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Department of Pharmaceutics, Division of Microbiology, Kwame Nkrumah University of Science and Technology, Kumasi, 
Ghana

A review of the literature was undertaken to delineate the current level and mechanisms  
of resistance to carbapenems, colistin, and tigecycline in South Africa. Thirty-two English 
publications and 32 National Institute of Communicable Diseases communiqués iden-
tified between early January 2000 and 20 May, 2016 showed substantial reports of 
NDM (n = 860), OXA-48 (n = 584), VIM (n = 131), and IMP (n = 45) carbapenemases 
within this period, mainly in Klebsiella pneumoniae (n = 1138), Acinetobacter baumannii 
(n = 332), Enterobacter cloacae (n = 201), and Serratia marcescens (n = 108). Colistin 
and tigecycline resistance was prevalent among K. pneumoniae, A. baumannii, S. marc-
escens, and E. cloacae. The first mcr-1 colistin resistance gene to be detected in South 
Africa was reported in Escherichia coli from livestock as well as from hospitalized and 
outpatients. There are increasing reports of NDM and OXA-48 carbapenemases among 
Enterobacteriaceae and A. baumannii in South Africa. Mcr-1 is now present in South 
African patients and livestock. Resistance to carbapenems, colistin, and tigecycline 
restricts infection management options for clinicians.

Keywords: carbapenem, tigecycline, colistin, carbapenemase, mcr-1, South Africa, antibiotic resistance

BULLeT POiNTS/HiGHLiGHTS

• Resistance to last-resort antibiotics, such as carbapenems, tigecycline, and colistin, is increasing 
among Gram-negative bacteria in South Africa, restricting infection management options for 
clinicians and posing a threat to food safety.

• NDM-1 and OXA-48-like carbapenemases are the most common carbapenemases found among 
Gram-negative bacteria in South Africa and have been implicated in clinical outbreaks.

• The mcr-1 colistin resistance gene has been reported among Escherichia coli in both clinical and 
poultry samples in two provinces in South Africa. This is a threat to all Africa and Europe as many 
patients from several countries in these continents seek health care in South Africa.

iNTRODUCTiON

The inexorable adaptations of bacteria to the therapeutic effects of antibiotics, with its grave implica-
tions, are dawning upon the world. This is witnessed in the increasing awareness being created by the 
WHO and EU about antibiotic resistance, specifically through the formers’ global/regional antibiotic 
surveillance reports (1, 2). Moreover, antibiotic resistance awareness days and weeks have been 
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instituted by both organizations (3), while efforts to engage policy 
makers and governments (4), clinicians, and patients in antibiotic 
stewardship have increased concomitantly (1, 2). Until recently, 
the effect of antibiotic use in livestock production on clinical 
medicine was a subject of debate (5). However, the detection of 
mcr-1 colistin resistance gene in swine, pork, imported chicken 
(in Denmark), and hospitalized patients has helped settle the 
argument that antibiotics use in veterinary medicine, specifically 
as growth promoters, can be a source of resistance genes in human 
pathogenic bacteria (6, 7). Subsequently, the concept of “One 
Health” that triangulates clinical, environmental, and veterinary 
antibiotic resistance surveillance and molecular epidemiological 
studies as a means to containing resistance is gaining grounds (8).

A recent study in the UK detected large amounts of resistance 
genes to clinically useful antibiotics, such as sulfonamides, tri-
methoprim, and tetracyclines, in rivers that were fed with runoff 
effluents from farms on which antibiotics were used, as well as 
from sewage processing plants (9). In India and Bangladesh, 
substantial amounts of broad-spectrum antibiotic resistance 
enzymes, such as NDM-1 and CTX-M-15, which, respectively, 
confer resistance to most β-lactams (except aztreonam) and 
cephalosporins (except cephamycins), were detected in the envi-
ronment, as well as in tap water (10–12). The implications of this 
escalating preponderance of resistance genes in the environment, 
and subsequently in human pathogens, cannot be gainsaid, but 
briefly it portends the end of antibiotics as useful therapeutic 
agents in combatting bacterial infections (7, 13).

The emergence of antibiotics quickly and significantly 
reduced the prevalence and mortality of several hitherto fatal 
infections, such as sepsis, meningitis, tuberculosis, gangrenes, 
dysentery, food-borne diarrhea, salmonellosis, and pneumonia 
(1). Increased life-expectancy, better quality of life, and increased 
wealth were the palpable results of antibiotics use; however, 
antibiotic resistance remains a threat to these gains. Expansions 
in resistance among bacteria have been blamed on increased 
unrestricted antibiotic use in clinical and veterinary medicines 
(7,  13). Currently, the carbapenems, colistin, and tigecycline, 
alone or in combinations, are used as reserve antibiotics to treat 
fatal bacterial infections (14). Unfortunately, reports of resistance 
to these last-resort antibiotics have been increasing with concern-
ing frequency (15).

