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The role of mycotoxins—e.g., aflatoxins, ochratoxins, trichothecenes, zearalenone, 
fumonisins, tremorgenic toxins, and ergot alkaloids—has been recognized in the 
etiology of a number of diseases. In many African countries, the public health impact 
of chronic (indoor) and/or repeated (dietary) mycotoxin exposure is largely ignored 
hitherto, with impact on human health, food security, and export of African agricultural 
food products. Notwithstanding, African scientific research reached milestones that, 
when linked to findings gained by the international scientific community, make the 
design and implementation of science-driven governance schemes feasible. Starting 
from Nigeria as leading African Country, this article (i) overviews available data on 
mycotoxins exposure in Africa; (ii) discusses new food safety issues, such as the 
environment–feed–food chain and toxic exposures of food producing animals in risk 
assessment and management; (iii) identifies milestones for mycotoxins risk manage-
ment already reached in West Africa; and (iv) points out preliminary operationalization 
aspects for shielding communities from direct (on health) and indirect (on trade,  
economies, and livelihoods) effects of mycotoxins. An African science-driven engaging 
of scientific knowledge by development actors is expected therefore. In particular, One 
health/One prevention is suggested, as it proved to be a strategic and sustainable 
development framework.

Keywords: food safety, food security, immune system, risk assessment, risk management

MYCOTOXiNS eXPOSURe AND ONe HeALTH (OH)

The burden of non-communicable diseases (NCDs) increasingly falls on the low- and middle-
income countries and highlights the need for prevention of NCDs to be a part of development 
initiatives to reduce poverty and associated social and health inequalities. NCDs and novel 
(toxicant-related) zoonoses are linked with new issues in food safety, such as the environment–
feed–food chain and toxic exposures of food producing animals (1). OH is the joint effort of differ-
ent discipline and sectors working at national, regional, and global level, to achieve the best possible 
health for communities, animals and the environment (2). The OH concept acknowledges the web 
of links and interrelations that exist between human, animal, and environmental health. Broad 
institutional changes, implying transdisciplinary, multidimension, multisector, and multiactors 
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approaches, and including transboundary harmonization and 
involvement of health and non-health sectors, are required for 
OH to become a widespread approach to health policy (3), both 
at local and global levels (4).

The role of mycotoxins has been recognized in the etiology of 
a number of NCDs. Mycotoxins are toxic secondary metabolites 
of fungal origin (e.g., Aspergillus, Penicillium, and Fusarium 
genera) and contaminate agricultural products and feeds before 
or under postharvest. Despite differences in contamination levels, 
exposure to mycotoxins is apparent globally: calculations show 
that approximately 24–50% of all the commodities produced 
globally, especially basic foodstuffs, can be contaminated by 
mycotoxins (5–7). In economically developed countries where 
food safety regulations are in place and climate is temperate  
[e.g., European Union (EU)], mycotoxins are a problem deserving 
continuous monitoring, control, and efforts to improve manage-
ment. In many African countries, the public health impact of 
mycotoxins exposure is largely ignored even in face of rising 
incidence of liver cancer (8), esophageal cancer (9, 10), neural 
tube disorders (11), stunted growth (12–14), and other outcomes 
associated with mycotoxins (15). Moreover, mycotoxins in feeds 
and derivatives reduce livestock and crop production and influ-
ence or even impede export for safety reasons (6). In zootechny, 
economic losses due to animal consumption of mycotoxin  
[e.g., aflatoxins (AFs)] contaminated feeds are associated with 
reduced feed intake, feed refusal, poor feed conversion, diminished 
body weight gain, increased disease incidence (due to immune sup-
pression), and reduced reproductive capacities (7, 16). Examples 
of mycotoxins of greatest public health and agro-economic sig-
nificance include AFs, ochratoxins (OTs), trichothecenes (TCTs), 
zearalenone (ZEN), fumonisins (Fs), tremorgenic toxins, and ergot 
alkaloids (17–19). Differences in regulations exist between coun-
tries. In the case of AF, for instance, the EU sets limits for AFB1 and 
for total AFs (B1, B2, G1, and G2) in nuts, dried fruits, cereals, and 
spices. Limits vary according to the commodity, but range from 2 
to 12 ng/g for B1 and from 4 to 15 ng/g for total AFs. There is also 
a limit of 0.050 ng/g for AFM1 in milk and milk products. Limits of 
0.10 ng/g for B1 and 0.025 ng/g for AFM1 have been set for infant 
foods (20). US food safety regulations include a limit of 20 ng/g for 
total AFs (B1, B2, G1, and G2) in all foods except milk and a limit 
of 0.5 ng/g for AFM1 in milk. Australia and Canada set limits of 
15 ng/g for total AFs (B1, B2, G1, and G2) in nuts, the same as the 
international limit recommended for raw peanuts by the Codex 
Alimentarius Commission (CAC).

Mycotoxins are substances with low persistence in the sense 
that they do not bioaccumulate. Some mycotoxins (e.g. aflatoxin, 
ochratoxin) are found as parent compound or their metabolites 
in milk and eggs. However, the main contribution comes from 
vegetable foods.

AFB1 contamination of feeds is a risk for the health of several 
farm animals, including fishes; milk is the only food of animal 
origin where a significant feed–food carryover may occur. A statu-
tory limit (0.020 mg/kg feed) is established in Europe (21, 22).

Mycotoxins can enter the feed and food chains through direct 
or indirect contamination pathways. Direct contamination 
occurs when the food or feed becomes infected by a toxigenic 
fungus, with the subsequent formation of mycotoxins (23). 

Indirect contamination occurs when an ingredient has been 
previously contaminated by a toxigenic fungus and, even though 
the fungus has been eliminated during processing, mycotoxins 
remain in the final product (6).

The changing climate may increase the burden of mycotoxins 
contamination of feeds and foods globally and affect livestock 
production in terms of both food safety and security (24). The 
most common mycotoxins reported in Africa are AFs (43.75%)  
followed by Fs (21.87%), OTs (12.5%), ZEN (9.38%), deoxynivale-
nol (DON) (6.25%), and beauvericin (BEA) (6.25%) (25). Rampant 
and in  utero AF exposure in some African countries, including 
Nigeria, has been found with hematological evidence (biomarkers) 
in at least 98% of the population (26). Following the approach of the 
environment–feed–food chain, OH strategies should be adopted in 
Africa for the prevention of mycotoxins exposure.

