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Heart rate variability (HRV) is a reliable indicator of health status and a sensitive index 
of autonomic stress reactivity. Stress negatively affects physical and psychological well-
ness by decreasing cardiovascular health and reducing quality of life. Wearable sensors 
have made it possible to track HRV during daily activity, and recent advances in mobile 
technology have reduced the cost and difficulty of applying this powerful technique. 
Although advances have made sensors smaller and lighter, some burden on the subject 
remains. Chest-worn electrocardiogram (ECG) sensors provide the optimal source signal 
for HRV analysis, but they require obtrusive electrode or conductive material adherence. 
A less invasive surrogate of HRV can be derived from the arterial pulse obtained using 
the photoplethysmogram (PPG), but sensor placement requirements limit the application 
of PPG in field research. Factors including gender, age, height, and weight also affect 
PPG-HRV level, but PPG-HRV is sufficient to track individual HRV reactions to physical 
and mental challenges. To overcome the limitations of contact sensors, we developed 
the PhysioCam (PhyC), a non-contact system capable of measuring arterial pulse with 
sufficient precision to derive HRV during different challenges. This passive sensor uses 
an off the shelf digital color video camera to extract arterial pulse from the light reflected 
from an individual’s face. In this article, we validate this novel non-contact measure 
against criterion signals (ECG and PPG) in a controlled laboratory setting. Data from 12 
subjects are presented under the following physiological conditions: rest, single deep 
breath and hold, and rapid breathing. The following HRV parameters were validated: 
interbeat interval (IBI), respiratory sinus arrhythmia (RSA), and low frequency HRV (LF). 
When testing the PhyC against ECG or PPG: the Bland–Altman plots for the IBIs show 
no systematic bias; correlation coefficients (all p values < 0.05) comparing ECG to PhyC 
for IBI and LF approach 1, while RSA correlations average 0.82 across conditions. We 
discuss future refinements of the HRV metrics derived from the PhyC that will enable this 
technology to unobtrusively track indicators of health and wellness.
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inTrODUcTiOn

Heart rate variability (HRV) frequently has been applied as a  
reliable indicator of health status, stress, and mental effort. Studies 
have linked HRV to cardiovascular diseases (1), post-traumatic 
stress disorder (2), depression (3), and fibromyalgia (4). HRV has 
been proposed as a sensitive index of autonomic stress reactivity 
such as in panic disorder (5) and work stress and mental effort 
(6). The literature on HRV indicates that day-to-day challenges 
that increase stress and reduce HRV have a negative influence on 
physical and psychological wellness by decreasing cardiovascular 
health and reducing quality of life.

Advances in technology have created the opportunity to 
apply wearable sensors to track HRV during daily activity (7, 8). 
Movement and light sensors embedded on mobile phones are 
used as contact sensors to acquire HRV indices (9, 10). These 
improvements in sensors, coupled with recent advances in mobile 
technology, have reduced the cost and difficulty of monitoring 
HRV outside the laboratory in applied contexts. Although sen-
sors are smaller and lighter, they still impose a burden on the 
human subject. Chest-worn electrocardiogram (ECG) sensors 
provide the optimal source signal for HRV analysis, but they 
require an obtrusive electrode or conductive material adherence. 
A less invasive surrogate of HRV can be derived from the arterial 
pulse obtained using the photoplethysmogram (PPG), which 
provides sufficient accuracy to track individual HRV reactions to 
physical and mental challenges (11). However, sensor placement 
requirements limit the application of PPG in field research and 
participant awareness of being monitored is required with both 
contact sensors (i.e., ECG and PPG).

This article describes an innovative technology embodied in 
a novel device, the PhysioCam (PhyC) (12) that overcomes the 
limitations of contact sensors. The PhyC is a non-contact system 
capable of measuring arterial pulse with sufficient precision to 
derive HRV during different physiological challenges. In this 
article, we explore the science behind the PhyC, the implications 
of measuring HRV from the vascular periphery, and the future of 
non-contact sensors.

Non-contact technology is an emerging technology; recent 
research has explored the use of a basic webcam for measuring 
multiple physiological parameters. Poh et al. (13) used an inex-
pensive webcam with automatic face tracking and blind source 
separation of the color channels into independent components 
to extract cardiac pulse rate from a video recording. They applied 
a fast Fourier transform analysis to a 1-min recording of the 
video to extract the predominant frequency of variation corre-
sponding to the cardiac pulse rate. Subsequently, the same team 
(14) reported the possibility to obtain the low frequency HRV 
and respiratory sinus arrhythmia (RSA) components of HRV 
applying blind source separation and frequency analysis of the 
components. Phillips released the Vital Signs Camera for iPad 
2 or iPhone 4S, an application that uses the webcam capabilities 
of the tablets to acquire parameters of heart rate and breathing 
rate from a user who is sitting still in front of the camera. More 
than 80 applications have been developed that enable smartphone 
cameras to monitor heart rate. However, these applications use 
the phones light source and require physical contact with the 

fingertip. The commercially available applications do not disclose 
their approach to measure heart rate or breathing rate, but they 
employ some form of frequency analysis of digital camera data.

Research into non-contact extraction of physiological signals 
extends beyond pulse measurements with infrared video ther-
mography being employed to accurately estimate breathing rate 
and relative tidal volume (15) and various forms of radar being 
explored to locate respiratory signals as well as cardiac activity 
(16, 17). Wu et al. (18) presented a method to visualize the flow of 
blood using a standard video sequence as input and applying spa-
tial decomposition, followed by temporal filtering of the frames. 
The analysis reveals temporal variations in videos that cannot be 
seen by the naked eye and could represent blood flow; they called 
their method Eulerian Video Magnification. An evaluation of the 
literature suggests that non-contact extraction of human physi-
ological parameters is both feasible and of considerable interest 
for research and commercial applications.

Current approaches to non-contact measures of HRV have 
limitations, since it is essential to have a high-quality pulse signal 
and a sensitive algorithm to detect features in the pulse signal 
to accurately time the sequential interbeat intervals (IBIs) and 
provide a valid and accurate estimate of IBIs derived from the 
criterion ECG signal.