Detection of resistance to these last-resort antibiotics in South 
Africa are increasingly, but worryingly, being reported. To draw 
attention to this menace, this article provides a comprehensive 
review of the current burden of resistance to reserve antibiotics, 
as reported in published literature, as well as discusses their public 
health implications. This review thus aims to create an awareness 
of the precarious state of South Africa’s public health as a means 
of stimulating government action toward implementing policies 
that will address the situation.

LAST-ReSORT ANTiBiOTiCS: FROM 
CARBAPeNeMS TO COLiSTiN AND 
TiGeCYCLiNe

Until recently, carbapenems, such as meropenem, imipenem, 
ertapenem, and doripenem, were the last-resort antibiotics used 

for managing multidrug-resistant bacterial infections (14, 16). 
However, their use selected for resistant strains, necessitating a 
change to colistin and tigecycline as last-resort antibiotics (14). 
It has been established that bacteria develops resistance to car-
bapenems through the expression/production of enzymes called 
carbapenemases, and/or the reduction in outer membrane per-
meability resulting from porin mutations (17). Carbapenemases 
remain the most clinically important mechanism of carbapenem 
resistance (18) and are categorized into three classes, namely class 
A, B, and D; class A includes the clinically important KPC and 
GES enzymes, while VIM, IMP, and NDM are the most described 
types under class B. OXA-48-like enzymes remain the commonly 
reported types under class D (17, 19). Resistance to colistin and 
tigecycline are, respectively, due to lipid A mutations and efflux 
hyper expression (14). Recently, Liu et al. (7) found a new plas-
mid-borne colistin resistance mcr-1 gene that is quickly spreading 
worldwide (20). The increasing but worrying emergence of these 
carbapenemases and carbapenem-, colistin- (particularly mcr-1), 
and tigecycline-resistant Gram-negative bacteria in South Africa 
are presented herein.

Resistance to Carbapenems  
in South Africa
Analysis of carbapenem resistance-reporting publications 
showed that an estimated 2315 carbapenem-resistant cases/
infections occurred between January 2000 and May 20, 2016 
(Tables 1 and 2 and Table S1 in Supplementary Material). The 
majority of these estimated cases (n  =  1220) were from the 
Gauteng province, followed by a substantial number from 
KwaZulu-Natal (n = 515) province (Figure 1). Klebsiella pneumo-
niae (n = 1138), Acinetobacter baumannii (n = 332), Enterobacter 
cloacae (n =  201), and Serratia marcescens (n =  108) were the 
most common carbapenem-resistant isolates. The most described 
carbapenemases were NDMs (n = 860) and OXA-48 (n = 584), 
which were increasingly detected after 2012, subsequent to its 
detection in 2011 (Tables 1 and 2 and Table S1 in Supplementary 
Material; Figure  1). The National Institute of Communicable 
Diseases (NICD) currently only reports carbapenem-resistant 
Enterobacteriaceae (CRE) from the public and private health 
sectors, and not carbapenem-resistant, non-fermenting Gram-
negative bacteria or colistin and tigecycline resistance; however, 
it is on alert to report on the mcr-1 gene (as at the time of writing 
this paper). As a reference laboratory, the NICD receives and 
confirms CRE from selected hospitals from South Africa and 
publishes them in monthly communiques.

These observations suggest the substantial dissemination of 
carbapenem resistance, mediated mostly by NDM-1 or OXA-48 
carbapenemases in K. pneumoniae, A. baumannii, E. cloacae, 
S. marcescens, and other Gram-negative bacteria. After 2000 
A.D., the number of carbapenem resistance reports increased 
in South Africa, specifically in Gauteng and KwaZulu-Natal 
provinces (Tables 1 and 2). Reports of NDM and OXA-48-like 
carbapenemases increased after 2011 in Gauteng, KwaZulu-
Natal, Eastern, and Western Capes provinces (Tables  1 and 
2; Figure  1). Most of these carbapenem resistance cases had 
no travel history outside South Africa, suggesting that these 
strains were selected from increased carbapenem use within the 
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TABLe 1 | Timeline of published carbapenem-resistant enterobacteriaceae (CRes) and carbapenemases detected in Gram-negative bacteria in South Africa.

Year Province (city) (n) Species (n) Specimen type (n) Number of 
patients (n)

Carbapenem resistance 
mechanism (n)

Reference

2000 NSa Pseudomonas aeruginosa GW-1 (1) Blood (1) 1 GES-2 (1) Poirel et al. (21)

2004–2005 Limpopo Aeromonas hydrophila (18) Stools (309) 309 NCb Obi et al. (22)

2006 Western Cape (Cape Town) Klebsiella pneumoniae (1) Tracheal aspirate (1) 1 ESBLc + porin deficiency Elliott et al. (23)
K. pneumoniae (2) Stool (2) 2 CTX-M-15 + porin 

deficiency
Segal and Elisha (24)

NS Acinetobacter baumannii (1) Urine (1) 1 OXA-23 (1) Mugnier et al. (25)

