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Due to the associated and substantial efforts of many stakeholders involved in malaria 
containment, the disease burden of malaria has dramatically decreased in many malar-
ia-endemic countries in recent years. Some decades after the past efforts of the global 
malaria eradication program, malaria elimination has again featured on the global health 
agenda. While risk distribution modeling and a mapping approach are effective tools to 
assist with the efficient allocation of limited health-care resources, these methods need 
some adjustment and reexamination in accordance with changes occurring in relation 
to malaria elimination. Limited available data, fine-scale data inaccessibility (for example, 
household or individual case data), and the lack of reliable data due to inefficiencies 
within the routine surveillance system, make it difficult to create reliable risk maps for 
decision-makers or health-care practitioners in the field. Furthermore, the risk of malaria 
may dynamically change due to various factors such as the progress of containment 
interventions and environmental changes. To address the complex and dynamic nature 
of situations in low-to-moderate malaria transmission settings, we built a spatiotemporal 
model of a standardized morbidity ratio (SMR) of malaria incidence, calculated through 
annual parasite incidence, using routinely reported surveillance data in combination with 
environmental indices such as remote sensing data, and the non-environmental regional 
containment status, to create fine-scale risk maps. A hierarchical Bayesian frame was 
employed to fit the transitioning malaria risk data onto the map. The model was set to 
estimate the SMRs of every study location at specific time intervals within its uncertainty 
range. Using the spatial interpolation of estimated SMRs at village level, we created 
fine-scale maps of two provinces in western Cambodia at specific time intervals. The 
maps presented different patterns of malaria risk distribution at specific time intervals. 
Moreover, the visualized weights estimated using the risk model, and the structure of 
the routine surveillance network, represent the transitional complexities emerging from 
ever-changing regional endemic situations.

Keywords: spatial risk modeling, risk mapping, spatiotemporal modeling, malaria elimination, malaria 
epidemiology
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inTrODUcTiOn

For many years, malaria has remained an important global health 
threat that still results in hundreds of thousands of deaths every 
year (1). However, the disease burden of malaria has significantly 
decreased in several malaria-endemic countries, due to substan-
tial efforts made by many stakeholders involved with malaria 
containment. Some decades after the past efforts of the global 
malaria eradication program, malaria elimination has begun to 
feature again on the global health agenda (2). In recent years, an 
increasing number of countries with low-to-moderate malaria 
transmission areas have initiated processes to eliminate malaria 
from their entire territories (3). In Cambodia, the official target is 
to be malaria free by 2025 (4). Recent interventions have decreased 
the incidence of malaria in Cambodia to less than half that occur-
ring in the years from 2000 to 2004 (5). Approximately half the 
Cambodian population is malaria-free or in a low-transmission 
area (6). Despite this situation, several issues, such as emerging 
artemisinin resistance (7, 8) and the remaining foci of malaria 
transmission, need to be addressed to bring about malaria elimi-
nation. Several reports have emerged concerning delayed parasite 
clearance in patients taking artemisinin in the western region of 
Cambodia (8–12). Reported treatment failures in western 
Cambodia (8, 13–15) strongly emphasize the urgent need to 
address this issue. Furthermore, it is becoming increasingly 
important to protect immunologically susceptible populations 
from serious consequences resulting from the reintroduction of 
malaria through residual foci. Migrations of asymptomatic 
patients have made it difficult to detect remaining transmission 
risk factors, and to protect people in malaria-free areas from the 
reintroduction of malaria (16). To address these issues, several 
pilot studies, such as focused screening and treatment (17), 
community-based surveillance (18), and mass drug administra-
tion (19) have proven effective, but require intensive health-care 
resources and field practitioner engagement. In addition, it is 
commonly observed that securing the same degree of investment 
for malaria containment as that obtained during the highly 
endemic period becomes more difficult along with the decline in 
malaria endemicity. Given this situation, more efficient health-
care resource use, that is, the identification of target malarial 
hotspots, the delivery of a sufficient stockpile of resources, and 
close support for field health-care practitioners, is critical, espe-
cially in remote endemic regions where accessibility cannot 
always be maintained. While the surveillance system is the 
foundation that serves as the data supply source for health-care 
resource management, it has been reported that the quality 
(accuracy) and reliability of the data collected at health facilities 
continues to be of concern. One of the possible reasons for this 
data discrepancy is an inflation of reported data at the health 
facility level to show the attainment of local targets. Similarly, 
inflated data on the facility report were found to occur, largely at 
health facilities with fewer financial resources and supervisory 
visits (20–22). Moreover, previous studies of intensive focused 
screening have shown that many malaria cases were asymp-
tomatic, which made it difficult to identify malaria cases effec-
tively using conventional passive surveillance systems (23, 24). 
Given that the health facilities are playing important roles in 

