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Dynamic regimes of el niño 
southern Oscillation and  
influenza Pandemic Timing
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Neurology Unit, College of Medicine, University of Ibadan, Ibadan, Nigeria

El Niño southern oscillation (ENSO) dynamics has been shown to drive seasonal influ-
enza dynamics. Severe seasonal influenza epidemics and the 2009–2010 pandemic 
were coincident with chaotic regime of ENSO dynamics. ENSO dynamics from 1876 
to 2016 were characterized to determine if influenza pandemics are coupled to cha-
otic regimes. Time-varying spectra of southern oscillation index (SOI) and sea surface 
temperature (SST) were compared. SOI and SST were decomposed to components 
using the algorithm of noise-assisted multivariate empirical mode decomposition. 
The components were Hilbert transformed to generate instantaneous amplitudes 
and phases. The trajectories and attractors of components were characterized in 
polar coordinates and state space. Influenza pandemics were mapped to dynamic 
regimes of SOI and SST joint recurrence of annual components. State space geom-
etry of El Niños lagged by influenza pandemics were characterized and compared 
with other El Niños. Timescales of SOI and SST components ranged from sub-annual 
to multidecadal. The trajectories of SOI and SST components and the joint recur-
rence of annual components were dissipative toward chaotic attractors. Periodic, 
quasi-periodic, and chaotic regimes were present in the recurrence of trajectories, 
but chaos–chaos transitions dominated. Influenza pandemics occurred during cha-
otic regimes of significantly low transitivity dimension (p < 0.0001). El Niños lagged 
by influenza pandemics had distinct state space geometry (p  <  0.0001). Chaotic 
dynamics explains the aperiodic timing, and varying duration and strength of El 
Niños. Coupling of all influenza pandemics of the past 140 years to chaotic regimes 
of low transitivity indicate that ENSO dynamics drives influenza pandemic dynamics. 
Forecasts models from ENSO dynamics should compliment surveillance for novel 
influenza viruses.

Keywords: el niño, influenza, pandemic, dynamics, nonlinear, determinism, chaos, fractal

1. inTrODUcTiOn

Influenza epidemics occur annually during the winter of northern and southern hemispheres 
(1), but only five influenza pandemics occurred between 1899 and 2016 (2). Putative risk factors 
for influenza pandemics, which include school calendar, demography, geography, changes in 
virulence of influenza A viruses, and waning immunity (3), are, however, the same for seasonal 
influenza epidemics in these regions. In the tropics where humidity is relatively high all year, 
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influenza epidemics peak once, twice, or are endemic (4). 
Seasonal influenza epidemics, however, peak during the rainy 
season in some tropical regions (5). Transmission of influenza 
viruses in human populations occurs through aerosols (6), 
droplets (7), or direct contact with infected secretions (8), 
but aerosol transmission is the most effective (9). While 
influenza viruses are present constantly in the air, seasonal-
ity of epidemics in the northern and southern hemispheres 
is linked to enhanced survival and transmission during low 
precipitation (10, 11). El Niño southern oscillation (ENSO), 
which modulates global precipitation, has been correlated 
with seasonality of influenza epidemics (1). Analysis of his-
torical data from 1580 to 2013 showed that influenza pandem-
ics lagged peaks of El Ninos by 0–2  years (12). Analysis of 
monthly ENSO time series, however, showed that influenza 
pandemics lagged El Ninos by 0–2  months (2). Influenza 
epidemics and pandemics, therefore, appear coupled to  
El Niños.

ENSO is coupled ocean–atmosphere system in equatorial 
Pacific Ocean. Southern oscillation, the atmospheric compo-
nent of ENSO, is the alternating low and high sea level pressures 
between the west and east equatorial Pacific Ocean (13), while 
sea surface temperature, the oceanic component of ENSO, is 
the alternating warm and cool sea surface between the west 
and east equatorial Pacific Ocean (14). The phase of ENSO is 
neutral when easterly winds move warm sea surface water from 
east to west equatorial Pacific (14), where warm and moist air 
rises, condenses, and gives rain. The wind blows eastwards in 
the upper atmosphere, becomes dry and cool, and sinks in east 
Pacific Ocean to complete the Walker circulation (14). ENSO 
is in El Niño phase, which occurs irregularly about 2–7 years, 
when the easterly winds weaken and warm sea surface water 
move from equatorial west to east Pacific. La Niña phase of 
ENSO occurs when very strong easterly winds move surface 
water westward and make the sea level temperature of the 
east Pacific abnormally cool (15). Warming of equatorial east 
Pacific ocean about Christmas is an annual event that has been 
observed for over a century (16, 17). Currently, however, El 
Niño is defined as sea surface temperature anomalies in equa-
torial east Pacific Ocean ≥0.5°C, which lasts five consecutive 
overlapping 3-month periods in the Niño 3.4 region (5°N–5°S 
120°–170°W) (18), while La Niña is defined as cooling of 
≥−0.5°C for similar period. Unlike the annual warming events, 
the frequency and strength of El Niños vary on decadal and 
multidecadal timescales (19).