2006–2009 Eastern Cape (119) Salmonella typhi (28) Blood (96) 119 NC Bisi-Johnson and 
Obi (26)

2007–2008 NS A. baumannii (1) NS 1 OXA-51 Zander et al. (27)

2008 Gauteng (Pretoria) A. baumannii (97) NS NS OXA-51 (81), OXA-23 (58), 
OXA-58 (3), VIM (1)

Kock et al. (28)

2010 Gauteng (Pretoria) A. baumannii (232) ETAd (149), blood (20), urine (15), CVPe tips 
(11), wound swabs/tissues/effusions (37)

232 Uncharacterized 
carbapenemases (217)

Ahmed et al. (29)

2010–2011 Western Cape (Cape Town) P. aeruginosa (15) Blood (10), stool (2), bile (1), urine (1), 
catheter (1)

15 VIM-2 (11), GES-2 (1) Jacobson et al. (30)

2010–2012 Gauteng (75), Western Cape 
(25), KZNf (15), Free State (7), 
Limpopo (2)

K. pneumoniae (124) Blood (124) 124 Non-carbapenemase-
producing CREs

Perovic et al. (31)

2011 Gauteng K. pneumoniae KPSA01 ST 569 (1) NS 1 VIM-1 (1) Peirano et al. (32)
Gauteng (Johannesburg) E. cloacae (1) Sputum (1) 1 NDM-1 (1) Lowman et al. (33)
Gauteng (Johannesburg, Pretoria) K. pneumoniae (4), E. cloacae (1) Urine (1), tracheal aspirate (1), Blood and 

tracheal aspirate and catheter tip (3)
2 KPC-2 (4), NDM-1 (1) Brink et al. (34)

Western Cape (Cape Town, 4), 
Eastern Cape (Port Elizabeth, 3), 
Gauteng (Johannesburg, 2)

K. pneumoniae (≥4) Tissue (2), tracheal aspirate (2), urine (5) ≥4 OXA-48 (2), OXA-181 (2) Brink et al. (35)

2011–2012 Gauteng (Johannesburg, 105) K. pneumoniae, E. cloacae, K. oxytoca, 
S. marcescens and Citrobacter amalonaticus

Sputum, blood, urine, pus, broncho alveolar 
lavage, pleural fluid

105 NDM-1 (≥38) de Jager et al. (36)

2012 KZN (Durban) E. cloacae (1) Urine (1) 1 NDM-1 (1) Govind et al. (37, 38)
KZN (Durban, 4) E. cloacae (2), C. freundii (1), S. marcescens (1) Urine (1), sputum (2), tracheal aspirate (1) 4 NDM-1 (4) Rubin et al. (39)
Western Cape (Cape Town) K. pneumoniae ST14 (7) Blood (1), stool (5), pus swab (1), tracheal 

aspirate (1)
8 OXA-181 (7) Jacobson et al. (40)

12/2012–
10/2013

Gauteng (Johannesburg, 37) K. pneumoniae (17), E. cloacae (13), E. coli (3), 
K. oxytoca (2), Klebsiella spp. (2)

Urine (6), catheter tip (3), blood (2), sputum 
(1)

37 IMP (5), NDM (4),  
OXA-48-like (2), VIM (1)

Chibabhai and 
Perovic (41)

2012–2013 KZN (Durban, 14) P. aeruginosa (8) Sputum (14) 14 NDM-1 (12) Mhlongo et al. (42)

2012–2013 KZN (Durban, 48) K. pneumoniae (21), S. marcescens (12), 
E. cloacae (11), C. freundii (2), E. coli (1), 
K. oxytoca (1)

Urine (20), catheter tip (2), blood (4), CVP 
(4), Pus swab (2), ETA (1), tracheal fluid (3), 
abdominal fluid/swab (2), art line (1)

46 NDM-1/-5 (33), GES-5 (8), 
OXA-232 (1)

Osei Sekyere et al. 
(14, 15)

(Continued)
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country (48). Published articles and the NICD communiqués 
tend to agree in a large measure with regards to the detec-
tion patterns and distribution of carbapenemases and CREs 
among the provinces (Table S1 in Supplementary Material). 
Carbapenem resistance has been described in at least 10 Gram-
negative bacterial hosts/species, which have been isolated from 
various clinical specimens (Tables 1 and 2); but with the excep-
tion of mcr-1 that was found in Escherichia coli in poultry (49), 
no reports of carbapenem- or tigecycline-resistant isolates were 
found from animals.

Reports of carbapenem-resistant Enterobacteriaceae from 
animals or the environment were not seen, and the NICD does not 
survey or collect CRE from livestock or environmental sources. 
Given the detection of mcr-1 among poultry and humans (50) 
in two provinces in South Africa, the need for a “One Health” 
approach to antimicrobial resistance surveillance and genomic 
epidemiology is dire (8). It is particularly concerning that these 
data are not representative of the whole burden of carbapenem 
resistance in South Africa. Subsequently, the burden of carbap-
enem resistance could therefore be more than reported, should all 
hospitals and laboratories, veterinarians, and environmentalists/
ecologists report their carbapenem-resistant cases. In addition, 
the distribution, resistance mechanisms, and bacterial hosts 
could change with a holistic “One Health” approach.

