicle to work 0.043 –

Work trip × transit to work −0.404*** –

Work trip × walk to work (ref) –

Work trip × bike to work 0.388*** –

Shopping trip × private vehicle to work 1.02*** –

Shopping trip × transit to work 1.12*** –

Shopping trip × walk to work 1.16*** –

(Continued)

TaBle 5 | continued
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Duration of Walking and Biking Trips
To test the influence of commute mode to work, individual 
characteristics, and built environment variables on trip dura-
tions, we fit GEE models predicting trip duration to the NHTS 
data. Relative to a walk trip to work by someone who typically 
walks to work, all other walk trips are longer with the exception 
of walk trips to work by individuals who typically commute via 
transit or private vehicle (Table 5). Thus, walk trips for purposes 
other than commuting to work are typically longer than walks to 
work. Additionally, the significantly shorter walk trips to work 
for those typically commuting via transit likely reflect walking 
shorter distances to and/or from transit stops at the beginning 
and/or end of work commutes. Travel time to work is intuitively 
associated with the duration of walking trips to work; much 
smaller but significant associations with other trip types may 
reflect an unobserved non-aversion for longer trip durations. 
For non-working adults with no commute to work, shopping, 
social, and personal/family business walk trips are significantly 
shorter than recreational trips. Older individuals take longer walk 
trips, perhaps reflecting decreased walking speed. Additionally, 
Hispanic and non-Hispanic Blacks take significantly longer walk 
trips than non-Hispanic White individuals.

Somewhat paradoxically, increased population density and 
percent rental units are associated with slightly longer walk trips 
to work. Increased population density is also associated with 
slightly longer walking trips for social purposes, and increased 
percent rental units is associated with slightly longer shopping 
trips. While increases in these built environment variables would 
seemingly be associated with an increased density of destina-
tions and thereby shorter trip distances, these built environment 
variables also may be associated with increased replacement of 
slightly longer duration non-walking trips with walking trips, 
thus increasing average trip duration. Increased population 
density and percent rental units are both associated with shorter 
recreational walking trips, possibly because recreational destina-
tions are closer to residential areas.
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TaBle 6 | Model for estimating bike trip duration.

Variable regression coefficient

Working 
adultsa

non-working 
adultsa

Trip purpose
Shopping trip – −0.579***
Social trip – −0.449***
Recreational trip – (ref )
Personal/family business trip – −0.388***

Interaction: Trip purpose with mode to work

Work trip × private vehicle to work 0.378*** –

Work trip × transit to work 0.015 –

Work trip × walk to work −0.196** –

Work trip × bike to work (ref ) –

Shopping trip × private vehicle to work 0.987** –

Shopping trip × transit to work 0.900* –

Shopping trip × walk to work 0.954** –

Shopping trip × bike to work 0.970*** –

Social trip × private vehicle 1.59*** –

Social trip × transit to work 1.38*** –

Social trip × walk to work 1.90*** –

Social trip × bike to work 1.58*** –

Recreational trip × private vehicle to work 2.44*** –

Recreational trip × transit to work 2.29*** –

Recreational trip × walk to work 2.75*** –

Recreational trip × bike to work 2.53*** –

Personal/family business trip × private vehicle 1.31*** –

Personal/family business trip × transit to work 0.939** –

Personal/family business trip × walk to work 1.09*** –

Personal/family business trip × bike to work 1.19*** –

Interaction: log of time to work with trip purpose

Log time to work × work trip 0.731*** –

Log time to work × shopping trip 0.358*** –

Log time to work × social trip 0.178* –

Log time to work × recreational trip 0.0460 –

Log time to work × personal/family business 0.297*** –

Interaction: percent rental units with trip purpose

Percent rental × work trip −0.0004 –

Percent rental × shopping trip −0.005*** –

Percent rental × social trip −0.003 –

Percent rental × recreational trip −0.004*** –

Percent rental × personal/family business trip −0.002 –

Age 0.019** –

Age squared −0.0002* –

Sex (ref: male) −0.075* −0.190***

Race/ethnicity

Non-Hispanic White – (ref )

Non-Hispanic Black – 0.404***

Hispanic – 0.191*

Non-Hispanic Asian – 0.280

Non-Hispanic other – 0.062

Constant 0.46* 3.33***

Wald chi-squared (df ) 1,085*** (53) 168.8*** (29)