ENSO time series is composed of nonlinear components 
with timescales from sub-annual to multidecadal (20, 21). The 
component of ENSO that modulates climate on annual timescale 
(22) is phase-locked to season cycles such as El Niño (23) which 
typically starts in spring and peaks in winter. The dynamics of 
ENSO annual component has been shown to drive the dynamics 
of seasonal influenza (21), but while severe seasonal influenza 
epidemics and the 2009–2010 pandemic occurred during chaotic 
regime of ENSO dynamics, it is not known if this is true for all 
influenza pandemics. ENSO dynamics from 1876 to 2016 were 
characterized to determine if influenza pandemics are coupled 
to chaotic regimes.

2. MaTerials anD MeThODs

Monthly time series of southern oscillation index (SOI) from 
1876 to 2016 was obtained from ftp://ftp.bom.gov.au/anon/
home/ncc/www/sco/soi/soiplaintext.html. SOI is derived from 
the difference of surface air pressure of Tahiti and Darwin, 
Australia. Niño3.4 sea surface temperature (SST) was obtained 
from https://climexp.knmi.nl/data/iersst_nino3.4a.dat. Niño3.4 
region spans latitude 5N–5S and longitude 170–120 W. Historical 
records of El Niño were obtained from https://sites.google. 
com/site/medievalwarmperiod/Home/historic-el-nino-events 
and http://www.bom.gov.au/climate/enso/enlist/, and of La 
Niña from http://www.bom.gov.au/climate/enso/lnlist/index.
shtml. Further records were from Ref. (24) and Oceanic Niño 
index (25). Historical records of onsets and peaks of influenza 
pandemic waves from 1876 to 2016 were obtained from the 
literature (3, 26–30).

2.1. spectra and Oscillatory components 
of sOi and ssT
Presence of nonlinearities in time series of southern oscillation 
and sea surface temperature were determined using the third 
order moment method (31). The highest p-value for rejecting 
the null hypothesis of linearity and stationarity was <0.001. The 
synchrosqueeze transform algorithm (32) was applied to each 
time series to compute the time-varying spectra.

Linear and nonlinear dynamic systems are typically composed 
of multiple components with different timescales (33). While 
linear dynamic systems are composed of time-invariant compo-
nents, nonlinear dynamic systems are composed of time-varying 
components. Monocomponent nonlinear dynamic system 
without noise can be modeled as Ψ(t)  =  r(t)cos[2πϕ(t)] (33), 
where r(t) is time-varying amplitudes and ϕ(t) is time-varying 
phases. Multicomponent nonlinear dynamic system without 
noise, however, can be modeled as the sum of its components 
Ψ( ) = ( ) [2 ( )]

=

t r k cos k
k

k

1
∑ πφ . Multicomponent dynamic system 

must, therefore, be decomposed to components before meaning-
ful instantaneous amplitudes and phases can be determined. The 
empirical mode decomposition (EMD) algorithm (34) filters 
nonlinear dynamic systems to intrinsic mode functions (IMFs) 
or modes, which are components that can be represented as 
ψ(t) = r(t)cos[2πϕ(t)] where the amplitude and phase are physi-
cally meaningful. The components can be summed to regenerate 
the original dynamic system. Noise-assisted multivariate empiri-
cal mode decomposition algorithm (35) was used to decompose 
SOI and SST to components. The algorithm of multivariate EMD 
(35) is as follows:

 1. Generate pointset based on Hammersley sequence for sam-
pling on an (n − 1) – sphere.

 2. Calculate projection 
t

Tp tk

=
( )

1
θ{ } , of the input signal 

t=
( )

1

Ttv{ }  

along the direction of vector xθk, for all k (the whole set of 
direction vectors), giving 

k

Kp tk

=
( )

1
θ{ }  as the set of projections.

 3. Find the time instants 
k

K
k

=











 1
tθ , which correspond to the maxima 

of projected signals set.
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4. Interpolate [ , ( )]t k kθ θv t  for all values of k, to obtain multi-
variate envelope curves 

k

K
k t

=
( )

1
eθ{ } .

5. For a set of K direction vectors, calculate mean m(t) of the 
envelope curves as

 m e( )t
K

t=
=
∑1
k

K
k

1

θ ( ).  

6. Extract detail d(t) using d(t) = x(t) − m(t). If the detail d(t) 
fulfils the stoppage criterion for multivariate intrinsic mode 
function (IMF), apply the above procedure to d(t), otherwise 
apply it to x(t) − d(t).

The components of SOI and SST were fast Fourier transformed 
to determine the timescales.

2.2. Trajectories and attractors
Each component was Hilbert transformed to analytical signal 
Ψ(t)  =  r(t)exp[iθ(t)], which has real and imaginary compo-
nents. The time-varying magnitude of the analytical signal is its 
absolute value, which is also called envelope or amplitude, while 
the time-varying phase is the argument of the analytical signal.