Given the high attributable mortalities resulting from 
carbapenem-resistant, and especially NDM-positive bacterial 
infections (51, 52), their public health impacts cannot be over 
emphasized, particularly as studies indicate that many CRE-
infected South African patients demised (35, 40, 53). Given the 
persistent and undetected nature of these carbapenem-resistant 
strains, specifically in many South African hospitals, the pos-
sibility of outbreaks, interhospital and intrahospital circulation 
(30, 40), and their transmission via hospital staff and patients to 
homes and communities is very high. Due to the association of 
CREs with intensive care units and invasive medical procedures, 
all patients who patronize these services are highly at risk (34, 54). 
With the detection of carbapenem resistance among Salmonella 
typhi in a hospital in Port Elizabeth, CREs can easily be trans-
ferred via contaminated food and water, a route that will expose 
many to these germs (26). This is further evidence of the need for 
a “One Health” approach to the antibiotic resistance problem in 
South Africa as resistant bacteria are not only reserved in clinical 
settings.

The escalating prevalence of these resistant strains is not only 
significant for South Africa but also to Africa and Europe as a 
whole, as published evidence shows that many patients from 
across Africa and Europe are transferred to South Africa for bet-
ter and cheaper medical attention. For instance, it is established 
that many Europeans troop to South Africa as a destination for 
cosmetic surgeries, such as hip replacements, rhinoplasty, breast 
augmentation, liposuction, facelifts, and tummy tucks (55); the 
possibility of South Africa thus spreading these resistant strains 
to other African and European nations cannot be ruled out as 
medical tourism in South Africa increased from 3.9 to 5.0% of 
all entries between 2006 and 2010 (55). This should alert the 
government, the health-care industry, and health workers to the 
economic costs associated with the increasing prevalence of CREs 
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TABLe 2 | Prevalence of carbapenemases and CRe per province as detected by NiCD between 2011 and 2015.

Year Province CPe positive specie(s) (n) Carbapenemases/carba  
penemase negative CResa

Reference(s) (monthly NiCD 
communiqués) National 
institute for Communicable 
Diseases (47)

11/2011 NS NS (44) NDM-1 (9) September 2012 vol. 11 (9)

2011–2013 NS NS (191) NDM-1 (37), OXA-48 (8), IMP (6),  
OXA-48-like (6), KPC (5)

March 2013 vol. 12 (3)

01/2013–
04/2014

Easter n Cape (25) E. cloacae (25) IMP (15), OXA-48 (1), VIM (1) October 2015 vol. 14 (10)

05–07/2013 Gauteng (10), KZN (4), others (56) NS NDM-1 (19) August 2013 vol. 12 (8)

08–09/2013 Gauteng (42), Western Cape (9), 
Eastern Cape (4), KZN (3)

K. pneumoniae (57), E. cloacae (22), E. coli (2), C. freundii (2),  
Morganella morgannii (1)

NDM-1 (27), OXA-48 (9), OXA-48-like (9), 
IMP (2), GES (1), VIM (1)

October 2013 vol. 12 (10)

10/2013 Gauteng, KZN, W. Cape K. pneumoniae (14), E. cloacae (8), S. marcescens (4), K. oxytoca (2),  
E. coli (1)

NDM-1 (15), IMP (7), OXA-48-like (6), VIM (1) November 2013 vol. 12 (11)

11/2013 Gauteng (37), KZN (11),  
E. Cape (2), W. Cape (1)

K. pneumoniae (32), E. cloacae (8), P. rettgeri (4), S. marcescens (2),  
Pantoea (2), E. aerogenes (1), K. oxytoca (1), Citrobacter sedlakki (1)

NDM (16), OXA-48 (14), VIM (12), IMP (6), 
GES (3)

December 2013 vol. 12 (12)

12/2013 Gauteng (12), KZN (4) K. pneumoniae (10), E. cloacae (2), C. freundii (2), E. coli (1), S. marcescens (1) NDM (9), VIM (3), IMP (2), OXA-48 (2) January 2014 vol. 13 (1)

01/2014 Gauteng (27) K. pneumoniae (20), E. cloacae (2), E. coli (2), C. freundii (1),  
S. marcescens (1), P. rettgeri (1)

NDM (17), VIM (6), OXA-48 (3), GES (1) February 2014 vol. 13 (2)

02/2014 Gauteng (32), E. Cape (7),  
W. Cape (4), KZN (3)

K. pneumoniae (40), E. cloacae (3), K. oxytoca (2), E. coli (1) NDM (18), VIM (14), OXA-48 (12), IMP (1), 
GES (1)

March 2014 vol. 13 (3)