Mycotoxins in African Staple Foods
Human ingestion of mycotoxins occurs mainly through contami-
nated plant food products or carryover in animal food products 
such as meat and eggs; noticeably, ingestion of mycotoxins’ 
metabolites occurs through dairy products (6). The most risky food 
commodities are wheat, maize, rice, beans, oleaginous seeds, cocoa, 
coffee, grapevine, wine, fruits, nuts, spices, and dried food (27–29).

In general, diet in Africa pivots on starchy staple foods/food 
products based in maize (especially corn fufu), cassava (Manihot 
esculenta) (e.g., water fufu and garri), plantain, rice, yams/cocoy-
ams, and potatoes (30).

Specifically in Nigeria, carbohydrate intake, such as cassava, 
yam, and rice constitutes the main diet. Produced by cassava, 
garri is a roasted granular hygroscopic carbohydrate, popularly 
consumed by several millions of people regardless of ethnicity 
and socioeconomic class, making it the most common food 
product consumed in Nigeria. Garri can be consumed directly in 
the dry form with peanut, coconut, smoked fish, soaked in water 
or milk or boiled in water as porridge, popularly called “eba” and 
eaten with various types of African soups (31). Various groups 
of molds have been reported to be associated with garri during 
storage and distribution (32). When present, they can affect the 
nutritional quality of garri and lead to mycotoxin contamination 
in case of toxigenic species. OTA has been detected in cocoa 
and cocoa products in Nigeria (33), and very few reports of its 
incidence in other crops in Nigeria are available. A high level 
of 150 ng/g of the OTA was detected in maize (34) and moldy 
rice (35) from northern Nigeria. Ayejuyo et al. (36) found very 
low levels of OTA (0.0–2.1 ng/g) in 25 brands of imported rice 
marketed in Lagos metropolis. Data concerning mycotoxins 
levels in rice from Nigeria are sparse. Makun et al. (35) report 
the presence of AFB1, ochratoxin A (OTA), and ZEN in moldy 
rice, and other studies have been based on AFs (37). Ayejuyo 
et al. (36) assessed and found OTA in imported rice marketed in 
Lagos metropolis. Makun et al. (38) provided for the first time 
the mycotoxin profile of home-grown Nigerian rice with respect 
to seven of the most important mycotoxins worldwide, namely, 
AFs, OTA, ZEN, DON, T-2 toxin, fumonisin B (FB), and patulin 
(PAT). The study reports AFs detected in all samples, total AF 
concentrations ranging from 28 to 372 ng/g. ZEN (53.4%), DON 
(23.8), FB1 (14.3%), and FB2 (4.8%) were also found in rice, 
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although at relatively low levels (38). The acceptable limits for 
ZEN, FBs, and DON are 30–200, <1,000, and 750–2,000 ng/g, 
respectively (39, 40). AF levels exceeding limits (10  ng/g) set 
by the 77 countries, including the EU, that regulate AFs were 
found in the homegrown Nigerian rice (38–40). OTA was found 
in 66.7% of the samples, with concentrations (134–341  ng/g) 
above the maximum levels (2–50  ng/g) in cereals for human 
consumption. Mycotoxins levels in some agricultural crops and 
foods in some African countries are shown in Table 1. The limit 
of quantification varies between 0.3 and 10 µg/kg depending on 
the mycotoxin.

Mycotoxins in African Street Food
Common local street-vended snacks in Nigeria include beans 
cake (akara), roasted, dried and milled maize and groundnuts 
(donkwa), groundnut cake (kulikuli), fibrous powdery form of 
cassava (lafun), cheese curds (wara), and yam flour. Reports on 
mycotoxin contamination of these snacks have mainly focused 
on Aspergillus and Penicillium mycotoxins, such as AFs and 
OTA with scanty record on other fungal metabolites including 
Fusarium mycotoxins (66, 67). Snack samples made separately 
from corn, groundnut, and wheat were contaminated by total 
AFs concentrations at levels exceeding the limits for total AFs 
in foods (15 ng/g) as recommended by the National Agency for 
Food and Drug Administration and Control (NAFDAC), that is 
the regulatory body in Nigeria (66, 67). Noticeably, peanut cake, 
popularly called “Kulikuli,” is highly consumed due to its high 
protein and lipid content as well as its affordability by the many 
low- and middle-income people in sub-Sahara Africa (63). The 
AFB1 levels in kulikuli from different parts of Nigeria were about 
200-folds more than the 10 µg/g NAFDAC limit and also higher 
than levels reported previously in peanut and peanut products 
(64, 82, 83). Rubert et al. (84) reported high levels of AFs (26 ng/g) 
in Nigerian baked coconut; α-zearalenol (α-ZOL) (54 ng/g) was 
found in coconut candy. Taken together street-vended snacks 
(cassava-, coconut- and groundnut-based types) in Nigeria seem 
contaminated by AFs. In Benin, Nigeria’s closest neighbor, AFB1 
was detected in 93.3% of peanut cake samples at concentrations 
above the EU limit (85). The consumption of peanut cakes with 
high levels of AFB1 portends a public health concern since the 
consuming population is school-aged children and young adults 
in their active economical and reproductive age.

Aspergillus flavus and Alternaria tenuissima have been isolated 
from local Nigerian foods (86, 87). The 75–94.1% prevalence of 
nephrotoxic OTA at level (5 ng/g) regarded as unsafe by the EU 
in maize, that is a major component of weaning foods and animal 
feeds in Nigeria, makes its contamination by OTA a serious issue 
(70, 88, 89). Aflatoxigenic strains of A. flavus and Aspergillus 
parasiticus have been reported in peanut and peanut products in 
Africa (82, 90). A. flavus SBG is morphologically similar to A. fla-
vus S-type strains and not only produces small sclerotia but also 
can synthesize large amounts of both AFs B and G. The SBG strain 
type has a more limited distribution and may be an important 
source of AF contamination in West Africa (91, 92). Perrone et al. 
(93) investigated the incidence of Aspergillus sect. Flavi and the 
level of AF contamination in 91 maize samples from farms and 
markets in Nigeria and Ghana. There was higher contamination 

of the farm samples than the market samples, suggesting that AF 
exposure of rural farmers is higher than previously estimated. 
High levels of AFs B and G and lower income of A. flavus SBG 
strains suggest that long-term chronic exposure to this mycotoxin 
are much higher health risk in west Africa than is the acute toxic-
ity due to very highly contaminated maize in east Africa (93).