The state, phase, or vector space describes the time-varying 
states of dynamic systems in multidimensional space. The state 
space of dynamic systems such as the logistic map or Lorenz 
system are usually modeled with differential equations, which 
unfortunately are not available for most dynamic systems. When 
differential equations are unavailable, however, multidimensional 
state space can be reconstructed by transforming unidimensional 
scalar time series {xi, i = 1,2,…} of the dynamic system to delay 
vector coordinates {Xi  =  xi, xi+L, xi+2L,…,xi+(m–1)L}, where m is 
embedding dimension, and L is delay or lag (36). This recon-
struction, which is based on the Taken’s embedding theory (37), 
recovers the topology of dynamic systems from delay vector 
coordinates. The state spaces of SOI and SST components were 
reconstructed using delayed embedding vector coordinates (37). 
The embedding dimensions m were calculated using Cao’s algo-
rithm (38), and lags τ were estimated using mutual information 
algorithm (39).

Fractals are geometrical objects with self-similarity and 
long memory properties. The Hurst exponent is a metric of 
fractality that is defined as x(t) = aHx(at). The Hurst exponent 
is time-invariant in mathematical fractals, but time-varying 
in statistical fractals (40), which are described as multifractals 
(41, 42). Multifractal detrended fluctuation analysis (42) of 
SOI and SST components was performed to determine if the 
Hurst exponents are time-varying (42). Fractal dimension is 
an indicator of chaos, which is characterized by exponential 
divergence of trajectories that have minimally different initial 
conditions. The Lyapunov exponent (λ), which measures the 
average rate of divergence of close trajectories (43), is a metric 
of chaos that is expressed in the relation d

d
t t

0
exp 0= ( − )λ , where 

d0 is small displacement from initial position at time t0, and d is 
displacement at time t > t0. When λ > 0, d

d0

 grows exponentially 

and the dynamics becomes chaotic (43), but λ  <  0 indicates 
decay to steady state. The Lyapunov spectra were constructed for 
each component to determine sensitivity to initial conditions.

Recurrence plots of SOI and SST components were gener-
ated to characterize dynamic regimes. Recurrence plot is the 
graphical display of recurrence in two dimensions (44), which 
characterizes the presence of regimes, transitions, coupling, 
and synchronization of dynamic systems in state space (45). 
Since trajectories do not return to exact regions of state space 


xi


x j, the neighborhood that trajectories return is defined 
by the threshold ϵ(45). The recurrence matrix is defined as 
Ri j I jx x, (ε) =Θ ε − −

 ( ), i, j = 1,…, N, where N is the number 
of measured points i



x , ϵ is the threshold distance, Θ(.) is the 
Heaviside function, and ||⋅|| is the norm (45). When a trajectory 
in state space i

N
ix =1
( ) visits a state 

 

x xi j»  the recurrence Ri,j is 1, 
but when the trajectory visits a state  

x xi j/»  the recurrence Ri,j 
is 0. The typology of recurrence plot is the large-scale structure, 
which has homogeneous pattern for uniformly distributed 
white noise, but has long uninterrupted checkerboard lines for 
periodic or quasi-periodic systems (45). The texture of recur-
rence plot is the small-scale structure, which includes single 
dots, and lines that can be diagonal, vertical, or horizontal (45). 
Periodic dynamic systems have long, uninterrupted, even par-
allel diagonal lines, but quasi-periodic dynamic systems have 
uneven vertical distances between the diagonal lines. Chaotic 
dynamic systems, however, have single points, short diagonal 
lines, as well as vertical and horizontal lines (46).

Metrics of recurrence quantification analysis were calculated 
for 36-month windows of the recurrence matrix along the line 
of identity to determine the transitions of dynamic regimes (47). 
Determinism (DET) and divergence (DIV) were derived from 
diagonal line structures of recurrence plots, while laminarity 
(LAM) and trapping time (TT) were derived from vertical line 
structures of recurrence plots (45, 48). Determinism is the ratio 
of recurrence points that form diagonal lines of at least lmin and 
all recurrence points, and divergence is the inverse of the longest 
diagonal line Lmax (47). Laminarity is the ratio of recurrence points 
that form vertical lines of at least lmin and all recurrence points, 
while trapping time is the average length of vertical structures, 
which estimates the time duration the system is in specific state. 
To determine the statistical significance of the metrics, 5,000 
bootstrap samples of the values of the metrics were compared 
with 5,000 bootstrap samples of the metrics determined for 
random time series.

2.3. Joint recurrence and Peaks of 
influenza Pandemics
Since ENSO is coupled to season cycles, the typology and texture 
of SOI and SST joint recurrence of annual components were 
characterized to determine the dynamic regimes when influ-
enza pandemics occurred. Each pandemic period was defined 
from 18  months before the first peak through to 18  months 
following the first peak. This created 36-month window for 
each pandemic in the dynamics of ENSO, which included the 
multiple peaks of each pandemic.