03/2014 Gauteng (30), KZN (7),  
W. Cape (3), E. Cape (2)

K. pneumoniae (32), E. cloacae (5), C. freundii (2), S. marcescens (2), C. brakii (1) NDM (23), OXA-48 (10), VIM (6), GES (2), 
KPC (1)

April 2014 vol. 13 (4)

04/2014 Gauteng (11), KZN (6),  
E. Cape (5), W. Cape (1)

K. pneumoniae (12), S. marcescens (4), E. cloacae (3), C. freundii (2), K. oxytoca 
(1), E. aerogenes (1)

OXA-48 (12), NDM (10), VIM (1) May 2014 vol. 13 (5)

05/2014 Gauteng (11), KZN (7),  
W. Cape (3), Free State (1)

K. pneumoniae (12), C. freundii (4), S. marcescens (3), E. cloacae (2), K. oxytoca (1) NDM (10), OXA-48 (7), VIM (5) June 2014 vol. 13 (6)

06/2014 Gauteng (18), KZN (6),  
E. Cape (1)

K. pneumoniae (17), P. rettgeri (4), C. freundii (1), E. asburiae (1), E. cloacae (1),  
E. coli (1)

NDM-1 (19), OXA-48 (4), VIM (2) July 2014 vol. 13 (7)

07/2014 KZN (8), Gauteng (5), E. Cape (1) K. pneumoniae (10), C. freundii (3), E. cloacae (1) NDM (8), OXA-48 (3), KPC (1), VIM (1),  
GES (1)

August 2014 vol. 13 (8)

09/2014b Gauteng (3), KZN (3),  
E. Cape (3), W. Cape (3)

K. pneumoniae (10), S. marcescens (2) NDM (6), OXA-48 (6) October 2014 vol. 13 (10)

10/2014 Gauteng (17), KZN (16) K. pneumoniae (26), S. marcescens (4), E. cloacae (2), Raoultella spp. (1) NDM (10), OXA-48 (9), VIM (9), GES (5) November 2014 vol. 13 (11)

11/2014 KZN (7), Gauteng (6), E. Cape (2), 
W. Cape (1)

K. pneumoniae (10), S. marcescens (3), E. cloacae (2), P. rettgeri (1) OXA-48 (8), NDM (6), GES (2) December 2014 vol. 13 (12)

12/2014 Gauteng (29), KZN (13),  
E. Cape (2), W. Cape (2)

K. pneumoniae (24), S. marcescens (8), E. cloacae (4), Citrobacter complex (4),  
P. rettgeri (2), Enterobacter gergoviae (1), E. asburiae (1), E. coli (1), M. morgannii (1)

OXA-48 (19), NDM (18), VIM (5), KPC (3), 
IMP (1)

January 2015 vol. 14 (1)

(Continued)
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Year Province CPe positive specie(s) (n) Carbapenemases/carba  
penemase negative CResa

Reference(s) (monthly NiCD 
communiqués) National 
institute for Communicable 
Diseases (47)

01/2015 Gauteng (13), KZN (7),  
W. Cape (5), E. Cape (1)

K. pneumoniae (14), S. marcescens (3), P. rettgeri (3), E. cloacae (2), E. coli (2),  
K. oxytoca (1), Raoultella ornithinolytica (1)

NDM (16), OXA-48 (8), VIM (1) February 2015 vol. 14 (2)

02/2015 Gauteng (23), KZN (7),  
W. Cape (2), E. Cape (1)

K. pneumoniae (19), P. rettgeri (6), S. marcescens (3), E. coli (2), E. cloacae (1),  
K. oxytoca (1), Providentia penneri (1)

NDM (20), OXA-48 (12), VIM (1) March 2015 vol. 14 (3)

03/2015 Gauteng (34), KZN (18),  
E. Cape (5)

K. pneumoniae (30), S. marcescens (7), E. cloacae (7), E. coli (6), C. freundii (2),  
K. oxytoca (2), P. rettgeri (1), E. asburiae (1)

NDM (36), VIM (12), OXA-48 (9) April 2015 vol. 14 (4)

04/2015 Gauteng (19), KZN (19),  
E. Cape (2)

K. pneumoniae (26), E. coli (5), S. marcescens (3), P. rettgeri (3), C. freundii (2),  
E. cloacae (1)

NDM (27), OXA-48 (13) May 2015 vol. 14 (5)

05/2015 Gauteng (42), KZN (27),  
E. Cape (8)

K. pneumoniae (48), E. coli (9), S. marcescens (5), E. cloacae (5), P. rettgeri (2),  
K. oxytoca (2), C. freundii (1)

NDM (48), OXA-48 (23), VIM (4) June 2015 vol. 14 (6)

06/2015 Gauteng (30), KZN (29),  
unstated (16), E. Cape (1)

K. pneumoniae (52), S. marcescens (3), C. freundii (2), E. coli (1), E. cloacae (1),  
M. morgannii (1)

NDM (45), carbapenemase-negative CREs 
(16), OXA-48 (9), VIM (6)