surveillance data collection, an identification of malaria hotspots 
and the provision of appropriate support to health facilities are 
also important for maintaining the quality of surveillance data. 
The strengthening of surveillance, together with improving the 
treatment of infections, leads to a more sustainable effort to elimi-
nate malaria. Advances in approaches using spatial prediction of 
malaria risk distributions and in the creation of risk maps based 
on risk models have made substantial contributions toward 
identifying target hotspots (25, 26). Through using reports from 
past parasite rate surveillance efforts, in conjunction with the 
application of a model-based geostatistical approach, global maps 
of malaria endemicity have been previously published (27–29). 
Studies have shown an association between local malaria risks 
and environmental covariates, such as the ground condition of 
vegetation, wetness, and topography, that can be captured by 
space satellites (30–32). Similarly, other variables, such as the 
distance from health facilities, socioeconomic status and/or status 
of containment interventions (for example, insecticide-treated 
net distribution and indoor spraying of residual insecticide) have 
been incorporated into risk models to predict regional malaria 
endemicity (33, 34). While risk distribution modeling and the 
mapping approach are effective tools to assist with the efficient 
allocation of limited health-care resources, they need adjustment 
and reexamination in accordance with substantial changes occur-
ring in relation to malaria elimination. For example, limited 
available data, fine-scale data inaccessibility (for example, house-
hold or individual case data), and the lack of reliable data due to 
inefficiencies that have emerged in the routine surveillance sys-
tem, make it difficult to create reliable risk maps for decision-
makers or health-care practitioners in the field. It has become 
increasingly difficult to obtain a sufficient amount of sample data 
to estimate infection prevalence spatially in low malaria trans-
mission settings, where few malaria cases are reported. Although 
data on a fine-scale are required to identify a target hotspot, such 
data are usually difficult to access. In terms of measuring the 
disease burden of malaria, it has become increasingly difficult to 
conduct ongoing transmission monitoring using parasite rate 
data when malaria has become rare (23). In low-to-moderate 
malaria transmission settings, measuring the annual parasite 
incidence (API) can be an alternative reliable method for report-
ing new malaria infections when supported by rigorous surveil-
lance systems (35). We previously reported the application of a 
mathematical modeling approach for obtaining a standardized 
morbidity ratio (SMR), calculated using the API, through rou-
tinely aggregated surveillance reports and environmental covari-
ates captured from space satellites, as well as through using 
non-environmental anthropogenic covariates, such as the status 
of bed net distribution and reported artemisinin resistance, to 
create fine-scale spatial risk distribution maps in western 
Cambodia (36). The model successfully explained regional 
malaria risks. However, the risk of malaria may dynamically alter 
in accordance with various factors such as the progress of con-
tainment interventions and environmental changes. The preva-
lence or incidence of malaria at a given time can be quite variable, 
due not only to seasonal oscillations but also to complex dynamic 
factors, including the behaviors of mosquitoes and people, land-
cover, housing quality, and the robustness of the health system 
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(37). To address the complex and dynamic nature of situations 
within low-to-moderate malaria transmission settings, we built a 
spatiotemporal model of SMR of malaria incidence. This model 
was calculated using API rates derived from routinely reported 
surveillance data, in combination with environmental indices 
such as remote sensing data, and the non-environmental regional 
containment status, to create fine-scale risk maps of two prov-
inces, Pailin and Preah Vihear, in western Cambodia, at specific 
time intervals. Based on the spatiotemporal risk model developed 
here, we also estimated and visually presented the priorities of 
constituent bodies involved in the routine surveillance network, 
that is, the relative weights of network priorities for relevant 
constituents, using graph theory analysis. The aim of this analysis 
is to help understand the transitional complexities existing in the 
system, in support of better informed decision-making for more 
efficient resource allocation and intervention planning, through 
the consideration of spatiotemporal descriptions of regional 
malaria endemicity.

MaTerials anD MeThODs

Data collection for Model Building
The data collected to build the malaria risk model are described 
elsewhere (36). Briefly, malaria case data were collected from 
Cambodia Malaria Bulletin reports from 2010 to 2013 (38, 39).  
These reports contain the API (per 1,000 people) in each opera-
tional health district for two malaria species, Plasmodium falcipa-
rum and Plasmodium vivax, as reported by health-care facilities 
through the facility-based national health information system 
and by village malaria workers through the malaria information 
system (40). The SMR, a standardized mortality or morbidity 
ratio, is expressed as a ratio or percentage of quantifications 
compared with the general population of interest (1, 2) (41),