In the case of non-contact sensors that utilize videography, 
the light sensor embedded in the camera limits the quality of the 
pulse signal. Most video cameras use one of two types of light sen-
sors, the charge-coupled device (CCD) and the complementary 
metal-oxide semiconductor (CMOS). These photosensors trans-
form light into electrons by the same approach, but use different 
methods to digitize the information. The CCD sensor digitization 
process produces high-quality and low-noise images in contrast 
to the CMOS sensor, which has greater interdependence of pixel 
level information from surrounding portions of the image array 
(19), making the CCD sensor an appropriate choice when analyz-
ing biological signals through a Bayer-mapped pixel array.

To optimize frame-by-frame extraction of pulse information 
to facilitate IBI measurements, we selected a CCD sensor for the 
PhyC. Conceptually, the frame-by-frame extraction functions 
similar to digitizing a PPG signal. By contrast, the work of Poh 
and others is based on webcam with CMOS sensors. As noted, 
CMOS sensors have greater crosstalk between adjacent pixels of 
different color sensitivities (e.g., red or green). This may explain 
why blind source separation is required to extract the underlying 
physiological variance in the capture image sequences (13, 14).

The PhyC uses a CCD camera as its sensor and can function in 
ambient (sun, fluorescent, or incandescent) light. The CCD cam-
era operates continuously, capturing images of the subject from a 
distance of about 3 m, with a field of view that encompasses the 
shoulders, neck, and face of the individual. From the collected 
images, a subset of pixels is extracted in each frame that contains 
the skin area of the upper half of the face. The 3-m distance from 
PhyC to the target subject in this study is determined by optics, 
number of pixels of the sensor, ambient light, and area of the body 
from which the signal is being detected. This distance could be 
modified for different applications.

The optical properties of human skin are determined by the 
presence of various chromophores in the layers of skin. The 
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FigUre 1 | Schematic representation of the relative light absorption of the main chromophores of the human skin: Hb (deoxygenated hemoglobin), HbO2 
(oxygenated hemoglobin), and melanin. Bottom color bar: spectral response range for digital video cameras [adapted from Prahl (23) and Huang et al. (24)].
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epidermis and the dermis are the predominant layers responsi-
ble for the optical properties of the skin. The epidermis is the 
outermost layer of skin, with a thickness varying from 0.05 to 
1.50  mm. The main chromophore in the epidermis is melanin 
and it is essentially the only pigment affecting the transmit-
tance of light in normal human epidermis (20). The dermis is 
the intermediate layer of the skin with a thickness varying from 
0.3 to 3.0  mm. The predominant chromophores in the dermis 
are the blood-borne pigments hemoglobin, oxyhemoglobin, 
beta carotene, and bilirubin. Each of the pigments has different 
absorption spectra in the range of visible light (from 300 to 
1,200  nm). The innermost and thickest layer of the skin is the 
hypodermis, which is connected to the dermis by collagen and 
elastin fibers. In between the dermis and the hypodermis is the 
arteriovenous plexus. The superficial arteriovenus plexus forms 
a microvascular network typically 0.05–0.50 mm below the skin 
surface (21) and the deep arteriovenus plexus forms a vascular 
network typically 1.00–5.00  mm below the skin surface. Thus, 
the main chromophores determining skin color are the melanin 
present in the epidermis and the blood-borne pigments present 
in the dermis/hypodermis vascular plexus.

Within the pixels selected to be processed, the optical 
characteristics of hemoglobin, an active chromophore in the 
visible light range, determine the wavelengths of interest. Given 
the high percentage of hemoglobin in the blood composition 
(around 45%) (22), it is possible to measure the volumetric 
blood changes by a light sensor that works in the visible light 
range (see Figure 1). The PhyC decomposes consecutive images 
to extract the subtle volumetric blood changes from light reflec-
tance changes (i.e., observed color). In addition to the physi-
ological (blood volume) sources of variation in light intensity 
within these pixels, there are a number of sources of noise in the 

signal, including inconsistent illumination intensity, movement, 
shadow, skin color, electrical noise, and failure of the motion 
tracking algorithms to reliably identify the relevant pixels.

The camera measures the segment of light in the visible 
band, the portion of the electromagnetic spectrum in the region 
from approximately 380 to 775  nm. The light captured by the 
camera is segmented using the red, green, and blue (RGB) Bayer 
filter pattern into three sub bands: blue (380–500  nm), green 
(500–600 nm), and red (600–775 nm). The optical properties of 
the skin, blood, and CCD sensor enable the PhyC to function as 
a biosensor of cardiovascular activity at the surface of the face.

Figure  1 shows the absorption curve of the hemoglobin 
(red and blue lines) in relative units. The normalized, relative 
melanin absorption curve (green line) is superimposed on 
the hemoglobin absorption curve. At the bottom of the X-axis 
is the range of the spectral response curves for the three color 
bands of the CCD sensor. Melanin accounts for skin color and 
predominantly acts in the short wavelength range of the visible 
light (<500 nm). In this range, differences in skin colors affect the 
light absorption curve. In the longer wavelength range of light 
(i.e., above 500 nm), melanin has a notably smaller, more consis-
tent impact on absorbance. The PhyC utilizes wavelengths longer 
than 500 nm to minimize between subject differences in signal 
strength due to skin color, green dotted section on Figure 1. Only 
green (500–575 nm) and red (575–750 nm) pixel values are used 
to estimate relative absorption of light by the blood.

The PhyC utilizes an algorithm integrating knowledge of the 
physiology of the arterial pulse wave with the capabilities of the 
camera. The natural or artificial light illuminates the person’s face, 
and some of the light is transmitted through the epidermis and 
penetrates the skin about 2–3 mm deep into the dermis, where 
the different components of the dermis reflect, absorb, and/or  
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transmit the light. The main source of rhythmic variation in 
light absorbance and reflectance in the dermis is the hemoglobin 
present in the blood vessels. The volume of blood in the arteries 
and arterioles changes as a function of the beating of the heart. 
Each heart beat generates a pressure wave that changes the radius 
of arteries and arterioles. Volumetric changes in the arterial bed 
cause reflectance and absorbance changes along the transmission 
and reflection pathways of the incident light. The video camera 
captures the light reflected by the person’s face and the subtle 
changes in that reflected light due to pulse wave activity. When 
there is more blood in the arteries and arterioles and more light 
is absorbed by the blood, the camera detects less reflected red 
and green light. On the contrary, when there is less blood in the 
arteries and arterioles, the blood absorbs less light and the camera 
detects more reflected light (25).