Joint recurrence plot assesses the probability that similar 
points in state space are visited by two chaotic dynamics (45). 
The cross correlation index (CPR) was calculated for 36-month 
windows of joint recurrence plot to determine if the trajectories 
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FigUre 1 | Spectra of southern oscillation (SOI) and sea surface temperature (SST). (a) (SOI) and (B) (SST) show similar oscillations with timescales from 
sub-annual to multidecadal.
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of SOI and SST annual components are synchronized. The CPR 
index was calculated by comparing the probability P(ϵ)(τ) that 
the trajectory returns to ϵ-neighborhood of a previous point on 
the trajectory. The cross correlation between P1(τ) and P2(τ) is 
defined as CPR = /1 2 1 2P P( ) ( )τ τ( ) σ σ . When the trajectories are 
in phase synchrony, the probability of recurrence is maximal at 
the same time, and CPR ≈ 1.

Complex network is characterized completely by the adjacency 
matrix, which can be obtained by transforming the recurrence 
matrix. The vertices of recurrence complex network represent 
state vectors, while the edges represent proximity between verti-
ces (49). Complex network was generated from adjacency matrix 
of SOI and SST joint recurrence of annual components. Degree 
centrality and its distributions were calculated for networks and 
sub-networks of El Niño and La Niña. Distribution of degree cen-
trality of El Niños lagged by influenza pandemics was compared 
with other El Niños, and with very strong, strong, moderate, and 
weak El Niños. Bootstrap statistics was used to compare metrics 
with random time series.

Metrics of network analysis, which maps time series to com-
plex networks with distinct topological characteristics (50), have 
been used to detect regimes and transitions of dynamic systems. 
These metrics are computed from adjacency matrix, which has 
correspondence to the recurrence matrix. Transitivity dimen-
sion, which is defined as DT

T( ) ( ) = /
log
log ( )3 4  (51), was calculated for 

36-month windows of SOI and SST joint recurrence of annual 
components. To determine statistical significance, 5,000 boot-
strap samples of values of transitivity dimensions were compared 
with 5,000 bootstrap samples of transitivity dimensions of 
random time series.

2.4. scripts, Programming, and statistical 
Packages
Matlab scripts of relevant algorithms were used to test for 
nonlinearities in time series (31), noise-assisted multivariate 
empirical mode decomposition (52), and multifractal detrended 
fluctuation analysis (42). Matlab scripts were implemented in 
Matlab-Octave programming language.

Lyapunov spectrum, lag, embedding dimension, Takens, 
and state space plots were implemented in the nonlinearTseries 
package of R Statistical Programming and Environment, 
Austria, version 3.2.2, 2015 (53). Embedding dimensions m were 
calculated for IMFs using Cao’s algorithm (38), and lags τ were 
estimated using mutual information algorithm (39). Pyunicorn 
package of Python programming language was used to generate 
matrices of recurrence plots and networks, the astropy package 
was used for bootstrap statistics, while the seaborn and matplot-
lib packages were used for graphics. Calculations of CPR index 
to determine synchronization of dynamics were performed as 
described in publication (54).

3. resUlTs

The components of southern oscillation (SOI) and sea surface 
temperature (SST) anomalies showed similar time-varying 
spectra (Figures  1A,B). The timescales of these components 
ranged from sub-annual to multidecadal (Figures 1A,B). Eleven 
components (IMFs) were present in the noise-assisted multivari-
ate empirical mode decomposition of SOI and SST. IMF3,5,10,11 for 
SOI is shown in Figures  2A–D, but in Figures  2E–H for SST. 
The trend of SOI anomalies troughed in 2016, but peaked for 
SST (Figures  2D,H). The timescales of SOI and SST compo-
nents were 6 months for IMF2, 12 months for IMF3, 18 months 
for IMF4, 3.6 years for IMF5, 6.0 years for IMF6, 11.5 years for 
IMF7, 22.0 years for IMF8, 50.0 years for IMF9, and 172.0 years  
for IMF10.

3.1. Trajectories of Oscillatory 
components
In polar coordinates the trajectories of SOI and SST compo-
nents show bounded spirals which decayed toward the origin. 
The trajectories of IMF3,5,7,9 in polar coordinates are shown 
in Figures S1A–D in Supplementary Material for SOI, but in 
Figures S1E–H in Supplementary Material for SST. In recon-
structed state spaces, the trajectories of IMF3,5,7,9 are shown in 
Figures  3A–D for SOI and SST. The elliptical and bounded 
trajectories in reconstructed state spaces dissipated toward 
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FigUre 2 | Monocomponents of southern oscillation (SOI) and sea surface temperature (SST). (a–D) show intrinsic mode functions of southern oscillation, which 
are the oscillatory components with different time scales. (e–h) show intrinsic mode functions of sea surface temperature, which are the oscillatory components 
with different time scales. The timescales of IMF3 is one year, but 172 years for IMF10.