July 2015 vol. 14 (7)

07/2015 KZN (32), unstated (22), Gauteng 
(19), E. Cape (5), unknown (2)

K. pneumoniae (45), S. marcescens (6), K. oxytoca (6), E. coli (3), E. cloacae (1),  
C. freundii (1)

NDM (46), carbapenemase-negative CREs 
(22), VIM (9), OXA-48 (7)

August 2015 vol. 14 (8)

08/2015 KZN (17), Gauteng (11), E. Cape 
(8), unstated (8), Free State (1)

K. pneumoniae (30), S. marcescens (3), E. coli (2), E. cloacae (1), C. freundii (1) NDM (20), OXA-48 (12),  
carbapenemase-negative CREs (8), VIM (5)

September 2015 vol. 14 (9)

09/2015 KZN (14), Free State (11),  
E. Cape (11), Gauteng (8), 
unstated (3), W. Cape (2)

K. pneumoniae (35), S. marcescens (5), E. coli (2), E. cloacae (2), P. rettgeri (1) NDM (33), OXA-48 (12),  
carbapenemase-negative CREs (11)

October 2015 vol. 14 (10)

10/2015 Gauteng (39), KZN (31),  
E. Cape (7), Free State (2)

K. pneumoniae (49), K. oxytoca (3), S. marcescens (2), E. cloacae (2), E. coli (1),  
C. freundii (1)

NDM (34), OXA-48 (21), VIM (3), 
carbapenemase-negative CREs (19)

November 2015 vol. 14 (11)

11/2015 Gauteng (55), unstated (20),  
KZN (7), E. Cape (4), W. Cape (4),  
Free State (4)

K. pneumoniae (43), E. coli (13), S. marcescens (7), E. cloacae (4), other 
Enterobacteriaceae (4), C. freundii (3), K. oxytoca (2), P. rettgeri (2)

NDM (38), OXA-48 (35), VIM (5), 
carbapenemase-negative CREs (16)

December 2015 vol. 14 (12)

12/2015 Gauteng (71), KZN (31), E. Cape 
(16), W. Cape (7), Free State (5)

K. pneumoniae (84), E. cloacae (9), S. marcescens (5), P. rettgeri (3), C. freundii (2), 
E. coli (1), E. kobei (1), M. morganii (1)

NDM (53), OXA-48 (47), VIM (4), GES (1), 
KPC (1), carbapenemase-negative CREs (14)

January 2016 vol. 15 (1)

01/2016 Gauteng (34), KZN (18), E. Cape 
(12), W. Cape (11), Free state (1)

K. pneumoniae (43), E. cloacae (7), S. marcescens (5), E. coli (3), P. rettgeri (3) NDM (29), OXA-48 (32), carbapenemase-
negative CREs (15)

February 2016 vol. 15 (2)

02/2016 W. Cape (78), Free state (34), 
E. Cape (21), Gauteng (12), 
KZN (11)

K. pneumoniae (59), E. cloacae (8), S. marcescens (2), C. freundii (2), P. mirabilis (1), 
E. coli (1), E. kobei (1), M. morganii (1), K. oxytoca (1), E. aerogenes (1), Citrobacter 
amalonaticus (1)

NDM (25), OXA-48 (36), carbapenemase-
negative CREs (17)

March 2016 vol. 15 (3)

aCarbapenem-resistant Enterobacteriaceae.
bSeveral isolates were uncharacterized due to technical difficulties (NICD).

TABLe 2 | Continued
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FiGURe 1 | A map showing the distribution, resistance mechanisms, and density of carbapenem, colistin, and tigecycline resistance described so 
far in South Africa. Resistance to carbapenems is highest in the Gauteng and KwaZulu-Natal provinces, followed by the Eastern and Western Capes, respectively. 
Resistance to colistin (mediated by the mcr-1 gene in some cases) and tigecycline are increasingly also being reported in Gauteng and KwaZulu-Natal provinces. 
NDM-1 (red ribbons) and OXA-48 (pink ribbons) variants are the commonly reported carbapenem resistance mechanism described in South Africa, particularly in 
Enterobacteriaceae such as K. pneumoniae, Enterobacter cloacae, Serratia marcescens, and Acinetobacter baumannii. Relatively minor resistance cases were 
reported from the Free state and Limpopo provinces, while VIM, IMP, GES, and other carbapenemases are less described in South Africa. NB: a free version of 
smartdraw software was used to design this map, hence the watermark “smartdraw” in the background.
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as it could deter patients from across Africa and Europe from 
seeking health care in the country.