This report evaluates the validity of the derived video pulse 
wave by comparing it with criterion signals. The precision of PhyC 
derived beat-to-beat intervals (IBI) were evaluated by contrasting 
these values with contact measures from an ECG and earlobe 
photoplythesmogram (elPPG). In addition, derived variables of 
average heart period (HP), RSA, and low frequency HRV (LF) 
during specific experimental conditions were contrasted.

MaTerials anD MeThODs

general approach
Heart rate variability is defined as the variations in time between 
sequential heartbeats. When HRV is deconstructed through 
statistical procedures, it is possible to quantify rhythmic compo-
nents that reflect specific pathways of neural regulation. The most 
salient components are a respiratory oscillation known as RSA 
[e.g., Ref. (26)] and a slower frequency (LF) assumed to be related 
to blood pressure regulation via the baroreceptors and peripheral 
vasomotor activity [for overview see Porges (27) and Reyes del 
Paso et al. (28)].

Respiratory sinus arrhythmia is assumed to reflect cardiac 
vagal tone via myelinated pathways originating in a brainstem 
area known as nucleus ambiguus. RSA is due specifically to 
myelinated vagal efferent fibers and the other HRV components 
are not specific, and thus may not include both myelinated and 
unmyelinated vagal fibers. The unmyelinated vagal efferent fib-
ers originate in a brainstem area known as the dorsal nucleus of 
the vagus and may contribute to the lower frequencies of HRV. 
Removing RSA from HRV might result in a metric that would 
be mediated by a contribution of both dorsal and ventral vagal 
influences. Blockade studies are not useful in differentiating the 
influence of myelinated and unmyelinated vagal pathways on 
HRV, since virtually all HRV (i.e., RSA and lower frequencies) 
is removed with muscarinic blockade (e.g., atropine) (29–31). 
In addition, HP (i.e., average IBI over a period of time) was 
monitored, since it reflects the sum of neural, neurochemical, and 
intrinsic influences on the heart.

The literature, identifying neurophysiological mechanisms 
and sensitivity of HRV components to behavioral, psychological, 
and health parameters, is primarily based on the analysis of the 
heart rate patterns measured with an ECG sensor. ECG has been 

the signal of choice, since the sequence of times between R-peaks 
can provide a non-invasive (but not non-contact) measure of the 
neural regulation of the heart (32).

The PhyC and the elPPG measure heart rate at the periphery, 
where measures of beat-to-beat heart rate contain the source 
information from the ECG with added sources of variance. The 
main source of variance is the vascular system, which acts as a 
filter modulating the propagation of the heart beat and introduc-
ing an additional source of variations in the timing between the 
sequential pulse-to-pulse interval time series (33). The inherent 
functioning of the elPPG and the PhyC as photo sensors further 
introduces movement as a potential source of measurement error. 
The non-contact nature of the PhyC amplifies the measurement 
error due to greater variations in movement and light source 
and a slower sampling frequency of the sensor. To validate the 
variables derived by the PhyC, an experiment was conducted to 
identify, describe, and understand the similarities and differences 
among the values obtained by PhyC, elPPG, and ECG.

experiment Design
To test the PhyC, we designed an experiment consisting of a rest-
ing baseline period followed by several challenges designed to 
alter the neural regulation of the heart that would be manifested 
in changes in HRV. By presenting different challenges, it was 
possible to evaluate whether the PhyC accurately tracked the 
physiological changes monitored via ECG and elPPG.

Physiological challenges
 a. Breathing rate: voluntary or involuntary respiratory rate 

shifts the neural influence of vagal pathways on heart rate 
and RSA (34). To evaluate the capability of the PhyC to track 
changes in autonomic state caused by shifts in respiration 
rate, two breathing patterns were used (single deep breath 
and sustained rapid shallow breathing). Single deep breath 
and hold (SDB) was done by inhaling and holding the vol-
ume of air for as long as possible follow by normal breathing. 
The SDB is accompanied by decreases in heart rate and RSA 
(34). Shallow rapid breathing (RB) was implemented by 
restricting the volume of air inhaled on each breath. Shallow 
breathing decreases the amplitude of the RSA and increases 
heart rate (35).

 b. Cold pressor (CP): the CP test consisted of the immersion of 
a hand and forearm in ice water for 90 s or as long as tolerated 
by the participant (36). Due to signal distortions from move-
ment and variations in the duration, immersion data from this 
condition were not examined for this paper.

Participants
This study was approved by the Institutional Review Board of the 
University of Illinois at Chicago as protocol # 2012-0206 entitled 
“Real Time Non-contact Extraction of Human Arterial Pulse.” 
The IRB authorized the recruitment of 20 subjects through flyers, 
the University of Illinois at Chicago Psychology student subject 
pool, and via email to the UIC students’ community. Twenty par-
ticipants were recruited (10 females and 10 males) between 19 and 
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71 years of age with a mean of 33.13 years and SD of 14.62 years. 
17 subjects reported no preexisting medical condition. Three 
females had specific medical conditions: one was 6 months preg-
nant, one was diagnosed with multiple sclerosis and syncope, and 
one reported an undiagnosed vascular constriction condition. 
The ethnicity mix of our participants was 60% Caucasians, 25% 
Hispanics, 10% African-Americans, and 5% Asians.

Data from three subjects were not analyzed for the following 
reasons: one criterion signal was corrupted making it impossible 
to access both the ECG and elPPG files, one participant presented 
with an extreme tonic peripheral vasoconstriction that masked 
the pulse wave precluding the ability to extract the arterial pulse 
by the PhyC, and one participant presented sufficiently low HRV 
that precluded the calculation of the LF component. Data from 
the remaining seventeen subjects were processed for analysis. 
Movement-related confounds in some of the criterion variables 
resulted in an exclusion of segments of data for some participants 
during specific challenges. For this article, the 12 participants 
with complete sets of data for the 5 reported tasks are included.