***p < 0.01.
**p < 0.05.
*p < 0.10.
aAdjusted for education, whether the respondent has a medical condition that limits 
travel, whether a proxy respondent was used, number of trips taken on travel day, 
season of travel day, day of week of travel day, presence of heavy rail in metropolitan 
statistical area, and census division fixed effects.
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Similar associations between trip duration, trip purpose, and 
built environment variables occur for biking trips (Table  6). 
Some differences exist regarding associations with trip type and 
mode to work: relative to a bike trip to work by someone who 
typically cycles to work, a work bike trip by someone who typi-
cally drives to work is significantly longer. Bike trips to work by 
someone who typically walks to work are shorter than those taken 
by someone who typically bikes to work. Finally, work bike trip 
duration is not significantly associated with taking public transit 
to work, likely reflecting the relative rarity of bike trips to access 
public transit. While population density not associated with bike 
trip durations, percentage of rental units is negatively associ-
ated with the  duration of shopping and recreational bike trips 
for working adults. For non-working adults, shopping, social, 
and personal/family business bike trips are significantly shorter 
than the reference category (recreational trips). Among working 
adults, age exhibits a significant quadratic relationship with bike 
trip duration. Among working and non-working adults, women 
take shorter bike trips compared to men.

To illustrate the combined effects of the models summarized in 
Tables 1–6, Figure 2 presents estimates of weekday walking and 
biking time for a median individual in each commuter category. 
Generally, individuals who walk to work have much higher aver-
age daily walking time than other types of commuters. Similarly, 
bicycle commuters have higher average daily biking time than 
all other commuters. Transit commuters have moderate daily 
average walking times, likely reflecting walk trips to and from 
transit stops. Bike commuters also have moderate daily average 
walking times. Daily walking time for individuals who walk to 
work peaks around age 50 and then decreases slightly with age, 
while daily biking time peaks at a later age for bicycle commut-
ers. Increases in daily bike time for bike commuters until to 
around age 75 is a surprising finding, perhaps reflecting strong 
underlying preferences for biking among those that continue 
to bike to work at older ages. Both daily walking and biking 
time increase as population density and percent rental units  
increase.

effects of commuting Method and Built 
environment Variables on Physical activity
To demonstrate the effect of commuting method, population 
density, and percent rental units on physical activity, we cal-
culated the average marginal effects of a 1-unit change in each 
of these variables on daily walking and biking times. Average 
marginal effects for commute mode represent the average 
increase in daily walking or biking time expected given a switch 
from the reference category (private vehicle) to a different com-
muting mode. Average marginal effects for population density 
and percent rental units both represent the average change in 
daily walking or biking time given a one unit change in these 
variables. On average, an individual who walks to work walks an 
additional 19.8 (95% CI 16.9–23.1) minutes per day compared to 
an individual who drives to work. Transit and bicycle commuters 
walk an additional 5.0 (95% CI 3.5–6.4) and 3.9 (95% CI 1.2–8.3) 
minutes per day, respectively, compared to drivers (Figure 3; top 
left). The effect of biking to work on daily biking time is stronger 
than the effect of walking to work on daily walking time: a bicycle 
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FigUre 2 | regression estimates of daily walking and biking time as a function of age, population density, and percent rental units. In each plot, 
median values are used for all other variables.
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commuter bikes an additional 28.0 (95% CI 17.5–38.1) minutes 
per day compared to drivers. Transit commuters cycle for an 
additional 0.8 (95% CI 0.1–2.2) minutes per day compared to 
drivers (Figure 3; top right). However, individuals who walk to 
work do not bike significantly more than drivers. Built environ-
ment variables have small but significant effects on daily walking 
time but no significant effects on daily biking time. For working 
adults, a 1-Unit increase in population density (thousands of 
people per square mile) increases daily walking time by 0.05 (95% 
CI 0.002–0.1) minutes, and a 1-unit increase in percent rental 
units increases daily walking time by 0.02 (95% CI 0.01–0.04) 
minutes.