Dietary exposure to Mycotoxins’ Mixtures
Daily exposure to mycotoxins’ mixtures through consumption 
of single food sample is proven. Data on the co-occurrence of 
the principal mycotoxins in foods and beverages are increas-
ing worldwide due to the availability and use of modern and 
sensitive LC–MS/MS methodologies suitable for simultaneous 
determination of mycotoxins and other fungal metabolites (94). 
The presence of mixtures of AFB1, OTA, and ZEN was reported 
in samples of breakfast cereals commercialized in Spain (94, 
95). The study conducted by Solfrizzo et al. (94) on mycotoxins 
exposure in southern Italy confirmed the presence of DON and 
OTA in almost all urinary samples. In this study, 6% of urine 
samples contained AFM1, i.e., a metabolite of mycotoxin mainly 
found in maize (AF M1 is not present in Maize) and derivatives 
although these products are not staple foods in Italy where 
they are consumed as chips, polenta, popcorn, beer, cornflakes, 
snacks, muesli, and mixed cereals. From a risk assessment stand 
point, the co-occurrence of mycotoxins is very important though 
vaguely understood: indeed, recent in vitro data highlight poten-
tial additive or synergistic interactions (96–99). Notwithstanding 
this, also in Europe there are few published studies on the co- 
occurrence of mycotoxins [e.g., Ref. (100, 101)]. Co-contamination 
with AFs, OTA, and ZEN is very common in Nigeria, and up 
to five mycotoxins were detected in a single rice sample; AFs  
(B1, B2, G1, and G2) were found in all samples (38). The presence 
of AFs and OTA in this Nigerian staple food at levels exceeding 
the limits set by international regulatory bodies along with the 
co-occurrence of other toxicants with possible toxic synergistic 
effect made the studied rice sample unsuitable for human and 
animal consumption and raise national public health concerns 
(38). Kimanya et al. (102) confirmed co-occurrence of AFs with 
DON and Fs from maize based meals in northern Tanzania. 
In a survey of mycotoxins in traditional maize based opaque 
beers in Malawi, it was estimated that consumption of 1.0–6.0 L 
of this local beverage results in a daily FB1 and FB2 exposure 
of 29–174  µg/kg body weight (bw)/day [i.e., >provisional 
maximum daily intake of 2 µg/g bw/day set by the Joint FAO/
WHO Expert Committee on Food Additives (JECFA)] and AF 
exposure of 1.5–9.0 µg/kg bw/day for a 60 kg adult (103). This is 
of significant public health importance since this singular source 
alone can add to the body burden due to AFs and Fs dietary 
exposure among beer consumers (103). OTA, ZEN, DON, NIV, 
and other less reported mycotoxins such as citrinin, alternariol, 
cyclopiazonic acid, sterigmatocystin, moniliformin, BEA, and 
enniatins were detected in various food samples from Burkina 
Faso and Mozambique (41). The quantification of at least 28 toxic 
fungal metabolites in a single sample strongly suggests the huge 
variety of mycotoxin co-exposure in Africa (41).

Ngoko et al. (104) report 50–26,000 ng/g Fs, 100–1,300 ng/g 
DON, and 50–180 ng/g ZEN in maize samples from Cameroon. 
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TABLe 1 | Mycotoxins levels (μg/kg) in the crops and foods in some African countries.

Country Mycotoxin Food stuffs Concentration (μg/kg) Reference

Mozambique Fumonisin B1 Maize 159−7,615 Warth et al. (41)
Fumonisin B2 Maize 27.7−3,061
Fumonisin B3 Maize 26.6−777
DON Maize 116−124
DON-glucoside Maize 12.6−32.5
NIV Maize 20.2−45.9
ZEA Maize 10.9−18.1
Citrinin Maize 276−5,074

Malawi AF Sorghum 1.7–3.0 Matumba et al. (42)
Sorghum for thobwa drink 6.1–54.6
Sorghum for beer 4.3–1,138.8

Botswana AFs Peanut 12–239 Mphande et al. (43)
Sudan AFs Sesame oil 0.2–0.8 Idris et al. (44)

Groundnut oil 0.6 Elshafie et al. (45)
Peanuts butter 21–170

AFB1 Sesame unpeeled 0.4–14.5 Kollia et al. (46)

Tanzania FUMs Maize 11,048 Kimanya et al. (47)
AFs Maize 158

Tanzania and DR Congo AFs Maize 0.04–120 Manjula et al. (48)
Zambia FUMs Maize 20,000 Mukanga et al. (49)

AF Maize 0.7–108.74 Kankolongo et al. (50)

Uganda AFs Groundnuts, cassava, millet, sorghum flour 0–55 Kitya et al. (51)
Kenya AFs Animal feed and milk >5 Kang’ethe and Lang’a (52)

Maize >20 Daniel et al. (53)
Maize 1–46,400 Lewis et al. (54); Mwihia et al. (55)
Peanut 0–7,525 Mutegi et al. (56)

Ethiopia AFs Shiro and ground red pepper 100–525 Fufa and Urga (57)
AFs Sorghum, barley, teff, and wheat 0–26 Ayalew et al. (58)
OTA Sorghum, barley, and wheat 54.1–2,106
DON Sorghum 40–2,340
FUM Sorghum 2,117
ZEA Sorghum 32