FigUre 3 | Trajectories of southern oscillation (SOI), and sea surface temperature (SST) in phase plane. (a–D) show the trajectories of intrinsic mode functions with 
different timescales. The geometries of the trajectories of SOI and SST are similar in state space.
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attractors. Visually the trajectories of SOI and SST components 
have similar geometry (Figures  3A–D). Lyapunov spectra of 
SOI and SST components showed multiple positive exponents, 
while their multifractal detrended fluctuation analysis showed 
time-varying Hurst exponents.

Recurrence plots of SOI components showed periodic, 
quasi-periodic, and chaotic regimes (Figures  4A–C). Similar 
regimes were present in the recurrence plots of SST components 
(Figures  5A–C). Chaotic regimes, however, predominated 
in both recurrence plots. Geometrical mean (range) of time-
dependent metrics of recurrence quantification analysis of SOI  
and SST were similar: 0.98 (0.93–0.99) for determinism of SOI,  
but 0.97 (0.91–1.00) for SST; 26 (13–40) for divergence  
of SOI, but 24 (12–42) for SST; 0.82 (0.61–0.93) for laminarity 
of SOI, but 0.84 (0.70–0.94) for SST; 3.0 (2.3–5.7) for trapping 
time of SOI, but 3.3 (2.3–6.6) for SST. Time-dependent plots 
of determinism, divergence, laminarity, and trapping time 
for SOI and SST dynamics are shown in Figures S2 and S3 
in Supplementary Material. Bootstraps comparisons of these 
metrics with random time series were significantly different at 

p < 0.0001 for determinism, divergence, laminarity, and trap-
ping times of SOI and SST.

3.2. Joint recurrence of annual Oscillatory 
components and influenza Pandemic 
Timing
Joint recurrence plot of SOI and SST annual components showed 
similar typology and texture to their respective recurrence plots 
(Figure 6A). Periodic, quasi-periodic, and chaotic regimes were 
present in SOI and SST joint recurrence, but chaos–chaos transi-
tions also dominate (Figure 6A). Five influenza pandemics from 
1899 to 2016, which had precise records of months of onset and 
peak, were mapped to SOI and SST joint recurrence (Figure 6A). 
Influenza pandemics peaked in December 1899, December 1900, 
March 1901, March 1918, July 1918, November 1919, January 
1920, October 1957, February 1958, March 1969, December 
1969, January 1970, June 2009, and October 2009. All peaks of 
multiple waves of the influenza pandemics occurred during high 
divergence of SOI and SST trajectories. The first peak for each 
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FigUre 5 | Sea surface temperature (SST) recurrence plots. Recurrence plots shown in (a–c) resemble Lorenz chaotic dynamics. Periodic regimes have long, 
uninterrupted, even parallel diagonal lines, while quasi-periodic regimes have uneven vertical distances between the diagonal lines. Chaotic regimes have single 
points and short diagonal lines. Time-varying determinism is shown in (D–F).

FigUre 4 | Southern oscillation (SOI) recurrence plots. Recurrence plots shown in (a–c) resemble Lorenz chaotic dynamics. Periodic regimes have long, 
uninterrupted, even parallel diagonal lines, while quasi-periodic regimes have uneven vertical distances between the diagonal lines. Chaotic regimes have  
single points and short diagonal lines. Time-varying determinism is shown in (D–F).
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pandemic is shown in Figure 6A. The geometrical mean (range) 
was 0.6 (0–1) for cross correlation (CPR) index of SOI and SST 
joint recurrence of annual components (Figure 6B). Geometrical 

mean (range) of joint recurrence transitivity dimension was 
3.50 (range 1.23–9.67) for dynamic regimes without influenza 
pandemics, but 2.71 (range 2.17–3.34) for dynamic regimes 
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FigUre 6 | Southern oscillation (SOI) and sea surface temperature (SST) joint recurrence. (a) shows periodic, quasi-periodic, and chaotic regimes similar to the 
Lorenz model in the joint recurrence of annual oscillatory components of SOI and SST. The cross-correlation index in (B) shows the time-varying changes in 
synchronization of SOI and SST, while (c) shows time-varying changes in transitivity. The arrow heads indicate the timing of the first peak of each influenza 
pandemics. Metrics were calculated for 36-month windows that spanned 18 months before and after the first peak.

FigUre 7 | The distribution of bootstrap statistics is shown in (a) for cross correlation index (CPR), in (B) for transitivity, in (c) for degree centrality during El Ninos 
with pandemic and those without pandemic, and in (D) for degree centrality for El Ninos of different strength. The distribution of bootstrap statistics shows very 
highly significant statistical differences compared with random time series.
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when influenza pandemic occurred (Figure 6C). CPR index was 
highly significantly different from null (p < 0.0001, Figure 7A). 
Transitivity dimensions of dynamic regimes when influenza pan-
demics occurred was highly significantly lower than for dynamic 
regimes without influenza pandemics (p < 0.0001, Figure 7B).