Average marginal effects for individual models (trip count, 
purpose, and duration) and are presented in the Supplementary 
Material. Active commuters generally take significantly more 
walk and/or bike trips per week, but these trips tend to have 
shorter durations. Thus, the net effect of commute mode to work 
on weekly walking or biking time (Figure 3) is slightly less than 

the effect of commute mode on the number of weekly walking or 
biking trips (Table S5 in Supplementary Material). For example, a 
non-Hispanic White individual who walks to work is expected to 
take 1.6 (1.4–1.7) additional walk trips per day relative to a simi-
lar individual who drives to work (Figure S3 in Supplementary 
Material). For this same individual, the likelihood that a 
given walk trip would be for work purposes is 38% (33–43%) 
greater than their counterpart who drives to work (Figure S4 in 
Supplementary Material). Finally, for this individual, a typical 
work trip would have a duration 5.2 (3.0–7.5) minutes shorter 
than a recreational trip (Figure S5 in Supplementary Material). 
Thus, while active commuters take a much greater number of 
walk or bike trips per day, it is more likely that trips taken by 
active commuters will have shorter durations than trips taken 
by individuals who drive to work due to the shift toward work-
related active travel. This nuance highlights the importance of 
including trip probability models in the initial estimation frame-
work presented in Eq. 1.
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FigUre 3 | effects of commuting method on daily time spent walking (top left) and biking (top right) relative to the reference category (driving a 
private vehicle to work), and effects of 1-unit changes in built environment measures on daily walking (bottom left) and biking (bottom right) time.
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representing perfect agreement (dashed black line) and predic-
tions within 0.5 (solid black lines), 1 (solid gray lines), and 2 
(dashed gray lines) MET-hours per day. Solid black circles, black 
triangles, gray crosses, and gray circles represent individual 
estimates within 0.5, 1, 2, or more than 2 MET-hours per day, 
respectively. Estimated physical activity from walking and biking 
is within 0.5, 1, and 1.6 MET-hours per day for 83, 91, and 95% 
of observations, respectively. The Triangle Travel Survey contains 
a large proportion of days with no walking or biking trips, which 
are clustered along the x-axis. While the NHTS model estimates 
non-zero transportation physical activity for these days, predic-
tions are <0.2 MET-hours per day for 63% of observed zeroes and 
<0.62 MET-hours per day for 95% of observed zeroes.

Overall, the NHTS model performs very well for those who 
walk or drive to work. However, the model under-estimates 
physical activity for those who bike or ride transit to work. 
Under-predictions for transit use may reflect inclusion of more 

Model Validation
To assess the regression models’ accuracy, we used the models 
and Eqs 1–2 to estimate daily physical activity from walking and 
biking for all participants in the 2006 Greater Triangle Travel 
Survey (23), and we compared the estimates to the survey results. 
The models estimate an average of 0.22 MET-hours per day of 
walking and biking for those who drive to work; the averaged 
observed value for private vehicle commuters is 0.20 MET-hours 
per day. For transit commuters, the models estimate an average of 
0.78 MET-hours per day compared to an average observed value 
of 1.44 MET-hours per day. For those who walk to work, the 
models predict an average of 1.46 MET-hours per day, compared 
to an average observed value of 1.54 MET-hours per day. Finally, 
for bike commuters, the model estimates is 3.96 MET-hours per 
day compared to an average observed value of 5.23 MET-hours.

The square root of model predictions are plotted against 
the square root of observed values in Figure 4 along with lines 
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FigUre 4 | Predicted versus observed transportation physical activity for the validation dataset. Dashed black line: perfect agreement. Solid black lines 
and circular markers: predictions within 0.5 MET-hours per day of observed values. Solid gray lines and triangular markers: predictions within 1 MET-hour per day of 
observed values. Dashed gray lines and x-shaped markers: predictions within 2 MET-hours per day of observed values. Hollow circle markers: predictions more 
than 2 MET-hours different than observed values.
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individuals using park-and-ride lots to access transit services 
in the NHTS dataset than in the Raleigh–Durham–Chapel Hill 
region, where park-and-ride lots are available only for regional 
bus service. Under-estimates of physical activity for bicycle com-
muters may reflect the limited availability of travel time to work 
information for cyclists in the Triangle Travel Survey.

health impacts of active Transportation 
in the case study region
Using Eqs  1–2, the population-weighted mean transportation 
physical activity level for the Raleigh–Durham–Chapel Hill 
region is 1.2 MET-hours per week. Generally, block groups 
with high population density (Figure  5, top left panel) and/or 
high proportions of the population who walk or bike to work 
(Figure  5, top right panel) tend to also have higher estimated 
transportation physical activity generally. Averaging estimated 
transportation physical activity within population density quin-
tiles of block groups confirms this observation: the bottom two 
quintiles have similar average estimated transportation physical 
activity while estimated transportation physical activity increases 
incrementally in the top three quintiles (Table 7). Average esti-
mated transportation physical activity in the highest quintile of 

population is 81% greater than average estimated transportation 
physical activity in the lowest quintile (Table 7).