Nigeria AFs Rice 28–372 Makun et al. (38)
Edible tubers “tiger nuts” 454 Adebajo (59)
Edible tubers “tiger nuts” 10–120 Bankole and Eseigbe (60)
Sorghum 10–80 Salifu (61)
Dried yam 27.1 Bankole and Mabekoje (62)
Dry roasted groundnut 52.4 Bankole et al. (63)
Groundnut cake 20–455 Akano and Atanda (64)
Peanut cake (kulikuli) 13–2,824 Ezekiel et al. (65)
Corn-based snacks 12.0–30.0 Ezekiel et al. (66, 67)
Nut-based snacks 0.0–6.0
Wheat-based snacks 0.0–50.0
Fin fish 1.05–10.00 Olajuyigbe et al. (68)
Shell fish 4.23–5.90

OTA Rice 134–341 Oluwafemi and Ibeh (69)
AFs Weaning food 4.6–530
OTA Maize 0–139.2 Makun et al. (70)

Millet 10.20–46.57
Sorghum 0–29.50
Sesame 1.90–15.66
Fonio (acha) 1.38–23.90
Cassava (garri) 3.28–22.73

Ghana AFs Maize 0.7–355 Kpodo (71)
Fs Maize 70–4,222 Kpodo et al. (72)

Benin AFs Maize 5 Hell et al. (73)
Chips 2.2–220 Bassa et al. (74)
Dried yams 2.2–220 Mestres et al. (75)
Cowpea nd Houssou et al. (76)

(Continued )

4

Ladeira et al. Engaging One Health for NCDs in Africa

Frontiers in Public Health | www.frontiersin.org October 2017 | Volume 5 | Article 266

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


Country Mycotoxin Food stuffs Concentration (μg/kg) Reference

Benin, Mali, and Togo AFs Dried vegetables
Baobab leaves, hot chili, and okra 3.2–6.0 Hell et al. (77)

Burkina Faso AFs Groundnuts 170 Yameogo and Kassamba (78)
DON Maize 31.4 Warth et al. (41)
ZEN Maize 11.0−15.8
Citrinin Maize 531−5,074
Alternariol Maize 5.1−16.0
Altertoxin I Maize 3.4−10.8

South Africa FUMs Maize 222–1,142 Burger et al. (79)
Fs Compound feeds 104–2,999 Njobeh et al. (80)
DON Compound feeds 124–2,352
ZEN Compound feeds 30–610

Lesotho ZEN Sorghum beer 50 Gilbert (81)

nd, not detectable; ZEN, zearalenone; DON, deoxynivalenol; AFs, aflatoxins; OTA, ochratoxin A; NIV, nivalenol.
Limit of quantification: DON = 10, NIV = 10, ZEN = 5, OTA = 0.3 µg/kg.
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Detectable levels of AF ranged between 5.2 and 14.5 ng/g in other 
widely consumed foods in Cameroon, namely, cassava balls and 
cassava pellets (105). A simultaneous occurrence of mycotoxins 
(FB1 41%, AF 51%, ZEN 57%, DON 65%, and OTA 3%) in human 
food commodities from Cameroon has also been reported (80). 
In another study from Cameroon, total AF levels exceeded the 
maximum limits of the European Commission (EC) regulations 
(30). Taken together, the widespread nature and high levels of 
multiple mycotoxins occurring in staple foods suggest high 
exposure levels that could have severe health implications in 
sub-Sahara Africa.

AFM1 in human breast milk is an important health risk for 
infants (16). The chronic intake of AF contaminated food could 
increase stillbirths and neonatal mortality, immune suppression 
with increased susceptibly to infectious diseases such as pneu-
monia, stunting of growth (33), and HIV/AIDS (106). In many 
countries, because animals are usually milked individually at the 
household doorstep mycotoxins consumption can be very high 
(107–109). Although the minute of mycotoxins through food 
of animal origin may be seemingly innocuous in the general 
population, vulnerable groups may not be spared, especially the 
genotoxic carcinogens such as AFs.

Additional exposure Route: Mycotoxins in 
African indoor
Inhalation of contaminated airborne aerosols can represent an 
additional route of mycotoxin exposure. Nowadays, people spend 
about 90% of their time in indoors environment due to working 
or resting (31). However, in many parts of the world, homes, 
schools, and workplaces are contaminated with airborne molds 
and other biological contaminants (110, 111).

Mycotoxins can be found in airborne particulates of envi-
ronments where susceptible commodities are treated, such as 
warehouses, harbors, laboratories, and specific occupational set-
tings where products/materials that are commonly contaminated  
(e.g., waste, feed, and animal production) are handled (112–115).

Poultries fungal burden is mainly affected by the kind of litter 
applied in pavilions (112), whereas in swine it is mainly affected 
by the feeding operations due to feed fungal contamination  

(113, 114). Waste management industries pose another challenge 
regarding workplaces fungal contamination, in waste water treat-
ment plants and in solid waste management industries the main 
source are the waste water and the waste that need to be treated 
(115).

Moreover, the presence of mycotoxins in domestic house-
holds as a consequence of inappropriate hygiene conditions has 
been demonstrated, with immunosuppressive effects due to the 
inhibition of phagocytosis and of alveolar macrophage functions 
(27). Children, elderly, patients on immune suppressants, and 
with respiratory diseases are more susceptible to contamination 
by indoor fungi (110). A. flavus has been isolated from indoor 
environment like hospitals in Nigeria (116, 117). Although the 
presence of indoor fungi by mold contamination is related with 
dampness of the indoor environment and swampy locations, 
researches have indicated fungal presence as well in houses 
without these characteristics (111). The highest isolation rates 
(Rhizopus sp., for instance) were achieved from high residential 
density areas, probably an effect of overcrowding, poor sanita-
tion and high arthropod infestation. Factors such as absence of 
basic facilities for drainage and waste disposal and dumps in 
proximity of residential homes do favor indoor mold contami-
nation (118, 119).

RiSK ASSeSSMeNT

Mycotoxins are metabolized in liver and kidneys and also by 
microorganisms in the digestive tract (7). Chemical structure and 
toxicity of mycotoxin metabolites excreted by animals or found 
in their tissues are different from the parent molecule. Toxicity 
depends of factors such as type of toxin, dose ingested, duration 
of exposure, age, and sex (29). The WHO (120) estimated that 
AFs were responsible for nearly 20,000 deaths each year, 3,000 
of them on the African continent. The International Agency for 
Research on Cancer (IARC) classified AFB1 in group 1 “carci-
nogenic to humans.” AFB1 is the most potent natural carcinogen 
and is usually the major AF produced by aflatoxigenic strains. 
The no observed-adverse effect level is not applied for geno-
toxic carcinogens, therefore no threshold is assigned to AFB1.  