The main challenge regarding the combatting of these 
resistant strains lies in the limited antibiotics available for their 
treatment. In KwaZulu-Natal, CREs have been isolated from 
neonates, including a 24-h neonate (45, 46) for whom antibiotic 
therapy are further limited due to their age. Clinicians are then 
forced to resort to more expensive but toxic combination thera-
pies that include the nephrotoxic and neurotoxic colistin and/
or tigecycline (56, 57), and to extend the patient’s stay in the 
hospital. The cost arising from the extended hospital stay to the 
patient, their family, and the government, as shown by the WHO 
in the US, EU, and Thailand, are considerable (1). Moreover, 
hospitals with outbreaks of CREs need to spend considerable 
resources sterilizing all wards and instituting stricter infection 
management controls, with some being forced to close down 
until the outbreaks are traced and eradicated (40). It is therefore 
in the interest of hospitals to institute periodic surveillance 
and effective infection control measures to preempt full-scale 
outbreaks, as well as screen all incoming patients to quickly 
isolate carriers.

increasing Resistance to Tigecycline  
and Colistin
The exponential consumption of carbapenems in South Africa 
between January 2009 and June 2011, due to rising extended-
spectrum β-lactamases among invasive Enterobacteriaceae, was 
early signaled as a potential factor in selecting CREs (14, 49, 54). 
It has been shown that colistin use in South Africa is increasing 
rapidly, and the failure of the carbapenems has been fingered as a 
cause (48, 49). Therefore, the increasing use of colistin and tigecy-
cline due to an ever-expanding prevalence of CREs will result in 
colistin resistance (14, 58) as has been already observed among 45 
CREs, 40 of which were resistant to both colistin and tigecycline 
(15), and also reported by Brink et  al. (35) in K. pneumoniae 
(35). With the emergence of colistin resistance among CREs, the 
pre-antibiotic age, due to pandrug resistance, is not far off. While 
reports of colistin- and tigecycline-resistant CREs in South Africa 
are relatively few, rather than suggesting their low prevalence, it 
indicates the absence of surveillance to detect them.

For instance, surveillance for mcr-1 in poultry and patients led 
to the first detection of this gene in multiclonal E. coli strains in 
Gauteng and Western Cape provinces (49). This is an unfortunate 

http://www.frontiersin.org/Public_Health
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TABLe 3 | Reported/published cases of resistance to colistin and tigecycline in South Africa.

Year Province Species (n) Number of patients Reference 

Tigecycline resistance
2010 Gauteng (Pretoria) A. baumannii (17) 17 Ahmed et al. (29)

2012–2013 KZN (Durban) K. pneumoniae (19), S. marcescens (12),  
E. cloacae (11), C. freundii (1), E. coli (1)

44a Osei Sekyere et al. (14, 15)

2013 KZN (Durban) Enterobacteriaceae (12) 12 Govind et al. (37, 38)

Colistin resistance
2011 Gauteng (Johannesburg) K. pneumoniae (11) 1 Brink et al. (35)

2012–2013 KZN (Durban) K. pneumoniae (17), S. marcescens (12),  
E. cloacae (10), K. oxytoca (1), E. coli (1)

41a Osei Sekyere et al. (14, 15)

2016 Gauteng (Johannesburg and Pretoria) E. coli (28) 9 (19 were from poultry) Coetzee et al. (49)
Western Cape (Cape Town)

aForty of these were also resistant to colistin and carbapenems.
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finding, from a public health perspective, as consumption of the 
infected poultry can quickly spread mcr-1 among consumers and 
further compromise colistin therapy in CRE-infected patients 
in South Africa. The selection of mcr-1 among the poultry 
was suggested as due to the high use of colistin among South 
African poultry as growth promoters, prophylactic, and thera-
peutic agents, underscoring the need for stricter regulations on 
antibiotic use in the veterinary sector. Being found in E. coli, it 
is not surprising that the affected patients included outpatients; 
this is due to the common presence of E. coli in both community 
and hospital settings. This further portrays an ominous future as 
E. coli and the plasmid-borne mcr-1 gene can easily find their way 
into environmental sources through humans and animals waste. 
Moreover, other bacterial species can easily obtain this gene 
from E. coli through the mcr-1 plasmid, leading to further spread 
(7). The higher prevalence of colistin and tigecycline resistance 
recorded in Durban (15) suggests that it remains largely unde-
tected and underscores the need for further surveillance studies 
in hospitals, farms, and environments. Without colistin and 
tigecycline (there are no other reserve antibiotics), the prognosis 
of bacterial infections in South Africa would be bleak.

Colistin and tigecycline resistance cases were higher in 
KwaZulu-Natal province (Figure  1) than in Gauteng province 
and were common among K. pneumoniae, A. baumannii, S. marc-
escens, and E. cloacae (Table 3), albeit mcr-1 has been detected 
in Gauteng (Johannesburg) and Western Cape (Cape Town) 
provinces so far (49). In the abovementioned study, 44 CREs were 
resistant to tigecycline; 41 of which were resistant to colistin, with 
40 being resistant to both colistin and tigecycline (15) (Table 3). 
The first mcr-1 gene to be detected in South Africa was hosted 
in polyclonal E. coli strains isolated from poultry (n = 19) and 
from outpatients and inpatients in Gauteng and Western Cape 
provinces (49).