Estimated transportation physical activity levels were used to 
estimate the number of premature deaths that could be prevented 
if all individuals walked 34.7 min per week, as observed in walk-
able neighborhoods in Baltimore and Seattle (26). According to 
this estimate, 38 (95% CI 15–59) additional premature deaths 
would have been avoided across the region As shown in Figure 5 
(bottom right panel), the health risks posed by low transporta-
tion physical activity, relative to expected transportation physical 
activity for walkable neighborhoods, are lowest in block groups 
with high population density and/or high proportions of the 
 population walking or biking to work. As expected, the spatial 
pattern of estimated health impacts is roughly the inverse of the 
spatial pattern of transportation physical activity. Premature 
mortality that could be avoided if all individuals in the study 
region walked 34.7  min per week decreases with population 
density, suggesting that population density supports transporta-
tion physical activity and reduces health risks associated with low 
physical activity (Table  7). Equivalently, prevented premature 
mortality is nearly four times greater in the highest population 
density quintile compared to the lowest.

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


FigUre 5 | study region population density (top left), proportion of commuters walking or biking to work (top right), estimated weekly transportation 
physical activity (bottom left), and preventable mortality per 100,000 people in 2013. Special districts indicated in the maps include an international airport 
and a state park.
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hypothetical hia application
To demonstrate how our regression models could be used to sup-
port active transportation HIA, we developed three hypothetical 
scenarios in which changes made to the built environment increase 
transportation physical activity in the Raleigh–Durham–Chapel 

Hill region. In the first, transportation physical activity is assumed 
to increase by 7.9% for all individuals in the study region as a 
result of 10% increases in land-use diversity, transit stop cover-
age, and intersection density. In the second, 7.9% of drivers begin 
walking to work, increasing population-average transportation 
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TaBle 7 | effects of population density on transportation physical activity and estimates of preventable premature deaths relative to the walkable 
neighborhoods counterfactual.

Quintile of population 
density (persons/mi2)

Mean population 
density (persons/mi2)

Population Transportation physical 
activity (MeT-h/week)

Preventable mortality 
(deaths per 100,000)

Preventable mortality 
(total deaths)

1 165.4 314,734 1.00 3.6 11

2 688.4 369,457 1.01 2.7 9.8

3 1,711 327,809 1.16 2.3 7.7

4 2,913 341,956 1.33 1.8 6.2

5 5,954 311,268 1.81 0.93 2.9

All 2,165 1,656,225 1.20 2.3 (0.88–3.6) 38 (15–59)

TaBle 8 | Transportation physical activity and health benefits estimated 
for hypothetical built environment changes.

scenario 1: 
population 
increase in 

walking

scenario 2: 
drivers shift to 

walking

scenario 3: 
drivers shift to 

transit

Transportation physical 
activity (MET-h/week)

1.32 1.56 1.47

Increase in transportation 
physical activity, relative to 
baseline (MET-h/week)

0.10 0.34 0.24

Prevented mortality  
(total deaths)

3.2 (1.3–5.2) 8.0 (3.2–12.5) 6.2 (2.6–10.3)

Prevented mortality 
(deaths per 100,000)

0.20 (0.08–0.31) 0.96 (0.38–1.5) 0.70 (0.39–1.2)
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physical activity by 0.34 MET-hours per week. In the third, 
14.5% of drivers switch to commuting by public transit, increas-
ing average transportation physical activity by 0.24 MET-hours 
per week (Table 8). Compared to baseline conditions, these three 
scenarios would reduce premature mortality across the region by 
3.2 (95% CI 1.3–5.2), 8.0 (95% CI 3.2–12.5), and 6.2 (95% CI 
2.6–10.3) deaths per year, respectively. While only illustrative, the 
application of our regression models to predict health benefits 
of hypothetical changes in the built environment demonstrates 
how such models could be used to support quantitative HIAs 
of built environment changes that support walking and biking 
for transportation. The first scenario illustrates how our regres-
sion models could support the calculation of population-wide 
increases in physical activity while the second and third scenario 
illustrate how these models could instead support HIAs of built 
environment changes that result in shifts of transportation mode 
used for the work commute.