TABLe 1 | Continued
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In particular, AFs are potent hepatotoxins. Chronic exposure to 
small doses of AF for prolonged periods (e.g., through the diet) has 
been associated with human hepatocellular carcinomas, which 
may be compounded by other carcinogens, such as hepatitis  
B virus. Hepatocellular carcinoma (HC) is the third most com-
mon cause of death from cancer in Africa (121). Approximately 
250,000 deaths are caused by HC in sub-Saharan Africa annually 
and can be attributed to risk factors such as high daily intake 
(1.4  µg) of AF and high incidence of hepatitis B (17, 19).  
As well as causing liver cancer, AFs have been associated with 
other health problems in people such as stunting in children and 
immune suppression (16). Chronic exposure to AFs is associated 
with impaired immunity and malnutrition, therefore also with 
malaria and HIV/AIDS (21, 22, 122, 123). A study in Ghanaian 
adults reported that AFs could cause impairment of human 
cellular immunity that could decrease resistance to infections 
(19). Kwashiorkor, a disease usually considered a form of protein 
energy malnutrition, has long been linked to AF exposure, along 
with chronic gastritis and childhood cirrhosis (14, 124). Acute 
exposure to large doses (>6,000 μg) may precipitate severe acute 
liver injury with high morbidity and mortality (125). Symptoms 
of acute toxicity include reduced liver function, derangement 
of blood clotting mechanism, icterus (jaundice), and a decrease 
in essential serum proteins synthesized by the liver. Acute AF 
exposures have been associated with epidemics of acute toxic 
hepatitis in Africa with death rates ranging from 10 to 60%  
(6, 17). Other general signs of aflatoxicosis are edema of the 
lower extremities, abdominal pain, and vomiting. An outbreak 
of acute aflatoxicosis in Kenya in 2004 caused 125 deaths among 
317 people that consumed AF contaminated maize (92).

Aflatoxin M1, OTA, and FB1, FB2 are classified in group 2B 
“possibly carcinogenic to humans.” Chronic ingestion of Fs has 
been linked as possible risk factor for the occurrence of esopha-
geal cancer in areas, such as the former Transkei region of South 
Africa, where Fs exposure from contaminated maize is high 
(126). There is a specific p53 codon 249 mutation in the plasma 
of liver tumor patients from West Africa (Gambia) after expo-
sure to AFs (127, 128). In a study of HIV and hepatocellular and 
esophageal carcinomas, related to consumption of mycotoxin-
prone foods in sub-Sahara Africa, the relation between cancer 
and food suggested that Fs contamination rather than AF is the 
most likely factor in maize promoting HIV (129). OTA could 
also be associated with immunotoxic and neurotoxic effects (29).

Other mycotoxins, i.e., PAT, ZEN metabolites, some TCTs, in 
particular T-2 toxin, nivalenol (NIV), and DON, are considered 
by IARC as “not classifiable as to its carcinogenicity to humans” 
(group 3).

With special emphasis on infertility, that is an ongoing global 
reproductive health problem, also in Africa, in vivo and in vitro 
studies have shown that ZEN and metabolites [α-ZOL and 
β-zearalenol (β-ZOL)], DON, OTA, and AFB1 adversely affect 
fertility by arresting steroidogenesis. Exposure to these myco-
toxins precipitate deleterious effects on the spermatozoa, Sertoli 
and Leydig cell function, oocyte maturation, and uterine and 
ovarian development and function in in vivo, ex vivo, and in vitro 
experimental models (130–134). Mycotoxins can induce oxida-
tive stress and result in damage of sperm DNA (135), reduced 

fertilization rates and embryo quality (136). Mycotoxins have 
also been implicated as endocrine disruptors altering the steroid 
hormone homeostasis and interfering with receptor signaling 
(137–140). Concentrations of AFB1 significantly higher in the 
semen of infertile men than in controls (semen of fertile) have 
been reported by Ibeh et al. (141), thus suggesting that exposure 
to AFB1 could be a causative factor in male infertility in Nigeria. 
At least 50% of infertile men with high seminal concentrations 
of AFB1 had a greater percentage of abnormalities in sperm 
count, motility and morphology compared with the fertile 
men (10–15%) (141). These observations were comparable to 
male rats fed with AFB1 contaminated feeds (8.5 µg/g of feed) 
for 14  days (141). Similarly, semen and blood levels of AFB1 
which ranged from 700 to 1,392 ng/mL and exceeded the WHO 
recommended level have reported in infertile men attending 
the infertility clinic in Nigeria (142). The high prevalence of 
male infertility in Africa (20–35%) (143–146) as well as the  
declining sperm count (147) motivate reproductive health 
experts in investigating the role of mycotoxins (148). Since 
endocrine disrupting chemicals are known to cause endome-
triosis, premature ovarian failure, and polycystic ovary syn-
drome, mycotoxins may also be involved in female reproductive 
disorders (149).

Markers and Biomarkers
Mycotoxins are measured in feeds, food, air, or other environ-
mental samples for environmental monitoring purposes, whereas 
the presence of adducts and metabolites are assayed in human 
or animal tissues, fluids, and excreta for biological monitoring 
(150). A challenge in the field of internal exposure assessment 
is to develop accurate and reliable biomarkers. The biomarker 
approach is a promising tool for measuring toxin-mediated 
biological perturbations or the amounts of mycotoxins present 
in the matrix (28). In molecular epidemiology, it is possible to 
demonstrate the association between putative carcinogens and 
specific cancers (150). Biological markers of AFs, OTA, and Fs 
exposure have attracted the attention for mycotoxin biomonitor-
ing studies. However, while AFs and OTA biomarkers have been 
successfully applied and validated over the last decade, large 
drawbacks remain to find a suitable Fs biomarker (28).