Undirected SOI and SST joint recurrence network of annual 
components had 6,185 nodes, and 134,205 edges. The degree 
centrality of the network showed power law distribution (Figure 
S4A in Supplementary Material). Sub-networks of El Niño and 
La Niña phases of ENSO also showed power law distributions 
of degree centrality (Figures S4B,C in Supplementary Material). 
Geometrical mean (range) degree centrality for the whole joint 
recurrence network was 22 (0–550). The number of nodes 
(edges) for sub-networks were 353 (5,075) for El Niño, 332 
(4,727) for El Niño not lagged by influenza pandemics, but 21 (8) 
for El Niño lagged by influenza pandemics. Geometrical mean 
(range) degree centrality for sub-networks was 0 (0–3) for El 
Niños lagged by influenza pandemics, but it was 5 (0–88) for El 
Niños not lagged by influenza pandemics. The degree centrality 
of sub-network of El Niños lagged by influenza pandemics was 

highly significantly lower than that of El Niños not lagged by 
influenza pandemics (p < 0.0001, Figure 7C). It is also highly 
significantly lower than very strong, strong, moderate, and weak 
El Niños (p < 0.0001, Figure 7D).

4. DiscUssiOn

Southern oscillation index (SOI) and sea surface temperature 
(SST) have components with similar timescales, which indi-
cate that the atmospheric and oceanic components of El Niño 
southern oscillation (ENSO) have oscillations with similar 
timescales (Figures  1A–B). Components of paleoclimate 
ENSO data of the past 21,000  years had timescales which 
ranged from sub-annual to 64 years (55). Multivariate empiri-
cal mode decomposition (MEMD) indicates that SOI and SST 
components have timescales from sub-annual to multidecadal 
(Figures 2A–C and Figures 2E–G). The basis for presence of 
multiple timescales can be linked to differences in the dynamics 
of upper and lower layers of the atmosphere and the ocean, 
which are driven by thermal, pressure, and Coriolis forces (56). 
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Solar fluxes generate warmer region in the equator where air 
rises and moves poleward in the upper atmosphere (56), where 
wind speed is faster due to lower friction. The Coriolis force, 
which is generated by west to east rotation of the earth, however, 
deflects wind in the upper atmosphere to the right (eastward) 
in the Northern hemisphere, but to the left (westward) in the 
Southern hemisphere. Cold dense air at higher latitudes gener-
ates area of high pressure, which move in the lower atmosphere 
toward low pressure area of the equator (56). Wind stress or 
friction, which is the force per unit area exerted by the wind on 
the ocean, drives the dynamics of upper ocean layer. Satellite 
data from 1979 to 2013 show, however, that the dynamics of 
the atmosphere is not constant (57). The trend of SST which 
peaked during the 2014–2016 El Niño from its lowest value 
in 1876, and of SOI which troughed during the 2014–2016 El 
Niño from its peak in 1876 indicate multidecadal climate cycle 
during the period (Figures 2D,H). Occurrence of very strong 
El Niño in 1876, which caused severe droughts and floods  
(58, 59), and another very strong El Niño of 2014–2016, which 
is also causing severe droughts and floods, indicate determin-
ism in the dynamics of ENSO. Since the very strong El Niños of 
1982–1983 and 1997–1998 were followed by weaker ones, there 
is the likelihood that weaker El Niños will follow the 2014–2016 
El Niño in the next decade. Thus, the timescales of atmospheric 
and oceanic components of ENSO provide spectra evidence of 
their coupling, while the trends of SOI and SST indicate that 
the very strong 2014–2016 El Niño occurred at the peak of 
multidecadal climate cycle.

4.1. Dynamics of atmospheric and 
Oceanic components of ensO
The trajectory is the curve that describes the path of a signal 
as it evolves in time (60). In polar coordinates, the trajec-
tory of a signal x(t) can be plotted in two-dimensional space 
as its instantaneous amplitude against phase ([a(t), ϕ(t)]). 
Theoretical ENSO models predict dissipative trajectory that is 
sustained by seasonal forcing (61, 62). External forcing supplies 
energy that sustains oscillation of dissipative dynamic systems.  
In polar coordinates, the trajectories of SOI and SST compo-
nents, which show bounded spirals that grow and decay, indi-
cate dissipative dynamics (Figures S1A–H in Supplementary 
Material). The trajectories of SOI and SST components in state 
space, which describes the time-varying states of dynamic sys-
tems in multidimensional space (36), also indicate dissipative 
dynamics (Figures 3A–D). The state space volume of dissipa-
tive dynamic systems contract and asymptotically approach a 
limiting value called the attractor as time t→∞ (63). The basin 
of attraction, however, is the set of initial points that determines 
the long-term behavior of trajectories. The varying divergence 
of trajectories of SOI and SST components that grow and decay 
toward a region of state space indicate that attractors and basins 
of attraction are present in the dynamics (Figures  3A–D). 
Thus, the dynamics of atmospheric and oceanic components 
of ENSO is dissipative.