DiscUssiOn

Overall significance
Using data from the 2009 NHTS, we developed regression models 
that future analysts can use to predict weekly time spent walk-
ing and biking for transportation based on routinely collected 
demographic and built environment data. These models enabled 
the development of transportation physical activity predictions 
across the Raleigh-Durham-Chapel Hill case study region with 
greater spatial resolution than was previously possible. We 

showed how the models can be used to estimate the potential 
health benefits of increasing walking and biking in the case study 
region: for example, if changes to the built environment induced 
14.5% of drivers to commute by public transit, an estimated 6.2 
(95% CI 2.6–10.3) premature deaths could have been prevented 
in 2013. Further, estimates of health impacts for baseline trans-
portation physical activity at the Census block groups scale across 
the region (Figure 5) could be used to target built environment 
changes to better support walking and biking for transportation. 
Physical activity estimates at this fine scale of geographic resolu-
tion enable better understanding of how risks associated with 
physical inactivity vary across urban areas. As transportation 
HIA continues to evolve, more advanced modeling techniques 
are emerging. While advanced modeling tools offer a number 
of benefits to transportation HIA, they may have extensive data 
requirements (32). The estimation approach presented in this 
paper provides a means to estimate baseline transportation physi-
cal activity levels and compare baseline levels across space using 
readily accessible data.

More broadly, a handful of recent studies have explored the 
competing health risks posed by transportation systems in urban 
environments. While compact urban environments support 
increased walking and biking for transportation, residents of 
densely populated neighborhoods may be exposed to more air 
pollution (35, 36). Additionally, active commuters may have 
increased exposure relative to non-active commuters due to 
increased inhalation rates (37). However, estimates suggest that 
the benefits of transportation physical activity for active com-
muters outweigh risks associated with increased air pollution 
exposure (38). A previous study in the Raleigh–Durham–Chapel 
Hill metropolitan area estimated that, in 2010, 47 premature 
deaths were associated with exposure to fine particulate matter air 
pollution from motor vehicles (36). Other recent work provides 
evidence that residents in denser neighborhoods may face greater 
health risks from exposure to pollutants in ambient air (35). Thus, 
physical activity and air pollution exposure may respond to char-
acteristics of the built environment in different directions and 
with different magnitudes. While a variety of tools and methods 
exist to estimate air pollution exposures at fine spatial resolutions 
(36, 39, 40), this study presents a novel estimation framework for 
estimating active transportation behaviors at fine spatial resolu-
tions across a large metropolitan region. In doing so, we support 
future research efforts to identify the relationships between the 
built environment and competing transportation health risks in 
urban areas. Across urban areas, these competing risks result in 
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a highly heterogeneous riskscape. Quantitative assessments of 
these risks support informed policy-making to reduce the health 
risk associated with transportation.

comparison to Previous studies
Previous analyses of the NHTS have found a number of associa-
tions between individual characteristics and active transportation 
behaviors. For example, Pucher et al. found that men are much 
more likely to cycle at least 30 min per day while women are 
slightly more likely to walk at least 30 min per day (19). Similarly, 
we find that men are much more likely to take at least one bike 
trip compared to women (Table 2). In contrast to previous work 
finding that individuals who ride public transit walk 21 min per 
day, we find that individuals who take transit to work walk an 
additional 4.5 min per day compared to individuals who commute 
using a private vehicle (6). This discrepancy may arise for several 
reasons. First, our estimate includes individuals who use all forms 
of public transit, including paratransit services. Since commuters 
do not have to walk or bike to access demand-responsive services, 
the average marginal effect of taking public transit to work is 
attenuated. Second, we include transit commuters who do not 
walk or bike to access transit (e.g., park-and-ride users). Third, 
we calculated the marginal effect of riding transit to work relative 
to driving. Individuals who drive to work still walk and bike for 
other purposes, and our results show that taking public transit 
increases the likelihood that a given trip will be for work purposes 
(Table 3). Thus, we estimate the impact of transit commuting to a 
non-zero baseline and find some evidence that transit users shift 
the purpose of walk trips toward commuting and away from other 
purposes. Previous work has also found that individuals who 
walk to public transportation are more likely to be non-White 
(6). Counter to this finding, we find that non-Hispanic Blacks and 
Asians are less likely to take at least one walking trip in a given day 
(Table 1). However, we also find that non-Hispanic Blacks take 
longer walk trips, counteracting the effect of lower trip counts 
on daily walking time (Table 5). These differences are likely due 
to our use of commute mode to work as an explanatory variable. 
Non-White individuals are more likely to ride transit to work; 
thus, the correlation between race/ethnicity and commute mode 
to work may attenuate the relationship between race/ethnicity 
and daily walking trips.