Biomonitoring of AFs can be done by quantifying AF 
metabolites in blood, milk, and urine. Indeed, the first studies 
in which biomarkers where used to determine human exposure 
to food pollutants involved AFB1. In these studies, correlation 
between AFB1 intake and urinary AFM1 excretion was sta-
tistically achieved and the exposure biomarker validated. The 
mean urinary AFM1 level in Cameroon (30) was similar to that 
observed in adults in Ghana (range: nd–0.115 µg/L) (151) and 
fully weaned that of Guinean children (152). A similar range was 
observed among pregnant women in Egypt (0.004–0.409 µg/g 
creatinine) (153). Ghana and Guinea are recognized as high-risk 
regions for AF exposure, whereas Egypt is regarded as moderate 
when compared with sub-Saharan Africa (152, 154–156). The 
estimates of tolerable daily intake of several mycotoxins are 
exceeded in Africa (30). In a pilot, cross-sectional and correla-
tional study conducted in eight rural communities in northern 
Nigeria to investigate mycotoxin exposures in volunteers, urinary 
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biomarker levels were correlated with mycotoxin levels in foods 
consumed the day before urine collection in all age categories, 
suggestive of chronic (lifetime) exposures (10). In the urines 
with detectable AFM1, it was estimated that the mean intake of 
AFB1 was 0.67 ng/kg bw/day (max = 2.5 ng/kg bw/day). Higher 
AFM1 urinary levels have been detected in children from Sierra 
Leone children (157).

Albumin-bounded AFB1 and AFB1-DNA adducts in urine 
have also been explored for exposure assessment studies (28). 
Numerous studies have shown that carcinogenic potency is 
highly correlated with the extent of total DNA adducts formed 
in vivo (150). Excreted DNA adducts and blood protein adducts 
can also be monitored: the AFB1-N7-guanine adduct represents 
the most reliable urinary biomarker for AF exposure but reflects 
only recent exposure (158). High AF-albumin adduct levels in 
maternal blood, cord blood, infant blood, and children’s blood 
have been associated with poorer growth indicators and impaired 
markers of human immunity as shown by lower levels of secre-
tory immunoglobulin A in saliva of Gambian children (159, 160).  
High levels of AFB1-albumin adducts were associated with low 
percentages of certain leukocyte immune phenotypes in Ghana 
(161). The chronic/dietary exposure to AF is evident from the 
presence of AFM1 in human breast milk (162) and umbilical 
cord blood samples (163), with serious implications for the 
next generation (109). Home-grown maize contamination led 
to arguably the largest fatal aflatoxicosis outbreaks in rural 
communities of Kenya, in which AF-albumin adducts were 
independently confirmed in the exposed (164). In another study 
from Kenya, wasting in children was related to consumption AF 
contaminated flour (165). In Ghana, low birth weight was shown 
to have an association with mothers’ AF-albumin adduct levels 
(166). There is a dose-dependent decrease in height and weight 
for age in AF exposed children in a study carried out in Togo and 
Benin in West Africa (123, 167).

Mycotoxin-producing molds have lately been found to infect 
the intestinal tract to cause leaky gut, thus exerting important 
immunosuppressive activity, and produce neurotoxins (168). 
OTA, that has nephrotoxic, hepatotoxic, immunotoxic, and 
genotoxic effect and induces carcinogenicity, teratogenicity, and 
mutagenicity, has also been seen to cause dysregulation of sev-
eral gene expression including the upregulation of SOX9 (169),  
i.e., a gene involved in the development of the male phenotype 
and has been detected in autistic cases (170). It has recently 
been posited that single nucleotide polymorphisms in NLGN4X 
3′UTR and illegitimate microRNA-inducing OTA could be a 
possible biological mechanism reflecting the gene–environment 
interaction in patients without causative mutations (171, 172) 
and suffering from dysbiosis and leaky gut (173). Although there 
seem to be no published data on population-based estimates of 
prevalence of pervasive developmental disorders from African 
region, the prevalence of autism spectrum disorder (ASD) 
among children with developmental disorders in Egypt and 
Tunisia has been documented as 33.6 and 11.5%, respectively 
(174, 175). The ASD is an increasing neurodevelopmental 
disorder with a broad phenotype, appearing by 3 years of age: 
it often shows comorbid situations, such as mental retardation, 
epilepsy, and recurrent gastrointestinal abnormalities. In Nigeria 

about 0.9% of the children under the age of 3 years manifested 
neurodevelopmental delays in a recent survey (176). It is even 
feared that this value may be higher considering late diagnosis 
(176). Like most aspects of ASD, the mycotoxin impact on this 
prevalence remains unknown.

Human health risk assessments of Fs hinge on maize con-
sumption. Maize consumption can be <10  g/person/day in 
various European countries, but up to 400–500 g/day in rural 
Africa (177), with a 90 percentile value of over 700 g/person/day 
(178). The implication of this socio-geographical dietary vari-
ation with respect to attaining the provisional maximum toler-
able daily intake (PMTDI) of 2 ng/g bw/day of Fs is enormous. 
Whereas a European consumer at an assumed bw of 60 kg would 
need to consume 10  g maize at an Fs contamination level of 
12,000 ng/g, an African who consumes 500 g/day would exceed 
the PMTDI if the contamination level was above 240 ng/g (179). 
The detrimental effects of Fs on the developing fetus and young 
infants are now known from both experimental and epidemio-
logical researches. Transkei region in South Africa and Tanzania 
where Fs exposure is high is known to have elevated incidences 
of neural tube defects and growth retardation (180, 181). Fs 
interfere, via depletion of sphingolipids, with the folate receptor, 
thus inhibiting the uptake of folate and eventually leading to 
cellular folate deficiency and neural tube defects (182), that can 
be prevented in experimental animals by folate supplementa-
tion (183).

PeRSPeCTiveS FOR RiSK MANAGeMeNT 
iN weST AFRiCA

Many African countries have some mycotoxin regulations but 
only for AFs (or a few other mycotoxins) in specific foods, or 
no regulations at all. Even when standards are in place, severe 
mycotoxin-poisoning outbreak occurs in Africa (92). Indeed, 
good practices and recommendations for the field management of 
risk of mycotoxins occurrence would be strategic for investment 
of public, non-governmental organization, and private funds at 
the scale of the subsistence farmer, the smallholder, and through 
to a more advanced value chain (184).