 
SMR = =θ

^ ,i i io p
 

(1)

 
p n Ii

k
ik k=∑ ,

 
(2)

where oi is the observed number of cases in i area, pi is the 
expected number of cases in i area, nik is the population in k age 
group in i area, and Ik is the incidence of clinical cases in k age 
group in the reference population. The pi was estimated by aggre-
gating expected number of patients in k age group calculated by 
multiplying nik and incidence of k age group Ik using the popula-
tion data and reported incidence from the previous surveillance 
study in western Cambodia (42). The SMR, θ^ i in i district, was 
calculated by dividing the API, that is, the reported incidence 
per 1,000 people, with pi per 1,000 people. After considering the 
modifiable areal unit problem (43, 44) in respect of the small 
case number compared with population size, the SMR for each 
operational health district was smoothed using the empirical 
Bayes method (EBSMR) (45) to adjust for the influence of dif-
ferent population size in area units. This approach is commonly 
applied in geographical studies of epidemiology for the relative 
risk estimation using penalized log-likelihood maximization. 
The normalized difference vegetation index (NDVI) and the 
normalized difference water index (NDWI) were calculated 

from Terra-MODIS 8-day composite data1 from 2010 to 2013 
and averaged to the mean values for each year. A digital elevation 
model at 30-m resolution was extracted from the ASTER GDEM 
database2 (46) and used to calculate the topographic wetness 
index (TWI). Based on findings from our previous study (36), we 
extracted data from surrounding circular buffers within a 5-km 
radius diameter for the NDVI and the TWI, and within a 1-km 
radius diameter from villages for the NDWI, where the strongest 
correlation between each variable and the EBSMR was observed 
within the studied range of distance. Extracted data were aggre-
gated and averaged by the number of villages at the district level 
to reflect the overall condition of target districts. In addition to 
the data calculated using remote sensing data, we collected the 
Plasmodium temperature suitability index (47) from the Malaria 
Atlas Project database (48). Furthermore, we collected data on  
the proportion of households owning a sufficient number of 
long-lasting insecticide-treated nets (LLINsuf) and data on the 
treatment failure rate of artemisinin (TFrate), from publicly avail-
able reports (42, 49), as containment status indicators, that is, 
as non-environmental anthropogenic covariates. The LLINsuf was 
defined as the proportion of households in which distributed 
mosquito nets cover no more than two persons per net. The TFrate 
was defined as the percentage of positive tests for P. falciparum  
on day 28 or day 42. The covariates used for the model building 
are presented in Table 1.

spatiotemporal Modeling and the creation 
of a Fine-scale risk Map
Under the condition that the logarithmic EBSMR ( )θ

^
 follows the 

Gaussian distribution, the relationship between θ^  and space-time 
covariates was modeled using a generalized linear regression 
model as a function of the N predictive variables (X, Z). However, 
given that the situation in respect of malaria transmission may 
dynamically change in low-to-moderate transmission settings, 
the model needed to incorporate temporal changes. Furthermore, 
hidden factors not considered in the model can affect malaria risk 
and situations may differ depending on areas. To incorporate spe-
cific local conditions and temporal changes in the studied areas, 
we introduced two location or temporal specific parameters, φ 
and τ, to the regression model as in Eqs 3 and 4:

 θ λ^ ,= e  (3)

 
λ α β γ ϕ τ ε= + + + + +∑ ∑

N
N N

N
N NZX ,

 
(4)

where α is the model intercept, β is the parameter associated 
with environmental covariates X, γ associated with the non-
environmental anthropogenic covariates Z, and ε represents the 
residual error effects. The location parameter φ is the location 
specific effect that originates from an area’s particular conditions, 
and τ is the temporal specific effect at every time interval that 
the data were modeled. In this study, we set the time interval as 
1 year, and modeled the risk of malaria every year between 2010 

1 http://LPDAAC.usgs.gov.
2 http://www.jspacesystems.or.jp/ersdac/GDEM/E/index.html
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TaBle 1 | Covariates used for the model building.

category Variable source spatial scale Data collection

Vegetation NDVI Terra-MODIS 8-day composite data (2010–2013) Village Extracted mean value from surrounding 5 km 
circular buffer

Water NDWI Terra-MODIS 8-day composite data (2010–2013) Village Extracted mean value from surrounding 1 km 
circular buffer

Topography TWI Digital elevation model at 30 m resolution from ASTER 
GDEM database (46)

Village Extracted mean value from surrounding 5 km 
circular buffer

Temperature Plasmodium falciparum 
temperature suitability index

Malaria Atlas Project database (48)  Health 
operational 
district

Extracted mean value

Vector control Sufficient ownership of LLINa Cambodia Malaria Survey 2010 (42) Province Values were reported at each provincial level
Treatment Treatment failure rate using 

artemisinin combination 
therapyb

National Center for Parasitology, Entomology and 
Malaria Control (49) (2008–2013)