The protocol as approved by the IRB contained two stages:

 I. Offline: during the offline stage, video images were recorded 
and then processed to develop and to optimize the algorithms 
to process the video signal. The offline stage lasted 15  min, 
during which participants were asked to perform the follow-
ing experimental manipulations:

 a. Initial rest baseline (2 min) (1BSL).
 b. SDB (2 min).
 c. Rest (2 min) (2BSL).
 d. CP.
 e. CP recovery (approximately 3 min) (CPr).
 f. Rest (1 min) (3BSL).
 g. Shallow RB (2 min).
 h. Rest (3 min) (4BSL).

 II. Online (proof of concept): during the online stage, the PhyC 
extracted the arterial pulse wave in near real time. The objective 
of the online stage was to evaluate the factors that may limit 
applications of the technology such as head and face tracking, 
processing demands, and time delay between acquisition and 
output. During this stage, participants were asked to sit quietly 
during 5  min while the arterial pulse wave was monitored. 
Data from this stage are not reported in this paper, because of 
two limiting factors: (1) the slow sampling frequency (30 Hz) 
at which the signal was collected resulted in greater variations 
in the estimates of IBIs from the pulse wave and (2) in several 
participants, the system could not track continuous sequen-
tial IBIs for a sufficient duration to calculate HRV, although 
the estimates of HP over several seconds provided excellent 
convergence with the ECG signal.

hardware and software
To obtain the criterion signals, a BIOPAC MP150 system (BIOPAC 
Systems, Inc., Camino Goleta, CA, USA) was used. The BIOPAC 
acquired the criterion data at a 1,000 Hz sampling frequency. The 
criterion signals acquired by the BIOPAC MP150 system were 
ECG from a 3-lead configuration on the chest, reflectance earlobe 

PPG (elPPG), and reflectance fingertip PPG (ftPPG). Breathing 
frequency was also assessed with a single strain gage respiration 
band.

To obtain the PhyC signal, a Grasshopper® 03K2C IEEE-
1394b (FireWire) digital camera (Point Grey Research Inc., 
Richmond, BC, Canada) was used. The digital camera serves as 
the sensor providing the signal from which the arterial pulse wave 
is extracted. Grasshopper® digital camera monitors color signals 
with wavelengths between 350 and 750  nm, with a 640  ×  480 
pixel resolution and transmits the raw 8-bit RGB Bayer data at 
a sampling rate of approximately 60 frames per second. Subjects 
were positioned approximately 3 m in front of the camera.

Two software packages were used to acquire and to process the 
data. AcqKnowledge 4.2 (BIOPAC Systems, Inc., Camino Goleta, 
CA, USA) was used to collect and archive the BIOPAC data. This 
program output a text file containing five columns of informa-
tion: relative time, analog physiological signals (i.e., elPPG, ECG, 
respiration), and the synchronization signal. LabVIEW™ System 
Design Software (National Instruments Corporation, Austin, TX, 
USA) was used to collect and to process the data from the color 
digital video camera. LabVIEW™ was also used to develop the 
applications to analyze, compare, and contrast the PhyC with the 
criterion signals.

Data Quantification
Data quantification was performed at different levels of analy-
sis, due to the hierarchical nature of parameter extraction. For 
instance, IBIs are first derived from the arterial pulse, and then 
components of HRV are derived from the IBI time series.

First Level: Raw Signal Processing, Synchronization, 
and Tasks Segmentation
PhyC—Pulse Extraction
For the offline analysis, images of a seated subject were captured 
by the camera at specified sampling frequency (approximately 
60 Hz). The images were processed by an algorithm that selects a 
region of interest (ROI, section of the participant’s face) and sepa-
rates the ROI into the RGB color planes. The mean values of each 
color component are calculated by a histogram function. Mean 
values of the blue color are not used because they contain the 
melanin information which varies with skin colors. As noted in 
Figure 1, mean values of green and red are less affected by differ-
ences in skin color across subjects. The mean values of the green 
and red color were divided (green/red) to create a common mode 
rejection ratio that minimizes common noise signals not related 
to arterial pulse (e.g., subject’s subtle movement, light shifts, and 
camera artifacts); the resulting signal was labeled Pulseraw (37).

The 60 Hz raw values were paired with the time stamp of 
each frame to create a consecutive time series with inconsistent 
sampling frequency. This time series was then interpolated and 
up-sampled to create a constant 1 kHz signal (equivalent to the 
criterion signals). The inverse signal was calculated to resemble 
the volumetric changes of the pulse. More light absorption 
represents higher volume of blood in the arteries, and less light 
absorption lower volume of blood in the arteries. The signal was 
filtered using a second order Butterworth Band Pass filter (low 
cutoff = 0.5 Hz, high cutoff = 2.0 Hz). The cutoff frequencies were 
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established to assure that different heart rate patterns between 
subjects could be detected. A healthy individual’s heart rate at 
rest is normally between 0.75 and 1.0 Hz (i.e., 60–80 beats per 
minute). The first derivative of the pulse signal was calculated 
to augment changes in the slope of the signal. These sequential 
steps enable the PhyC to generate an analog representation of the 
arterial pulse wave that is sampled at 1 kHz for synchronization 
with ECG and elPPG signals from the Biopac.

Ear Lobe Pulse (elPPG)
The elPPG was measured at a 1 kHz through a DC amplifier (no 
filter settings) to preserve the slower aspects of signal reflecting 
the sympathetic influences on vasomotor tone. To extract the 
pulse peak, the elPPG signal was centered on zero by subtract-
ing the first value to the entire trend, next it was filtered using a 
second order Butterworth Band Pass filter (low cutoff = 0.5 Hz, 
high cutoff = 2.0 Hz). A first derivative function was applied to 
translate the signal into slope changes over time and stabilize the 
estimation of pulse arrival times.

Electrocardiogram
The ECG was sampled at a 1 kHz using the preferred ECG BIOPAC 
MP-150 analog band-pass filter settings with a gain of 1,000.