Attractors of dissipative dynamic system’s may have simple 
or fractal geometry. The geometry of simple attractors, which 

has integer dimensions, includes the point in simple harmonic 
motion, the closed cycle in periodic dynamics, and the torus 
in quasi-periodic systems (60). Chaotic attractors, which are 
fractals, however, have geometry with non-integer dimensions 
(64). Sea surface temperature (SST) of east Pacific Ocean (62) 
and southern oscillation index (SOI) (65) have been shown to be 
fractals. Multivariate ENSO data from 2000 to 2015 have, how-
ever, been shown to be multifractal (21). The time-varying Hurst 
exponents indicate that SOI and SST components are multifrac-
tals. Fractal and multifractal geometry, however, indicate chaos, 
which is characterized by exponential divergence of trajectories 
that have minimally different initial conditions. The trajectories 
of SOI and SST components, which have positive Lyapunov 
exponents, therefore, indicate sensitivity to initial conditions. 
Thus, the dynamics of atmospheric and oceanic components of 
ENSO is chaotic.

Recurrence describes the return of trajectories of dynamic 
systems to the neighborhood of their initial states as time t→∞. 
The recurrence plots of SOI and SST trajectories show periodic, 
quasi-periodic, and chaotic regimes that resemble the recurrence 
of chaotic Lorenz system (45, 66), which models convective flow 
of the atmosphere (67) (Figures  4A–C and 5A–C). Chaos or 
turbulence occurs in fluids when inertial forces are dominant, 
but flow is laminar when viscous forces are dominant. Transition 
to chaos occur at certain parameters of motion (63), which in 
Ruelle–Takens route consists of three to four bifurcations from 
steady  →  periodic  →  quasi-periodic  →  turbulence or chaotic 
regimes(64). Chaos, however, also transits to chaos (68). Chaotic 
and quasi-periodic regimes, which were predicted by theoretical 
ENSO models (62, 69), are present in SOI and SST recurrence 
(Figures 4A–C and 5A–C). Chaos–chaos transition is, however, 
dominant (Figures 4A–C and 5A–C). Determinism, divergence, 
laminarity, and trapping time, which quantitatively assess 
periodic-chaos and chaos-periodic transitions, confirm presence 
of dynamic regimes in SOI and SST (Figures 4D–F and 5D–F; 
Figures S2 and S3 in Supplementary Material). Highly significant 
statistical differences of these metrics compared with random 
time series indicate that the dynamic regimes are deterministic. 
Thus, the dynamics of atmospheric and oceanic components of 
ENSO transit to chaos from periodic, quasi-periodic, and chaotic 
regimes.

4.2. sOi and ssT Joint recurrence and 
influenza Pandemic Timing
The trajectories of two chaotic systems synchronize when 
coupling or forcing adjust their phases or amplitudes to evolve 
in a common state space (70). Similarity of state space geom-
etry of SOI and SST suggests that their trajectories evolve in a 
common state space (Figures 3A–D). Joint recurrence assesses 
the probability that similar points in state space are visited by 
two chaotic trajectories of physically different time series (45). 
The topology of SOI and SST joint recurrence plot of annual 
components, which resembles their respective recurrence plots, 
supports visual interpretation that ENSO components have 
similar state space geometry (Figure 6A). The cross-correlation 
index (CPR) is a metric of synchronization which compares the 
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probability P(ϵ)(τ) that a trajectory returns to ε-neighborhood 
of a previous point. The high CPR index of SOI and SST joint 
recurrence of annual components at all dynamic regimes indicate 
strong synchronization of atmospheric and oceanic components 
of ENSO (Figure 6B). The highly significant statistical difference 
of CPR index compared with null value of zero indicates that 
synchronization is not random (Figure 7A). Thus, the dynamics 
of SOI and SST are coupled.

Complex network, which models the vertices and edges 
of graphs (71), has been developed to characterize dynamics 
in state space. The distribution of degree centrality, which 
is defined as the number of edges connected to vertices, is 
a common metric of complex network (71). Small world 
networks have exponential distribution of degree centrality 
(72), while scale-free networks have power law distribution 
(73). Power law distribution of degree centrality of SOI and 
SST joint recurrence network, therefore, indicates scale-free 
network (Figure S4A in Supplementary Material). Scale-free 
sub-networks of El Niño and La Niña phases of SOI and SST 
joint recurrence network is characteristic of multifractal 
time series (74) (Figures S4B,C in Supplementary Material). 
Time-dependent transitivity dimensions indicate that regimes 
and transitions are also present in SOI and SST joint recur-
rence (Figure  6C). Thus, chaotic regimes are also present in 
dynamics of coupled atmospheric and oceanic components  
of ENSO.