Province Values were reported at each provincial level

aProportion of households in which distributed mosquito nets cover no more than two persons per net.
bPositive tests for P. falciparum on day 28 or day 42.
NDVI, normalized difference vegetation index; NDWI, normalized difference water index; LLIN, long-lasting insecticide-treated net; TWI, topographical wetness index.
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and 2013. The MCMC method in the Bayesian modeling frame 
was employed to estimate the uncertainty about the relationships 
represented by α, β, γ, φ, and τ. The numbers within the esti-
mated uncertainty range of location and temporal specific effects 
are greatly increased compared with a model which does not 
incorporate these specific parameters. We employed hierarchical 
Bayesian modeling to estimate the relatively large number of 
parameters compared with the amount of data for model building, 
that is, we introduced a hierarchical prior uniform distribution 
dunif(0, 104) for the σ of specified non-informative normal prior 
distribution N(0, σ2) of φ and τ for every location and interval 
of time. For the estimation of parameters of environmental and 
non-environmental anthropogenic covariates, we specified the 
non-informative normal distribution with mean 0 and large 
variance, σ = 104. The models were fitted using R software3 on a 
health operational district scale. An MCMC sampler in the JAGS 
framework, a program for analysis of Bayesian hierarchical mod-
els using MCMC simulation (50), was employed for the Bayesian 
model fitting. Three MCMC chains with 50,000 iterations as 
burn-in, and 30,000 iterations thinned every 30, were stored as 
parameter estimates. The convergence of the model was examined 
using Gelman–Rubin diagnostics (51) and through visual assess-
ment of the trace plots of chains. The estimates of mean absolute 
error (MAE) were calculated to quantify the discrepancy between 
predicted and observed values. Likewise, root mean square 
errors (RMSE), for assessing the overall model performance, and 
Pearson’s correlation coefficient were calculated to compare the 
predicted and observed values at the health operational district 
level. The fitted model was applied to estimate the village level 
SMR using environmental covariates extracted from the location 
of each village, in conjunction with specific covariates for each 
operational health district, and at each specific interval of time. 
The estimated values of the village level SMR were then used as 
skeletons of the spatial interpolation, using the inverse distance 
weighed method (52). Calculated values, using spatial interpola-
tion methods, were plotted in each 250 m × 250 m spatial grid 

3 https://www.r-project.org.

at each time interval, from 2010 to 2013, in the two western 
Cambodian provinces, Pailin and Preah Vihear.

Visual Presentation of the relative 
Weights in the routine surveillance 
network
We employed graph theory analysis to visualize the estimated pri-
orities of constituent bodies in routine surveillance network, that 
is, the relative weights of network constituent priorities, based 
on the spatiotemporal risk model developed. We built a network 
model of the routine surveillance network in the Pailin province 
using information collected through a survey of published lit-
erature, official public documents (guidelines and presentations), 
and interviews of stakeholders, such as with staff at regional health 
centers (21, 40, 53). Health facilities, as well as village malaria 
workers, report the number of treated cases of malaria patients 
to higher levels of authority within the surveillance network (40). 
Therefore, our focus was on the flow of the reported data for 
building connections between constituent bodies in the network 
model. We then multiplied the SMR extracted from the map 
built in this study with eigenvector centrality values (54) of each 
network node, as a measure of influence to enhance sensitivity to 
risk changes at the nodes that can affect to other nodes. The aver-
age values of the SMR in the surrounding 1-km circular buffers 
of health facilities were extracted from the risk map in Pailin. 
The SMRs for the network nodes above the operational health 
district level are considered to be 1, since their networking role 
is to aggregate reports from health facilities and village malaria 
workers rather than treat malaria cases. To compare results at 
different time points, calculated values were normalized to be in 
the range of 0–1, through the min–max normalization method, 
and then used to represent the size of a network node when the 
network models were plotted at each interval of time.