The multiplicity of origins of fungal infections implies that 
strategies for prevention of mycotoxins contamination must be 
applied at an integrative level along all the food production chain. 
There are three steps of intervention that must be of concern: 
prevention (i) before any fungal infestation, (ii) during the period 
of fungal invasion of plant material and mycotoxins production, 
and (iii) when agricultural products have been identified as heav-
ily contaminated (7, 185).

Risk mitigation practices cover pre- and postharvest:

 (i)  Predictive models. Weather conditions (e.g., hot and humid 
tropical climate that favors fungal proliferation) are the 
most influential parameter on mycotoxins contamination 
and fungal infection and growth (186, 187). Predictive 
models for mycotoxins occurrence based on regional 
weather data would be a valuable tool to estimate the risk of 
contamination (188). In a study that examined AF exposure 
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in pregnant Gambian women having staple food in refined 
white rice, millet, or maize with groundnut sauce, AF expo-
sure throughout pregnancy was found, with higher levels in 
the dry season. Women in later stages of pregnancy showed 
higher levels of AF-albumin adducts than those in earlier 
stages of pregnancy in the dry season (189).

 (ii)  Preharvest interventions. Good agricultural practices 
such as sanitation, early sowing date, balanced nitrogen 
fertilization, moderate plant density, breeding for resist-
ance to drought, insect pest damage or fungal infections, 
biological control, early harvesting, and moisture levels 
and proper handling during harvesting. An integrated 
program involving plant maturation, nutrition, and insect 
control is crucial (9, 185), along with proper and timely 
crop rotation, tillage, and fungicide administration (7, 150).  
Biogeographical agricultural models of cultivated plants 
could also be useful.

 (iii) Postharvest strategies (transportation, marketing, and pro-
cessing). Control of factors such as temperature, humidity, 
pH, packaging, cross contamination by practices like 
sorting and complete drying decrease contamination dur-
ing storage (46). In case of toxin manifestation, measures 
are required that act specifically against certain types and 
groups of toxins (7, 150).

 (iv) Detoxification strategies for contaminated feeds are studied 
to reduce or eliminate the adverse effect of mycotoxin. The 
addition to the animal’s diet or the treatment of contami-
nated feeds with mycotoxin-binding agents may be useful 
to protect animal health and avoid milk contamination by 
the carcinogenic AFM1 metabolite. However, mycotoxin 
binders may impact animal health, e.g., by interfering 
with the absorption of nutrients or medications (7, 190). 
Traditional techniques that could reduce/detoxify myco-
toxins during food processing are studied (191).

 (v)  In house protective practices, such as proper food storage, 
dietary diversity—where possible—, and vaccination 
against HBV to prevent the synergism of AF exposure 
and chronic HBV infection in liver cancer risk (7, 95, 150, 
192–194). Significant building blocks for mycotoxins risk 
management do exist in West Africa, such as the following:
• Surveillance and monitoring of environmental/food matri-

ces experiences. Biomonitoring of mycotoxins in biolog-
ical fluids such as blood or urine is useful to generate 
reliable information on internal exposure at individual 
level compared with dietary assessments (10). Validated 
biomarkers of exposure are available, such as urinary 
metabolites, DNA, and protein (albumin) adducts (15, 
192). The OTA levels found in Nigerian-grown rice and 
maize are within the lower limits of concentrations (200–
1,000 ng/g) that have been linked to porcine nephropathy 
in Bulgaria (195). There has been a speculation about the 
contribution of OTA to raise the incidence of chronic 
renal diseases in Nigeria in conjunction with malaria, 
hypertension, and diabetes conditions. Poor record of 
renal registry in Nigeria has hampered the tracking of 
chronic renal disease; however, available hospital data 
revealed that chronic renal failure accounts for about 10% 

of medical admissions in Nigeria, and extrapolating this, 
puts the frequency figure between 200 and 300 patients 
per million of population (196).

• Application of biomarkers. In a pilot study using 
multi-urinary biomarkers among rural residents in 
northern Nigeria, Ezekiel et  al. (10) detected myco-
toxin in all age categories. Their observations suggest 
chronic/lifetime exposures, and some exposures were 
higher than the tolerable daily intake. The study devel-
oped in Cameroon by Abia et al. (30) used for the first 
time in Africa a novel multi-mycotoxin assay utilizing 
LC–MS/MS to determine the frequency of occurrences 
and levels of several mycotoxins, or their metabolites 
in urine.

• Experiences of total diet studies (TDSs). Dietary intake 
estimate should include data on consumption of raw and 
processed foods (100) to assess average dietary exposure 
and identify excessive consumer subgroups. TDSs are 
often used as a risk assessment tool to evaluate exposure 
and—when performed periodically- exposure trends in 
the general population and (more vulnerable consumers 
such as children or diseased subjects, or higher consum-
ers) high-risk subgroups. TDSs differ from traditional 
food monitoring in two major aspects: (i) chemicals are 
analyzed in food in the form in which it is consumed 
and (ii) cost-effectiveness, because composite samples 
(more ingredients grouped) after kitchen processing 
are analyzed. As made by European participants in the 
SCOOP [Scientific Cooperation on Questions relating 
to Foods (197)] exercises, African countries could group 
by region and collect, and harmonize knowledge on the 
status of mycotoxins contamination of raw material and 
food products (197). Preliminary experiences of TDSs 
do exist in West Africa, along with its methodology and 
methods (198).

• Seminal governance framework based on OH. OH inte-
grates efforts for building a governance national strategy 
based on the linked and mutually supported protection of 
environment, farm animals and human well-being (199).

• Seminal toxico-vigilance (TV) system. The TV system aims 
at updating (and harmonizing) registers on information 
on incidence of poisoning in communities (200).

• Risk assessment and advices for food regulations. 
Mycotoxins regulations have been established in about 
100 countries, out of which 15 are African, to protect the 
consumer. As in the case of Europe (the European Food 
Safety Authority), an African independent body could be 
established with the task of independent science-based 
risk assessment on food and feed. So far, the JECFA, 
that is an international committee administered jointly 
by FAO and WHO, serves as an independent scientific 
committee which performs risk assessment and provides 
advice to FAO, WHO, and the member countries of both 
organizations. The requests for scientific advice are for 
the main part channeled through the CAC in its work 
to develop international food standards and guidelines 
under the Joint FAO/WHO Food Standards Programme.