Data Segmentation by Task
A time log file documented the start and end of each challenge 
for each participant and enabled synchronization with the physi-
ological variables. ECG, elPPG, and the resampled (1 kHz) PhyC 
were aligned by use of a synchronization pulse in the Biopac 
data. The time log was used to extract the physiological signals 
associated with the different conditions of the experiment. In 
this article, segments corresponding to the following tasks were 
analyzed: initial baseline (1BSL), SDB, rest (2BSL), shallow rapid 
breathing (RB), and final baseline (4BSL) for ECG, elPPG, and 
PhyC. Due to variations in tolerance, movement, and the time 
course of responding, the CP task was not analyzed.

Second Level: Extraction of the IBIs
R Peak and Peak of Pulse Wave Detection
To accurately extract the heart rate pattern, a cardio peak-valley 
detector (CPVD) was developed. The CPVD is a LabVIEW™ 
based algorithm that extracts peaks or valleys of different physi-
ological waves, such as the ECG, PPG, and respiration. The CPVD 
is able to detect peaks or valleys (time position and amplitude) of 
the signal by an adaptive approach. The algorithm uses a window 
of data to find a peak, and once the peak is detected the window 
moves one step and looks into the next window for the next peak. 
Each window is set to contain at least one physiological peak. For 
example, the window width for the ECG is around 700 ms and 
the step size is around 400 ms to assure that and R peak would 
be present in the analyzed window. For the first three peaks, the 
window width and step sizes are constant values, after the third 
peak is extracted, the information of the last two peaks time dif-
ference is used to adapt the window width and step size. This 
ensures that the window width and step size will adapt to the indi-
vidual’s response to the task challenge. If the heart rate increases, 

the window and step sizes decrease. If the heart rate decreases, 
the window and step sizes increase. Within each window, a peak 
detection algorithm is applied.

The peak detection algorithm applied a quadratic fit to identify 
peaks above a specified threshold determined by the distribution 
of samples within the window. The peak detector algorithm 
fits a parabola to a sequence of successive points assuming a 
specified width pulse wave or the R-wave of the ECG signal. The 
algorithm checks whether each parabola is at the local maxima 
by evaluating the sign of the quadratic coefficient, which indicates 
the parabola’s concavity. The number of data points used in the 
ECG fit is specified by a width of approximately 15 ms. Each peak 
resulting within the window is tested against the threshold. Peaks 
with heights lower than the threshold are ignored. Because the 
algorithm calculates all the peaks above the threshold, it is pos-
sible to find two or more peaks within a window, in that case the 
first peak is compared against the maximum within the window 
and the one with the greater amplitude is selected as the peak of 
that window. Because the peak detection algorithm uses a quad-
ratic fit to find the peaks, it functionally interpolates between the 
data points. Therefore, the timing precision of the peak location 
exceeds the precision of the original sampling rate of the signal.

The CPVD generates a trend formed by pairs with coordinates 
of time and peak amplitude. The CPVD has been tested in the 
analysis of several independent physiological signals, resulting 
in less than 2% missing peaks for signals with few artifacts. The 
CPVD has also performed well in extracting peaks from data with 
periods of low signal to noise ratio (37). The CPVD was used to 
calculate the R-peaks of the ECG and the pulse wave peaks of the 
elPPG and the PhyC during the different tasks.

Interbeat Interval
Interbeat interval is the time between consecutives heart beats, 
expressed in milliseconds. IBIs are calculated by the consecutive 
differences of the time component of the R-peaks or the pulse 
peak coordinates.

Third Level: Quantification of HRV Parameters
Time Sampled Mean IBIs from 2 and 5 s Windows (IBI 2sW 
and IBI 5sW)
The IBI event series was resampled at 2 Hz to generate an equally 
spaced intervals time series. The 2  Hz time sampled estimates 
of HP were used for calculating HP, RSA, and LF during each 
experimental condition and for calculating HP estimates for 
sequential 2- and 5-s windows. The HP is the average value of the 
2 Hz IBI time series within a specific segment or task.

Respiratory Sinus Arrhythmia
Based on the Porges–Bohrer method (38, 39) a third-order, 
21-point moving polynomial filter (MPF) was applied to the 
2  Hz IBI time series to remove low frequency oscillations and 
slow trend. The residual detrended output of the MPF was filtered 
with a Kaiser FIR windowed filter with cutoff frequencies that 
remove variance not related to spontaneous breathing in adults 
(0.12–0.40 Hz). The filtered detrended output was divided into 
sequential 30-s epochs and the variance within each epoch is 
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transformed by a natural logarithm [ln(ms2)], the mean of these 
epoch values is used as the estimate of RSA for the specific 
segment.

LF
Based on the Porges–Bohrer method (38, 39) a third-order, 
51-point MPF was applied to the 2  Hz IBI trend to remove 
extremely low frequency oscillations and slow trend. The 
residual detrended output of the MPF was filtered with a Kaiser 
FIR windowed filter with cutoff frequencies (0.04–0.10 Hz). The 
filtered detrended output was divided in 30 s epochs and the vari-
ance within each epoch is transformed with a natural logarithm 
[ln(ms2)], the mean of the epochs values is used as an estimate of 
LF for the segment.

Data analysis
Statistical analyses were performed using IBM SPSS Statistics for 
Windows, Version 24.0. Armonk, NY, USA: IBM Corp.

Bland–Altman (B–A) Plots
Bland–Altman plots were used to compare the PhyC generated 
IBI values with the IBI values generated by the criterion signals 
(ECG and elPPG) and also to compare values generated by the 
elPPG and ECG signals. B–A plots enable the determination of 
agreement between two sensors, by plotting the mean between 
pair of measurements against its difference. Visual inspection of 
the B–A plots was used to identify systematic biases and possible 
outliers. Paired t-tests evaluated whether the differences between 
the signals were biased (i.e., one signal source generating longer 
or shorter values). B–A plots and the t-test were performed on 
IBIs collected from all participants during all tasks.

Scatter Plots and Linear Regressions
Scatter plots and linear regression analyses were used to visual-
ize and calculate the level of convergence between the physi-
ological measures derived from PhyC with each of the criterion 
signals (ECG and elPPG) and between the two criterion signals. 
Parameters from Mukaka’s (40) paper where used to interpret the 
size of the correlation coefficients.