resUlTs

Between 2010 and 2013, 329,830 malaria cases were reported 
in the malaria surveillance system. Of these cases, we included 
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FigUre 1 | Maps of annual observed case numbers of health operational districts during the study period (2010–2013).
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124,888 cases reported from 18 operational health districts in 
western Cambodian provinces (Banteay Meanchey, Battambang, 
Oddar Meanchey, Pailin, Preah Vihear, Pursat, and Siem Reap, in 
alphabetical order) in the analysis. The observed case numbers 
and the estimated EBSMR values of each operational health 
district through the study period are shown in Figures  1 and 
2, respectively. While the case incidence showed a decreasing 
trend throughout the study period, the EBSMR map indicated 
that the malaria risk remained high in malaria-endemic areas. 
The hierarchical Bayesian model was then fitted with selected 
covariates to estimate the SMR of each area. The parameter 
estimates of each covariate, as well as their uncertainty ranges, 
are shown in Table  2. The model showed good convergence, 
as confirmed using visual assessment of trace plots of chains 
and Gelman–Rubin diagnostics <1.01 for all parameters and a 
deviance information criterion of 176.9. Figure  3 presents the 
observed versus predicted uncertainty range of the EBSMR in 
respective operational health districts at each interval of time. 
The plot indicates good coverage of observed values through the 
uncertainty range of predicted values, which presents 87.5% of 
observed values within the 10th percentile to 90th percentile 
range, and 98.61% of values covered through a 95% confidence 

interval of predicted values. The MAE and RMSE of the model 
calculated, using median predicted values and observed values, 
were 0.328 and 0.626, respectively. The Pearson’s correlation effi-
cient of observed and predicted median of the EBSMR, using the 
model, was 0.870 (p < 0.001). The estimated SMRs for the villages 
in the study areas were calculated using the Bayesian modeling 
framework, and interpolated using the inverse distance weighed 
method, to create fine-scale maps of the study area. Figures  4 
and 5 show the maps of Pailin and Preah Vihear provinces cre-
ated by the model developed at each interval of time. As shown 
in these maps, different patterns of malaria risk distributions at 
each interval of time are presented. Whereas the place of malaria 
hotspots did not change dramatically during the study period, 
the magnitude of risk at these places differed at each interval 
of time. The visual representations of hotspots in the fine-scale 
map created here were well aligned with actual areas at high risk, 
already identified through other sources (48, 55) as well as in 
our previous work which was validated by an examination of 
alignment between the estimated risk and the risk calculated 
by geocoded case data (36). These results indicate that the maps 
created by the present approach do not provide misguiding 
presentation. Next, the routine malaria surveillance network in 
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TaBle 2 | Parameter estimates of covariates of the Bayesian modeling frame and their uncertainty ranges.

Parameter Mean sD 2.5th percentile 25th percentile 50th percentile 75th percentile 97.5th percentile

Intercept −12.194 11.584 −34.206 −19.566 −12.455 −5.268 12.106
NDVI (5 km) 7.391 4.083 −0.869 4.841 7.405 9.997 15.437
NDWI (1 km) −26.992 14.684 −58.940 −35.807 −26.018 −17.248 −0.0753
TWI (5 km) −1.653 1.408 −4.460 −2.544 −1.631 −0.765 1.001
Plasmodium falciparum temperature  
suitability index

0.00026 0.00009 0.00008 0.00021 0.00027 0.00032 0.00042

Sufficient ownership of LLINa −0.0632 0.0160 −0.0963 −0.0730 −0.0628 −0.0527 −0.0331
Treatment failure rate by artemisinin  
combination therapyb

0.0377 0.0182 0.00181 0.0264 0.0374 0.0488 0.0754

aProportion of households in which distributed mosquito nets cover no more than two persons per net.
bPositive test for P. falciparum on day 28 or day 42.
NDVI, normalized difference vegetation index; NDWI, normalized difference water index; TWI, topographical wetness index; LLIN, long-lasting insecticide-treated net.

FigUre 2 | Maps of the annual EBSMR of health operational districts during the study period (2010–2013). EBSMR, standardized morbidity ratio estimated using 
the empirical Bayesian method.
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Pailin province was modeled, based on collected information and 
interviews. Figure  6 presents the visualized weights estimated 
by the risk model, and the structure of the modeled routine 
surveillance network, at each interval of time. As shown in the 
visualized network, the different patterns of the relative weights 
at each interval of time are also presented. In an association with 
changes in malaria risk in the locations of network constituents 

on the map, their relative weights in the network were also 
changed accordingly. Notably, the magnitude of the change was 
greater in several peripheral network nodes, such as in health 
centers (e.g., HC-5 and HC-6) and with village malaria work-
ers (e.g., VMW-5 and VMW-6) than in those of central nodes  
(e.g., CNM, DPHI, NP, PHD, HOD, and RH). The calculated 
values of relative weights in the network are listed in Table 3.
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FigUre 3 | Observed versus predicted uncertainty range of the SMR in operational health districts at each interval of time during the study period (2010–2013). 
Numbers presented below the horizontal axis indicate respective health operational districts; 1: Sangkae, 2: Preah Netr Preah, 3: Thma Koul, 4: Mobkov Borei, 5: 
Thma Puok, 6: Ou Chrov, 7: Bakan, 8: Sampov Loun, 9: Mong Russei, 10: Siem Reap, 11: Battambang, 12: Sot Nikum, 13: Angkor Chum, 14: Pailin, 15: Kralanh, 
16: Sampov Meas, 17: Samaraong, 18: Tbeng Meanchey. SMR, standardized morbidity ratio.
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DiscUssiOn