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


FiGURe 2 | Photograph of mycotoxin contaminated food: reproduced from 
Environmental Health Perspectives; September 2013, Volume 121, Issue 9, 
doi:10.1289/ehp.121-A270.

FiGURe 1 | Granaries in Burkina Faso, 2012 (courtesy of Ilaria Proietti, 
NOODLES Alliance).

9

Ladeira et al. Engaging One Health for NCDs in Africa

Frontiers in Public Health | www.frontiersin.org October 2017 | Volume 5 | Article 266

African Turning Point on Mycotoxins
Mycotoxins are now recognized as major cause of food intoxica-
tions in SSA. Many economically developing countries have real-
ized that reducing mycotoxins level in foods will not only reduce 
financial burden on health care but also confer international 
trade advantages such as exports to more attractive and remu-
nerative markets. Moreover, reducing mycotoxins level means 
facing lowered animal production, lowered yields in agriculture, 
and lower market value (5, 7, 17).

The study from Somorin et  al. (101) concerning the co-
occurrence of AFs, OTA, and citrinin in egusi melon seed from 
Nigeria is one of the examples to explain the basis for increasing 
border rejection of melon seed consignments from Nigeria to 
EU as highlighted in the European Rapid Alert System for Food 
and Feed (RASFF) (201). This led to the enactment of legislation 
which mandates that 50% of consignments of egusi and their 
derived products from Nigeria be checked before being allowed 
entry into the EU (202, 203).

Pivoting on what has already started in Africa, mentioned 
“building blocks” deserve strengthening and improvement. 
Based on the OH approach, mycotoxin reduction and control are 
dependent on the concerted efforts of all actors and stakeholders 
along the food production chain. We highlight here:

• Political will to address mycotoxins exposure and support 
capacity for testing commodities, which determines whether 
requirements can be enforced (162). As in the General Food 
Law issued by the EC, that clearly describes the food safety 
framework in the EU, including the role and responsibilities 
of the different parties involved from farm to fork, a envis-
aged African general food law could have a hierarchic and 
network character (21).

• Strengthened laboratory capacities, including efficient, cost-ef-
fective sampling, and analytical methods. Indeed, scientific 
research is moving toward reliable but cost-effective and sus-
tainable user-friendly techniques for the acquisition of analytical 
data under field conditions and environmental stress (204).

• Nationwide surveillance and regular monitoring capacities by 
increased food and feed inspections (200).

• Established early warning systems as well as risk management 
systems allowing timely corrective actions and avoiding both 
food losses and waste (205).

• Training and empowerment of farmers and food producers on 
the good agricultural and good management practices. Indeed, 
communities are the foundation of Public health (205).

• Improvement of facilities. Many African countries do not have 
the infrastructures to prevent and control food contamination 
(e.g., Figure  1): science could give low cost solution to long 
lasting problems of infrastructures.

• Consumer awareness and education. According to Ezekiel et al. 
(65), at least 85% of the consumers of kulikuli in Nigeria are 
not aware of the risk of AF contamination of vended peanut 
cake. Consumers should prefer food producers adopting good 
practices.

• Dissemination of information via national media (radios, 
television, newspapers and magazines, and town hall meet-
ings) and the web (206).

• Food processors or industry should contribute to an improved 
economic sustainability and enhanced international trade [see, 
e.g., reflections in Ref. (207)].

• The “luxury” of choice Figure  2. In countries where popula-
tions are facing starvation or where regulations are either not 
enforced or non-existent, chronic intake of AF may occur liver 
cancer incidence rates are 2–10 times higher in economically 
developing countries than in economically developed ones. 
Unfortunately, strict limitation of AF contaminated food is 
not always an option. A joint FAO/WHO/United Nations 
Environment Programme Conference report stated that in 
some economically developing countries, where food supplies 
are already limited, drastic legal measure may lead to food 
security problems, e.g., lack of food and excessive prices.  
It must be remembered that people living in these countries 
cannot exercise the option of starving to death today to live a 
better life tomorrow (150).
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The following are some more aspects that deserve deep 
attention:

• Risk analysis is increasingly recognized as an essential 
component in modern science-based food safety systems 
and plays a growing and important role in guiding food 
safety authorities. Informed by the risk assessment pro-
cess, risk management in its broadest sense involves the 
consideration and implementation of food policy options, 
while taking due cognizance of tolerable levels of risk. Risk 
communication involves the interchange of information 
concerning risk and its perception among all stakeholders 
in food safety, including policy makers, industry, and con-
sumers (208, 209).

• Risk to benefit assessment. Interestingly, some of the food items 
that are prone to mycotoxins contamination are component 
of healthy diet. Based on RASFF reports, the most predom-
inant category of mycotoxins is AF in pistachios, peanuts, 
almonds, hazelnuts, and Brazil nuts. OTA occurs mainly in 
beverages (raw coffee and derivatives, cocoa powder), fruit 
and processed fruits (mainly raisins/sultanas and figs), spices 
and condiments (mainly pepper), vegetables, cereals, and 
other crops (202). Models for risk to benefit assessment are 
increasingly available (210).

CONCLUSiON

Operationalization of OH for mycotoxins can shield population 
from direct (on health) and indirect (on trade, economies, and 

livelihoods) effects of mycotoxins. Mycotoxins effects on public 
health and economy in Africa are not directly measurable, 
though its existence is indicated by environmental, toxicological, 
and clinical data. The contamination of food and feed by myco-
toxins represents a serious health problem as well a considerable 
economic obstacle in African countries, where the trade balance 
is based on the exportation of commodities. Nowadays, the 
poorest regions of the world have neither the infrastructures to 
prevent and control food contamination, nor the luxury to allow 
the rejection of contaminated food. Operationalizing mycotox-
ins in the OH frame is useful to build a risk management frame 
that is sound and understandable in terms of empirical observa-
tions by local institutional stakeholders expected to issue risk 
management programs in Africa. Indeed, governance schemes 
for early prevention of toxic exposures deserve inclusion in 
development initiatives.
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