Size of Effect Repeated Measures ANOVA 
(RMANOVA)
Value of the partial eta-squared for the TIME effect, obtained 
by RMANOVA (General Linear Model), of the HP, RSA, and LF 

for each sensor across the five tasks was used to evaluate if the 
effect size of the experimental manipulations observed by the 
three sensors were in the same magnitude and of the same level 
of significance.

resUlTs

The Phyc signal
The PhyC produces a physiological signal that resembles the one 
obtained by the elPPG as observed on the synchronized 15 s seg-
ment of data shown in Figure 2, elPPG is the top green line and 
the PhyC is the middle gray line, and the ECG the bottom blue 
line. The PhyC signal does not look as stable as the traditional 
elPPG, but follows its pattern. The PhyC signal shows the same 
offset from the ECG as the elPPG.

B–a Plots
Visual inspection of the B–A plots located in the A panels of 
Figures  3–5 indicate excellent agreement and minimal bias 
between the sequential IBIs measured with ECG and PhyC (color 
coded by participant) in Figure 3, elPPG and PhyC in Figure 4, 
and ECG and elPPG in Figure 5. For the three cases, the B–A 
plots suggest that error magnitude is slightly larger for shorter 
IBIs, the IBI differences are larger on the left side of the B–A plots 
and closer to zero on the right side. The 95% confidence intervals 
are listed in Table 1. Note that the mean of the differences are less 
than 0.1 ms and that there are no significant differences between 
the metrics in central tendency. The t-test results confirm that the  
pairs of sensors are measuring the same parameter, mean of the 
differences are not significantly different than zero, indicating 
that there is no fixed sensor bias.

Scatterplots with regression analyses contrasting the sensor 
pairs are illustrated in the B panels of Figures 3–5. The regression 
models provide excellent fits to the IBI data with R2 above 0.90 as 
shown in Table 2.

To stabilize the estimates from the PhyC, IBI data were aver-
aged within 2 and 5 s windows. Figure 6 illustrates the scatterplots 
and regression fits for the time windowed estimates of ECG- and 
PhyC-derived IBI data. Note relatively perfection convergence 
(i.e., R2 = 1.0) and reduction in dispersion (i.e., reflected in the 
SD of the differences) as the window for estimating IBI increases 
from beat-to-beat to 2 s, and then to 5 s.

As observed in Table 3, as the window to average IBI measures 
widens from individual IBIs to 2 and 5 s windows, the SD of the 
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FigUre 4 | Bland–Altman and scatter plot for interbeat interval (IBI) from the elPPG and PhysioCam (PhyC), color coded by participant. (a) Plot of the IBI 
differences vs the means for the elPPG and PhyC. Red lines indicate the 95% confidence interval. (B) Scatter plot of the PhyC vs elPPG IBIs.
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FigUre 3 | Bland–Altman and scatter plot for interbeat interval (IBI) from the electrocardiogram (ECG) and PhysioCam (PhyC), color coded by participant. (a) Plot 
of the IBI differences vs the means for the ECG and PhyC. Red lines indicate the 95% confidence interval. (B) Scatter plot of the PhyC vs ECG IBIs.
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differences between the PhyC and the ECG decreases and the R2 
increases reaching unity. The IBI data by subject by sensor shown 
in Table  4 are consistent with the scatter plots of Figure  6, in 
which averaging the IBI within a 2 and 5 s window considerably 

improves the linear regression between the PhyC and both the 
ECG and the elPPG for all subjects.

Table 4 documents a range of individual differences in which 
PhyC estimates individual IBIs better in some participants, 
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FigUre 5 | Bland–Altman and scatter plot for interbeat interval (IBI) from the electrocardiogram (ECG) and elPPG, color coded by participant. (a) Plot of the IBI 
differences vs the means for the ECG and elPPG. Red lines indicate the 95% confidence interval. (B) Scatter plot of the elPPG vs ECG IBIs.

TaBle 2 | Regression model parameters between sensors when measuring 
interbeat interval.

sensors regression model R2

Electrocardiogram (ECG) vs PhysioCam (PhyC) Y = 1.00X + 47.65 0.94
elPPG vs PhyC Y = 0.95X + 44.84 0.93
ECG vs elPPg Y = 0.99X + 12.5 0.99

TaBle 1 | Bland–Altman (B–A) contrast parameters for interbeat interval 
between sensors.

B–a contrast 95% ci (ms) Mean of the 
differences 
(ms) (sD)

Mean of the  
differences single 

sample t-test

Electrocardiogram (ECG) vs 
PhysioCam (PhyC)

±69 −0.07 (35.3) t (8,574) = −0.17, 
p = 0.86

elPPG vs PhyC ±74 −0.02 (37.8) t (8,574) = −0.04, 
p = 0.97

ECG vs elPPg ±33 −0.08 (16.7) t (8,574) = −0.45, 
p = 0.65

Confidence interval, mean of the differences between sensors, single sample t-test of 
the mean differences.
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R2 values ranging from 0.64 to 0.96 when compared to ECG. 
However, these differences are minimized with a 2  s window  
(i.e., R2 values range from 0.93 to 1.0) and virtually disappear with 
a 5 s window (i.e., R2 values range from 0.98 to 1.0).

Figure  7 indicates convergence around the expected model 
y = x for all the sensor comparisons for the measures of HP with 
R2 of 1.00 for the three cases.

The linear regression of RSA between ECG and PhyC from 
Figure  8A while not in convergence with the model y  =  x 
(y = 1.27x − 2.55) indicates a moderately strong correlation R2 
of 0.65. The linear regression of RSA between elPPG and PhyC 
from Figure 8B while not in convergence with the model y = x 
(y = 1.11x − 1.25) indicates a moderately strong correlation R2 
of 0.71. The strongest correlation is observed between ECG and 
elPPG as shown in Figure 8C with R2 of 0.78, close to the 0.8 
threshold to be considered a strong correlation.

Figure 9 depicts the linear regression on LF between the dif-
ferent sensors (Figure 9A) ECG and PhyC, (Figure 9B) elPPG 
and PhyC, and (Figure 9C) ECG and elPPG. The three models 
show convergence around the expected model y  =  x, with the 
elPPG and ECG showing the strongest R2 of 0.97 and the PhyC 
and elPPG showing the weakest with R2 of 0.92.