While recent substantial efforts in malaria containment have 
dramatically decreased the disease burden of malaria in many 
countries, there are a number of remaining or emerging issues to 
be addressed to ensure further progress toward malaria elimina-
tion. A risk distribution map in finer geographical scale can be 
expected to help identify residual foci of malaria transmission, 
and facilitate the taking of measures to prevent the further 
spread of malaria to immunologically susceptible populations, 
or the spread of resistance to artemisinin, through strengthening 
malaria detection and monitoring the effects of treatment. Locally 
adapted malaria containment interventions are increasingly 
important in low-to-moderate malaria transmission settings to 
provide the required amount of effort to target hotspots and to 
use limited health-care resources efficiently. Malaria elimination 
action programs need specific plans, with realistic time frames, 
and well-defined parasitological and entomological goals (35). 
Strengthening the surveillance system, ensuring the effective 

implementation of malaria containment interventions, and mak-
ing continuous improvements to these approaches are clearly 
important elements to concentrate efforts for malaria elimina-
tion programs. Maps created through the modeling framework 
proposed in this study provide an opportunity to estimate the 
effectiveness of containment interventions, both quantitatively 
and qualitatively, through incorporating indicators of contain-
ment effectiveness into the model. As such, using a fine-scale risk 
map could play an important role in facilitating the health-care 
system working more closely together toward malaria elimina-
tion. In our study, malaria risks were estimated using information 
regarding the environmental context surrounding human com-
munities and indicators related to malaria containment, such as 
the degree of drug resistance and the status of bed net distribution. 
Not only these global parameters, which can be applied to the 
whole study area, but also the location and the temporal specific 
parameters that are used to describe locally and temporally 
variable malaria risks, were employed to estimate the dynamic 
nature of malaria risk in low-to-moderate transmission settings. 
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FigUre 4 | Maps of Pailin province created by the model developed at each interval of time during the study period (2010–2013). SMR, standardized morbidity ratio.
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FigUre 5 | Maps of Preah Vihear province created by the model developed at each interval of time during the study period (2010–2013). SMR, standardized 
morbidity ratio.
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Whereas the visual representations of the maps created in this 
study were aligned with our previous work (36), changes in the 
geographical distribution of malaria risk could also be observed 
between the maps at each interval of time. The greater part of 
malaria risk factors were explicable through the global covariates, 
that is, environmental and non-environmental anthropogenic 
covariates. Like other vector-borne diseases, malaria causation 
or transmission is highly related to the environmental context 
surrounding human communities. The variables chosen for the 
model were similar to those used in previous studies in terms of 
using environmental and human behavior-related variables for 
malaria risk predictions (27–34). To measure the disparities of 
the environmental context, to identify and predict heterogene-
ous malaria risk geography, remote sensing data captured by 
space satellites is one of the most powerful tools for the periodic 

collection of ground data from widespread areas. This tool is also 
supposed to be cost-effective in monitoring ground conditions 
over widespread areas. Furthermore, an opportunity to improve 
the risk model is available, through accumulating and fitting 
these data together with malaria case data collected through the 
routine surveillance system, in an iterative manner. Our results 
also indicate the significance of location and temporal specific 
parameters in assisting the ongoing malaria containment effort 
in low-to-moderate transmission settings. In this study, we 
employed the hierarchical Bayesian modeling frame to incorpo-
rate location and temporal specific effects into the risk model. This 
approach was effective in estimating the uncertainty ranges of a 
relatively large number of parameters compared with the amount 
of data. This presentation of the estimated uncertainty range of 
location and temporal specific parameters gave expression of the 
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FigUre 6 | Visualized weights estimated by the risk model and the structure of the modeled routine surveillance network in Pailin province at each interval of time 
during the study period (2010–2013). Numbers following the abbreviations of each network constituent body indicate the subdivided locations of them, including  
1: Suon Koma, 2: Ou Chra 3: Phnom Spong, 4: Psar Prum, 5: Phnom Preal, 6: Kracharb. CNM, National Center for Parasitology, Entomology and Malaria Control;  
NP, National Program; DPHI, Department of Planning and Health Information at the Ministry of Health; PHD, Provincial Health Department; HOD, Health Operational 
District; RH, referral hospital; HC, heath center; VMW, village malaria worker; PT, patients.
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spatiotemporal dynamics of malaria risks to identify changing 
malaria hotspots over time in low-to-moderate malaria transmis-
sion settings. Furthermore, the model discriminates among the 
effects of the global parameters, that is, the effects of environmen-
tal and non-environmental anthropogenic covariates commonly 
observed through the study area, and location and temporal 
specific parameters. This possibility allows for the association 

of environmental or non-environmental anthropogenic factors  
with malaria risks to be predicted, with their uncertainty ranges, 
in nearby areas or on other geographical scales without the bias 
of each specific effect. While this approach successfully dem-
onstrated the different patterns of malaria risk distributions at 
each time interval, it is also important to validate this mapping 
approach for predictive analyses. One possible solution could be 
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TaBle 3 | Calculated values of relative weights of key network constituents at 
each interval of time during study period (2010–2013).