The geographical location of the carbapenem-, colistin-, and 
tigecycline-resistant strains may not necessarily suggest their 
higher prevalence in Gauteng, KwaZulu-Natal, and the Eastern, 
and Western Cape provinces, but rather a higher surveillance 
effort in these areas. However, the higher risk posed to the citizens 
of these provinces cannot be downplayed, as these pandrug-
resistant strains could be easily spread into the environment and 

community (12, 13). The broad species range (Tables  1–3 and 
Table S1 in Supplementary Material) with which these carbap-
enem resistances are associated are also worrying, as these bac-
teria are commonly implicated in many human illnesses. Thus, 
the absence of reserve antibiotics in treating common infections 
from these resistant human pathogens will be precarious to public 
health.

Necessary Remedial and Policy 
interventions
The escalating reports of NDMs, estimated at 34% in 2014 to 59% 
in 2015 (59), and other carbapenemases in addition to the inad-
equate national data, belie the porous infection control measures 
and surveillance programs in South Africa. This must change if 
the resistance menace is to be contained. A stricter enforcement 
of antibiotic use regulations among prescribers, dispensers, and 
livestock farmers is warranted to reduce the amount consumed 
in South Africa (48). It is incumbent on government and health 
regulators to enforce antibiotic stewardship programs as well as 
institute weekly or fortnight surveillance in all hospitals in addi-
tion to well-established livestock and environmental surveillance. 
Anal swab screening of incoming and hospitalized patients, as 
well as screening of hospital staff, wards, and all invasive medical 
instruments should be enforced in all hospitals. Food animals 
must be periodically sampled and tested for resistant bacteria. 
Contact precautions and patient isolation protocols, as advised by 
the Centers for Disease Control and Prevention (CDC), should 
be taught to health workers and strictly implemented for infected 
patients (60). In addition, patients returning from high-risk 
countries (with higher prevalence of carbapenem, colistin, or 
tigecycline resistance) should be screened before admission (60).

Currently, the NICD monitors and receives CRE from selected 
hospitals in South Africa, which it uses for its monthly com-
muniques (Table 2). This is a good step toward describing the 
trends in CRE prevalence in South Africa, albeit it falls short of 
establishing their molecular epidemiology that is pivotal for any 
meaningful intervention. Moreover, efforts should be made to 
include all hospitals, in both private and public sectors, livestock 
farms, and environments, to obtain a true picture of the situation 
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in the country. To further enhance epidemiological analysis, 
isolates included in published manuscripts should be removed 
from the NICD communiques or flagged therein to avoid their 
being double counted. In addition, the NICD should collaborate 
with universities and hospitals to establish “Centers for Genomic 
Epidemiology of Resistant Infections” to train and equip students, 
clinicians (physicians and veterinarians), and environmentalists/
ecologists to undertake periodic antibiotic resistance surveillance 
and genomic epidemiology studies in hospitals, the environment, 
and livestock farms under a “One Health” (8) approach using 
next-generation sequencing (NGS) technology. This will help 
trace the routes and describe the evolutionary biology of resistant 
infections over time, which will provide adequate data to inform 
intervention policies.

There should be periodic in-service training for all hospital 
staff to increase awareness about carbapenem, colistin, and tige-
cycline resistance and the need to reduce their use. Such training 
must also involve the imparting of CRE diagnosis or detection 
skills and education in the available detection tools and methods 
as well as results interpretation. Hence, skills in undertaking and 
interpreting antimicrobial sensitivity tests using “interpretative 
reading” (61), the Carba NP test, multiplex real-time PCR, and/
or whole genome sequencing will be useful.

Furthermore, prescribers should be encouraged to adopt 
evidence-based therapies to reduce antibiotic prescriptions, 
specifically for non-bacterial-based infections. Dispensers 
and community pharmacies must only serve antibiotics under 
prescription, with regulations to punish offending practitioners 
(1,  2). Government, the media, and schools must complement 
the efforts of the WHO by broadcasting antibiotic awareness days 
and weeks throughout South Africa, to alert the inhabitants of the 
need to finish their antibiotic courses, avoid buying antibiotics 
without prescriptions, avoid sharing their unfinished antibiotics 

with family and friends, and/or avoid advising friends or family 
to buy antibiotics when they develop symptoms similar to that of 
a known disease treated with a particular antibiotic (1, 2).

CONCLUSiON

There is an escalating prevalence and possible endemicity of 
NDM and OXA-48 among Enterobacteriaceae and A.  baumannii 
in South Africa, which is largely under-detected. Resistance to 
colistin, mediated by the plasmid-borne mcr-1 gene and other 
chromosomal mutations, and tigecycline is burgeoning among 
Gram-negative bacteria, leaving clinicians with no reserve 
antibiotics for treating fatal bacterial infections. Stricter infection 
control and antibiotic stewardship, “One Health” surveillance 
and genomic epidemiology studies, education, and awareness 
creation are warranted.
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