Although the time series of influenza is not available from 
1876, occurrence of all influenza pandemics during chaotic 
regimes of SOI and SST joint recurrence of annual components 
indicates strong relationship of influenza pandemics and climate 
dynamics (Figure 6A). The topology of recurrence plots, which 
shows that influenza pandemics occur during dynamic regimes 
of high divergence, and the highly significantly lower transitiv-
ity dimensions of these regimes indicate strong coupling of 
influenza pandemics to chaotic regimes (Figures  6A and 7B). 
Occurrence of influenza pandemics is, therefore, deterministic 
rather than random. El Niños that were lagged by influenza 
pandemics have been shown to have similar waveforms (2). The 
significantly lower degree centrality of sub-networks of El Niños 
that were lagged by influenza pandemics compared with other 
El Niños, and with El Niños of different strengths, indicate that 
influenza pandemics lag El Niños of distinct state space geometry 
(Figures 7C,D). Thus, climate dynamics determines the timing 
of influenza pandemics.

4.3. emergence of novel influenza Viruses 
and influenza Pandemic Timing
Influenza A viruses are ubiquitous in humans, birds, pigs, and 
several other mammals (75), but they do switch hosts to form 
novel strains (76). They are members of Orthomyxoviridae fam-
ily, which have negative, single-stranded RNA. Novel influenza 
viruses, which cause influenza pandemics, arise when either 
of the two antigenic structural proteins, hemagglutinin (HA) 
and neuraminidase (NA) (77), undergo reassortment termed 
antigenic shift (75). Novel strains of influenza A viruses caused 

all five influenza pandemics which occurred between 1899 and 
2016. These strains, however, circulated for years before the onset 
of pandemics (78). The triple reassortant influenza A(H1N1) 
2009–2010, which contained gene segments from human, swine, 
and avian influenza A viruses (79, 80), circulated in swine in 
the 1990s (81), but human cases occurred about 5 years before 
2009–2010 influenza pandemic (82, 83). The low aerosol trans-
mission potential of novel reassortant influenza viruses (84), 
which increases following repeated mutations of HA and PB2 
genes (85), is probably the basis for long circulation before onset 
of pandemics. Thus, timing of influenza pandemics is, therefore, 
not determined by emergence of novel influenza virus strains 
alone.

The guinea pig model showed that aerosol transmission of 
influenza viruses is dependent on temperature and precipitation 
(10). Low temperature and precipitation enhanced aerosol trans-
mission of 2009–2010 influenza pandemic virus (86), whose 
isolates in northern France showed sensitivity to temperature 
(87). Spatiotemporal dynamics of influenza pandemics of 1889, 
1957, and 2009 correlated with temperature in Sweden (30), 
while in Chile, a country that spans latitudes 17°S to 56°S that 
covers over 4,000  km, the north-south gradient of 2009–2010 
influenza pandemic virus transmission correlated with low 
temperature and precipitation (88). Mortality from influenza in 
359 USA counties from 1973 to 2002 correlated with <6  g of 
water vapor per kilogram of air (89). The varying impact of El 
Niño on global precipitation and temperature, which depends 
on strength and duration, explains while influenza pandemics 
do not lag all El Niños. Thus, decadal and multidecadal timing of 
influenza pandemics (2) is attributable to deterministic chaotic 
climate regimes which enhances global aerosol transmission of 
influenza viruses.

5. cOnclUsiOn

The timescales of SOI and SST components vary from sub-
annual to multidecadal. The trends of SOI and SST anomalies 
that peaked during 2016 El Niño indicate that the strength of 
El Niños will decrease in the next few decades. The trajectories 
of SOI and SST components, and the joint recurrence of annual 
components are dissipative toward chaotic attractors. Chaos–
chaos transitions dominate SOI and SST recurrence. SOI and 
SST joint recurrence of annual components show periodic, 
quasi-periodic, and chaotic regimes. All El Niños lagged by 
influenza pandemics have distinct state space geometry. Chaotic 
dynamics explains the aperiodic timing, and varying duration 
and strength of El Niños. Coupling of all influenza pandemics of 
the past 140 years to chaotic regimes of low transitivity indicate 
that ENSO dynamics drives influenza pandemic dynamics. It 
should, therefore, be feasible to developed predictive models of 
influenza pandemics from ENSO dynamics.
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FigUre s1 | Phase-amplitude plots. (a–D) show the phase-amplitude plots of 
intrinsic mode functions of southern oscillation (SOI). (e–h) show the phase-
amplitude plots of intrinsic mode functions of sea surface temperature (SST).

FigUre s2 | Time-dependent recurrence quantification for southern oscillation. 
Plots of determinism, divergence, laminarity, and trapping time are compared.

FigUre s3 | Time-dependent recurrence quantification for sea surface 
temperature. Plots of determinism, divergence, laminarity, and trapping time  
are compared.

FigUre s4 | Powerlaw distributions of network degree centrality. Degree 
centrality of joint southern oscillation and sea surface temperature network  
is shown in (a), of El Nino network in (B), and of La Nina network in (c).
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