Parameter eigenvector centrality calculated values by  
each year

2010 2011 2012 2013

CNM 0.298 0.175 0.162 0.163 0.163
NP 0.694 0.615 0.635 0.635 0.635
DPHI 0.162 0.023 0 0 0
PHD 0.491 0.389 0.393 0.393 0.393
HOD 1 0.955 1 1 1
RH 0.679 0.598 0.617 0.617 0.617
HC-1 0.461 0.200 0.280 0.339 0.258
VM-1 0.342 0.109 0.159 0.203 0.142
HC-2 0.489 0.382 0.389 0.451 0.400
VMW-2 0.351 0.230 0.224 0.269 0.233
HC-3 0.489 0.582 0.489 0.509 0.503
VMW-3 0.351 0.373 0.296 0.311 0.306
HC-4 0.416 0.589 0.446 0.500 0.510
VMW-4 0.424 0.601 0.457 0.512 0.522
HC-5 0.416 0.742 0.533 0.571 0.657
VMW-5 0.424 0.758 0.546 0.584 0.671
HC-6 0.416 0.981 0.504 0.421 0.728
VMW-6 0.424 1 0.516 0.431 0.743

Numbers following the abbreviations of each network constituent body indicate the 
subdivided locations of them, including 1: Suon Koma, 2: Ou Chra, 3: Phnom Spong, 
4: Psar Prum, 5: Phnom Preal, 6: Kracharb.
CNM, National Center for Parasitology, Entomology and Malaria Control; NP, National 
Program; DPHI, Department of Planning and Health Information at the Ministry of 
Health; PHD, Provincial Health Department; HOD, Health Operational District; RH, 
referral hospital; HC, heath center; VMW, village malaria worker; PT, patients.
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introducing temporal effect modeled by an autoregressive process 
instead of estimating temporal specific effect. Because of the lim-
ited amount of available data, we could not split the data for cross 
validation. Instead, we built the model using all data to investigate 
whether the spatiotemporal analysis can capture the small differ-
ence of risk distribution patterns at each time interval. Based on 
the results of this study, the next step can expand this model for 
predictive analyses using sufficient amount of data. Complexities 
caused by the dynamics of malaria endemicity were enhanced 
through the visualization of weights estimated by the risk model 
and of the structure of the routine surveillance network. In this 
network model, the size of the network nodes represented the 
relative weights scored using the centricity value as a measure 
of influence, and using the SMR as a measure of relative risk of 
malaria in the studied area. These measurements can support 
decision-making around allocation planning of limited health-
care resources in low-to-moderate malaria transmission settings, 
based on predicted malaria risk factors and the importance of the 
network constituents. The calculated score indicated that relative 
weights were undergoing change among several network con-
stituent bodies, for example, among regional health centers and 
village malaria workers, whereas scores were stable at some other 
network constituent bodies, such as those in a more centralized 
part of the network structure. This observation is likely to become 
subject to even more complication with changes in the network 
structure occurring over the course of malaria containment.

A study in Africa reported that the loss rate of insecticide-
treated nets was faster than estimated based on the previous 
prediction models (56). This finding indicates the needs for the 