The RMANOVA is used to demonstrate the sensitivity to 
change across time in each HRV parameter, as observed by 
each sensor. Results of the partial eta-squared for time in the 
RMANOVA are shown in Table  5. The three sensors measure 
similar, significant time effects for HP. All three sensors measure 
a similar, but not significant time effect for LF. While measur-
ing RSA, the PhyC captures a significant, but reduced, effect for 
time as compared to the ECG, while the elPPG fails to detect a 
significant time effect for the parameter.

change scores for hP, rsa, and lF
Change scores shown in Figure 10 indicate that the PhyC and 
the elPPG are able to track the change scores from 1BSL obtained 
with the ECG (criterion signal sensor) for the HP parameter. 
While the PhyC and the elPPG do not track the change scores for 
RSA obtained with the ECG, they both reflect a similar, attenuated 
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TaBle 3 | Differences mean and SDs for all subjects, all consditions between 
the electrocardiogram (ECG) and PhysioCam (PhyC) for interbeat interval (IBI), IBI 
2 s windows, IBI 5 s windows, and HP 30; and R2 of linear regression for PhyC 
on ECG.

Differences linear regression

Phyc vs ecg N Mean sD R2

IBI 8,574 −0.07 35.26 0.94
2 s window IBI 3,501 −1.51 13.03 1.00
5 s window IBI 1,403 −1.50 5.67 1.00
Heart period (30 s epoch) 60 −1.69 1.61 1.00

A B

FigUre 6 | Scatter plot for average window interbeat interval (IBI) from the electrocardiogram (ECG) and PhysioCam (PhyC) color marked by participant. (a) Scatter 
plot of the PhyC vs ECG for 2 s average windows IBIs. (B) Scatter plot of the PhyC vs ECG for 5 s average windows.
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response for RSA across time. Both sensors track the moderate 
changes of LF observed by the ECG.

DiscUssiOn

The PhyC reliably tracks IBIs when compared to either criterion 
signal (i.e., ECG or elPPG). As the window of comparison expands 
from individual heartbeats to 2 and 5 s sequential windows, the 
modest differences between sensors decreases dramatically and 
both the PhyC and elPPG converge with the ECG-derived values. 
Thus, the peripheral measures capture the slower dynamics in 
heart rate almost exactly, while making small errors in the rapid 
changes in IBI from beat to beat.

Inspecting the B–A plots reveals greater error in estimating 
IBIs with either the PhyC or elPPG when IBIs are shortest. Some 
of this error can be attributed to the shift in signal to noise ratio 
as the constant measurement error occupies a greater percentage 
of the interval defining the IBI.

The physical constraints of vascular transmission of the pulse 
wave also contribute to the deviations between the ECG and the 
peripheral measures of IBI (elPPG and PhyC). The cardiovascular 
system acts as a filter, modulating the duration between pulses 
that define IBIs and the parameters of this filter are non-constant 
due the neural regulation of vascular tone which has known 
oscillatory components (41). The conclusion that vascular trans-
mission impacts short-term variation in IBIs is strengthened by: 
(1) the observation that similar dispersion in deviations from 
ECG-derived IBIs were observed when comparing elPPG with 
the ECG (signals collected with the same device at the same 
sampling frequency) and (2) the fact that similar outcomes 
have been reported for PPG (42). The error manifested differ-
ently across comparisons with the ECG-derived HRV metrics 
quantified in this study: (1) HP was virtually devoid of error with 
linear regression documenting the convergence among the HP 
estimates derived with PhyC, elPPG, and ECG during 30-, 5-, and 
2-s epochs; (2) RSA calculation showed modest error magnitude 
with larger errors during segments with shorter IBIs, as illustrated 
during the RB condition when RSA estimates from both PhyC 
and elPPG show similar deviation from the ECG measure; (3) LF 
was virtually devoid of error documenting that slower compo-
nents of HRV are relatively immune to the dampening effects of 
the vascular system.

Other sources of error are due to the physics of the sensor 
embedded in the PhyC system. Compared to the contact PPG, 
the PhyC is more sensitive to movements and lighting shifts in 
the environment, although both measures are based on light 
absorbance at similar wavelengths. Since the PhyC and the 
elPPG measure cardiovascular activity at the periphery it would 
be expected to find more agreement between them then when 
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TaBle 4 | R2 of the interbeat interval (IBI) linear regression between sensors by 
subject considering all the IBI, 2sW, and 5sW.

subject sensors nO window 2 s window 5 s window

VPG001 ECG_PhyC 0.84 0.96 0.99
elPPG_PhyC 0.83 0.96 0.99
ECG_elPPG 0.99 1.00 1.00

VPG003 ECG_PhyC 0.73 0.96 0.99
elPPG_PhyC 0.64 0.94 0.99
ECG_elPPG 0.86 0.97 0.99

VPG004 ECG_PhyC 0.69 0.94 0.98
elPPG_PhyC 0.67 0.94 0.98
ECG_elPPG 0.96 0.99 1.00

VPG005 ECG_PhyC 0.91 0.98 1.00
elPPG_PhyC 0.91 0.98 1.00
ECG_elPPG 0.99 0.99 1.00

VPG006 ECG_PhyC 0.64 0.93 0.98
elPPG_PhyC 0.65 0.94 0.99
ECG_elPPG 0.94 0.98 0.99

VPG009 ECG_PhyC 0.80 0.94 0.99
elPPG_PhyC 0.80 0.94 0.98
ECG_elPPG 0.98 0.99 1.00

VPG010 ECG_PhyC 0.69 0.94 0.99
elPPG_PhyC 0.66 0.94 0.99
ECG_elPPG 0.93 0.99 1.00

VPG013 ECG_PhyC 0.88 0.98 1.00
elPPG_PhyC 0.79 0.94 0.98
ECG_elPPG 0.89 0.96 0.98

VPG015 ECG_PhyC 0.81 0.96 0.99
elPPG_PhyC 0.78 0.96 0.99
ECG_elPPG 0.92 0.99 1.00