Assessing active transportation behaviors at the neighborhood 
scale, a number of previous studies have shown that individu-
als living in more walkable neighborhoods are more physically 
active than residents in non-walkable neighborhoods (10, 26, 
33, 34). Broadly, our findings are aligned with these previous 
neighborhood-scale studies. We found strong effects of commute 
mode choice on daily walking and biking time, as well as small 
yet significant associations between built environment measures 
and daily walking time (Figure 3). Overall, we found the highest 
population-average levels of physical activity – and, in turn, the 
lowest burden of preventable premature mortality associated with 
physical inactivity – in the densest quintile of block groups in the 
region (Table 7). Thus, our regional analysis using a downscaled 
national survey largely aligns with previous studies conducted at 
the neighborhood scale.

limitations
This analysis considers only physical activity from transportation 
in estimating preventable mortality relative to counterfactual sce-
narios in which more people walk for transportation. Because the 
dose–response function linking transportation physical activity 
to all-cause mortality (Eq. 6) is log-linear, the slope of the func-
tion decrease as dose increases. Thus, estimated risk reduction for 
a fixed increase in physical activity is sensitive to the baseline level 
of physical activity. This may lead us to overestimate preventable 
mortality. However, the meta-analysis that derived Eq. 6 included 
studies that controlled for physical activity on other domains 
when estimating the dose–response function for transportation 
walking and biking (29). Thus, Eq. 6 implicitly assumes that there 
is some unobserved level of non-transportation physical activity 
in the population. While considering only transportation physi-
cal activity is a limitation of our approach, the tendency of this 
limitation to result in overestimation of preventable mortality is 
minimized by the use of a dose–response function that accounts 
for non-transportation physical activity.

Additionally, the 2009 NHTS offers only a snapshot of walk-
ing and biking behaviors across the US at a single point in time. 
The NHTS was previously administered in 2001. Comparisons 
of walking in biking in the 2001 and 2009 NHTS reveal several 
small, yet significant, trends in active transportation behaviors 
(19). However, the data are insufficient to project baseline trends 
or link these behaviors to exogenous variables. As population 
cohorts age and economic conditions (e.g., gasoline prices) 
change, preferences for active transportation may also change. 
However, our model validation shows that regression estimates 
from the NHTS have a reasonable predictive validity.

Finally, the generation of block group population distributions 
across individual-level dimensions assumes that the distributions 
of different population characteristics are independent when cross-
tabulations were not available at the block group level in the ACS 
(e.g., the distribution of commute mode to work for working adults 
was assumed to be independent of the distribution of race). Finally, 
the ACS groups all public transit services into a single category 
when reporting commute mode to work at the block group geog-
raphy, including demand-responsive paratransit services in rural 
areas. These transit services may not be associated with as much 
walking and biking for transportation as fixed-route transit service 
in urban areas. Thus, in some rural block groups, this may result in 
an overestimation of transportation physical activity. Despite limi-
tations associated with the ACS data, our approach offers a much 
more detailed understanding of active transportation behaviors 
than is offered by existing routinely collected data sources.

cOnclUsiOn

As understanding of the connections between the built environ-
ment and public health evolve, tools and methods to develop 
robust population-level estimates of physical activity from 
walking and biking must be developed alongside models to char-
acterize exposure to other transportation health risks, such as air 
pollution. This study demonstrates a statistical approach to char-
acterizing walking and biking levels across a large metropolitan 
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area using routinely collected data. This approach is useful both 
for estimating baseline behaviors in support of transportation 
HIAs and for comparing the magnitude of risks associated with 
physical inactivity to other competing health risks in urban areas. 
In a case study application, we used this approach to highlight 
the potential health benefits of modifying the built environment 
to support walking, biking, and riding public transit to work. 
In future work, similar approaches could lead to more detailed 
understanding of how the design of urban environments affects 
multiple health risks, including physical inactivity, exposure to air 
pollution, and traffic accidents. Clarifying the complex interplay 
of competing health risks associated with transportation systems 
in urban areas is an important research direction to improve 
understanding of population-level health impacts of the built 
environment. Ultimately, tools to support quantitative HIAs can 
support more robust consideration of multiple health risks when 
deciding how to shape the built environment.
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