continuous tracking of regional containment status. Moreover, the 
study showed that resource distribution inefficiency was caused 
due to several factors, such as an over-allocation of mosquito nets 
which is commonly observed in malaria containment systems. 
Over-allocation is likely to be a result of a complex web of factors, 
such as multiple health-care resource distribution strategies and 
varying degrees of population access to services. The resource 
requirements at each health-care facility are likely to be changing 
over time and influenced by multiple factors. Establishing a con-
tinuous feedback cycle of data collection through the surveillance 
network, and utilization of data for optimal resource allocation 
planning, while strengthening the system to improve data col-
lection, could be a possible solution to overcome the transitional 
complexities of the system. It would be ideal to create a fine-scale 
geographical risk map using microlevel data such as household 
level data. However, it would be almost impossible to collect such 
microlevel data while ensuring equal quality and coverage across 
the whole study area. Especially as malaria becomes rare in low-
transmission settings, the cost of collecting a sufficient number of 
cases to build the model would become substantially high, due to 
the difficulty in capturing enough reliable case numbers to reflect 
the actual situation using a passive surveillance system (57). In this 
study, almost all data used to build the risk model were publicly 
available data. This approach provides particular advantages in 
respect of routine operational costs, provided that data reliability 
is maintained to a high level. The reliability of data is often a matter 
of concern in many real-world situations. As reported in a previ-
ous study, the quality of data from health facilities may vary, due 
to various factors. However, the approach described in this study 
can be used not only to identify target hotspots but also to enable 
more timely feedback and facilitate more information sharing 
among health-care practitioners. This outcome will encourage 
more effective report-and-utilization cycles and eventually pro-
vide an opportunity to improve the quality of care and collected 
data throughout the entire system as it works toward malaria 
elimination. While the maps generated by the model developed 
in this study successfully demonstrated risk transitions in the 
study area, several important limitations and considerations for 
future work exist. First, to ensure as many cases as possible in 
the risk modeling, we included cases with both P. falciparum and  
P. vivax in the analysis. Considering that treatment differs between 
these malarial species (58), it was more appropriate to identify 
discrete spatial and temporal patterns of different malaria species 
in the analysis. However, it is increasingly difficult to assemble the 
necessary number of cases to build rigorous risk models of target 
locations when reported cases become rare due to progress in 
malaria elimination. A study in Bangladesh reported similar pat-
terns in the associations between environmental covariates and 
the incidence of these two malarial species in the discrete analysis 
(59). Given this situation, we consider our analysis provides 
useful information in low-to-moderate malaria transmission 
settings. However, complementary data, such as the past trend 
of malaria incidence arising through different malaria species, 
may be required for more appropriate health-care resource plan-
ning. It is possible to conduct separate analysis for both species 
by accumulating sufficient case data, which could lead to more 
appropriate allocations of required health-care resources to 
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different hotspots to avoid waste. As such, the separate analysis 
using this approach remains to be confirmed. Second, due to 
their limited availability from publicly available data sources, 
those covariates related to containment status indicators have 
not been considered as time dependent. As a matter of course, 
malaria containment interventions can change along with their 
progress. Containment interventions are affected due to various 
factors such as the baseline level of malaria and the proportion of 
people who have already been covered by the containment. As a 
case in point, a reduction in malaria can be different in respective 
areas with different baseline levels of malaria if identical interven-
tions are implemented across the entire region (37). Continuous 
monitoring of the entire region is important to measure the 
effectiveness of containment interventions, but can sometimes 
be costly. The mathematical modeling approach to predicting the 
effectiveness of containment interventions can be a good alterna-
tive for intensive surveillance monitoring in certain  situations 
and may improve the present approach through projecting situ-
ational changes. Third, we employed the inverse distance weighed 
method to study the changes in patterns of malaria hotspot based 
on our previous findings that the map created by this method 
presented more spotted malaria risk compared with the other 
interpolation method (36). However, the interpolation method 
is depending on several factors such as spatial density of villages.  
As such, it is more appropriate to evaluate the changing risk 
patterns using maps created by multiple interpolation methods. 
Finally, the network model developed in this study was only 
based on information from available sources and interviews. 
As such, we could not fully account for the possible influence of 
subjective factors in building the model nor for differences arising 
from unreported situations. One of the strengths of our approach 
is that the maps were created primarily from publicly available 
data, which makes it possible to continuously reiterate the model 
development of both malaria risk and of the health-care network 
models, and to assess the ongoing situation, without significant 
cost constraints. Through continuous improvement cycles of the 
malaria risk model, and through appropriate revisions of health-
care system modeling with the help of various stakeholders 
involved in the health-care system, opportunities for optimizing 
health-care resource allocation planning in an adaptive manner 
are likely to be generated, which would contribute specifically to 
further progress toward malaria elimination.

cOnclUsiOn

We demonstrated a spatiotemporal modeling approach for identi-
fying regional malaria risks, using routine aggregated surveillance 
reports combined with environmental data and non-environ-
mental anthropogenic data. A hierarchical Bayesian frame was 
employed to fit the transitioning malaria risk data onto a map. 
The model was fitted to estimate the SMRs of every study loca-
tion at specific time intervals within an uncertainty range. Using 
a spatial interpolation of the estimated SMR at village level, we 
created fine-scale maps of two provinces in western Cambodia at 
specific time intervals. The maps successfully represented differ-
ent patterns of malaria risk distributions at specific time intervals. 
Moreover, the visualized weights estimated using the risk model, 
and the structure of the routine surveillance network, repres-
ent the transitional complexities emerging from ever-changing 
regional endemic situations.
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