VPG017 ECG_PhyC 0.96 0.99 1.00
elPPG_PhyC 0.96 0.99 1.00
ECG_elPPG 1.00 1.00 1.00

VPG018 ECG_PhyC 0.90 0.98 1.00
elPPG_PhyC 0.87 0.98 0.99
ECG_elPPG 0.97 0.99 1.00

VPG019 ECG_PhyC 0.65 0.95 0.99
elPPG_PhyC 0.64 0.95 0.99
ECG_elPPG 0.98 0.99 1.00

p Values < 0.05.
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A B C

FigUre 7 | Scatter plots between sensors for heart period (HP), color coded by participant. (a) PhysioCam (PhyC) vs electrocardiogram (ECG). (B) PhyC vs elPPG. 
(c) elPPG vs ECG.

either is compared individually to the ECG. However, this was 
not the case with regression analyses of the IBIs suggesting the 
presence of an additional source of error, likely due to the frame 
rate consistency of the camera or the complexities of the algo-
rithm used in the PhyC system. The regression analyses between 
IBIs was slightly stronger between elPPG and ECG (R2 0.99) 
than when comparing PhyC-derived IBI values with either the 
elPPG or ECG (R2 0.94). In future embodiments, the discrepancy 
between PhyC and elPPG may be minimized by improving the 
stability of the sensor system (e.g., optimized Bayer mapping 
wavelength selection, improved motion tracking) and increasing 
the sampling rate.

Lessons learned from this study provide guidance for planned 
improvements to PhyC: (1) reduce movement error by improv-
ing the face tracker either through an embedded processor in 
the camera, external software analysis of the image frames, or 
a parallel tracking system based on additional sensors, (2) fine 
tune the selection of the pixels within each frame that contain 
the physiological information of interest, (3) maximize sensi-
tivity across the range of skin colors by expanding the camera 
color spectrum to different wavelengths, and (4) use more pow-
erful processors to facilitate the extraction of the pulse signal, 
enabling online extraction in real time. A combination of these 
hardware and software modifications will improve the PhyC 
performance as development continues. Nevertheless, optics 
of the sensor and available light in the environment (i.e., pho-
tons) are key elements in identifying and limiting applications  
of the PhyC.

In our study, we documented that the PhyC tracks IBI, HP, and 
LF with sufficient accuracy and precision to be used instead of the 
traditional contact devices when measuring those components 
of HRV. However, when measuring HRV from the periphery, the 
peripheral vascular activity influences the pulse-to-pulse inter-
vals. Although the central tendency (i.e., mean) of pulse-to-pulse 
intervals converge with the R–R intervals (i.e., IBIs) generated 
from the ECG, on a beat-to-beat level, vascular rhythms and 
responses result in variations in the coherence between the two 
signals. Since the vascular rhythms are frequently slower than 
RSA, these rhythms tend to blunt the dynamic changes in RSA. 

http://www.frontiersin.org/Public_Health
http://www.frontiersin.org
http://www.frontiersin.org/Public_Health/archive


12

Davila et al. PhyC Validation As an HRV Sensor

Frontiers in Public Health | www.frontiersin.org November 2017 | Volume 5 | Article 300

A B C

FigUre 9 | Scatter plots between sensors for LF, color coded by participant. (a) PhysioCam (PhyC) vs electrocardiogram (ECG). (B) PhyC vs elPPG.  
(c) elPPG vs ECG.

A B C

FigUre 8 | Scatter plots between sensors for respiratory sinus arrhythmia (RSA), color coded by participant. (a) PhysioCam (PhyC) vs electrocardiogram (ECG). 
(B) PhyC vs elPPG. (c) elPPG vs ECG.

TaBle 5 | Effect size within sensor by heart rate variability parameter.

effect size electrocardiogram elPPg Physiocam

Heart period 0.23* 0.22* 0.22*
Respiratory sinus arrhythmia 0.39* 0.14 0.28*
LF 0.15 0.16 0.18

*p Values < 0.05.

This poses the question of whether the pulse-to-pulse intervals 
can be corrected to account for the vascular filtering effects? The 
frequency-dependent nature of components of the error suggests 
that a dynamic algorithm could be developed to adapt to the 
modulation effect of the cardiovascular system and reduce the 
rhythmic sources of error. In its current embodiment, PhyC can 
generate HRV measures from the periphery pulse that can be used 
interchangeably with those obtained from the ECG. The current 
PhyC system is capable of HRV estimation when the subject is 
seated and breathing normally, circumstances that cover a wide 
range of clinical and research demands. As long as the face is 

visible to the photosensor, future iterations of the PhyC will be 
able to deal with greater body movements.

The PhyC provides several advantages over contact meas-
urement of heart rate: (1) the ability to measure HRV by non-
contact sensors permits observation of a more neutral baseline 
by eliminating stressful disruptions caused by placing contact 
sensors on the participant, (2) the planned ability to measure 
several participants with the same sensor following further 
developments on the face tracking algorithm, (3) the collection 
of additional vascular signals, including sympathetic regulation 
of vasomotor tone, which are not available in ECG-derived 
measures, and (4) the system ability to work online in near real 
time to provide instantaneous measurement and continuous 
feedback.

These findings provide the basis needed to explore applica-
tions of this new methodology in psychophysiological and 
biomedical research as well as in applied settings. Expanding our 
understanding of the science behind the PhyC, which includes 
neurophysiological regulation of the cardiovascular system, 
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A B C

FigUre 10 | Mean of changes from the 1BSL (error bars: ±2 SE) for the three sensors electrocardiogram (ECG), elPPG, and PhysioCam (PhyC). (a) Heart period 
(HP). (B) Respiratory sinus arrhythmia (RSA). (c) LF (error bars: ±2 SE).

sensor design, feature extraction, and algorithm development, 
suggests that an optimized system can extract, quantify, and 
interpret the neural regulation of the heart and the peripheral 
vascular system from the optical information collected passively 
from a subject. The system will continue to expand to accurately 
recreate the sensitivity and specificity of the ECG and eventually 
to quantify additional physiological parameters of interest to 
researchers, doctors, and commercial enterprises interested in 
neural regulation of the cardiovascular system.
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