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Vaccines are public health interventions aimed at preventing infections-related mortal-
ity, morbidity, and disability. While vaccines have been successfully designed for those 
infectious diseases preventable by preexisting neutralizing specific antibodies, for other 
communicable diseases, additional immunological mechanisms should be elicited to 
achieve a full protection. “New vaccines” are particularly urgent in the nowadays society, 
in which economic growth, globalization, and immigration are leading to the emergence/
reemergence of old and new infectious agents at the animal–human interface. Conventional 
vaccinology (the so-called “vaccinology 1.0”) was officially born in 1796 thanks to the con-
tribution of Edward Jenner. Entering the twenty-first century, vaccinology has shifted from a 
classical discipline in which serendipity and the Pasteurian principle of the three Is (isolate, 
inactivate, and inject) played a major role to a science, characterized by a rational design 
and plan (“vaccinology 3.0”). This shift has been possible thanks to Big Data, characterized 
by different dimensions, such as high volume, velocity, and variety of data. Big Data sources 
include new cutting-edge, high-throughput technologies, electronic registries, social media, 
and social networks, among others. The current mini-review aims at exploring the potential 
roles as well as pitfalls and challenges of Big Data in shaping the future vaccinology, moving 
toward a tailored and personalized vaccine design and administration.
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inTRODUCTiOn: FROM THe CLASSiCAL 3is “iSOLATe–
inACTivATe–inJeCT” vACCinOLOGY 1.0 TO vACCinOLOGY 3.0, 
vACCinOMiCS, AnD BeYOnD

Vaccines are public health interventions aimed at preventing infections-related mortality, morbidity, 
and disability. As such, they represent a milestone of hygiene and preventive medicine (1). Since 
their implementation, they have managed to bring several health and economic benefits, both in 
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TABLe 1 | The different genomic/post-genomic specialties and their potential role in the field of vaccinology.

Genomic/post-genomic specialty 
potentially relevant in vaccinology

Definition

Genomics Systematic, genome-wide investigation of genes
Proteomics Systematic, proteome-wide investigation of proteins
Transcriptomics Systematic, transcriptome-wide investigation of gene transcription
Metabolomics Systematic, metabolome-wide investigation of metabolites
Cytomics Systematic, cytome-wide investigation of biochemical/biophysical events at a single cell level
Immunogenomics Systematic, immunogenome-wide investigation of immunologically relevant genes
Immunoproteomics Systematic, immunoproteome-wide investigation of immunologically relevant proteins
Immunometabolomics Systematic, immunometabolome-wide investigation of immunologically relevant metabolites
Interactomics Systematic, interactome-wide investigation of interactions among proteins and/or other cellular molecules/components
Secretomics Systematic, secretome-wide investigation of all secreted proteins of a given cell/tissue/organism
Exoproteomics Systematic, exoproteome-wide investigation of proteins in the extra-cellular proximity of a biological system
Surfomics Systematic, surfome-wide investigation of surface proteins and other components, such as surface-exposed moieties
Immunomics Systematic, immunome-wide investigation of immune system dynamics, regulation and response to a given pathogen
Protectomics Systematic, protectome-wide investigation of the structural/functional protein motifs that confer immunological protection
Adversomics Systematic, adversome-wide investigation of potential vaccine-related adverse events
Vaccinomics Systematic, comprehensive integration of previously described omics disciplines for advancing vaccine discovery and 

development, as well as personalized vaccinology
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developed and developing countries, significantly reducing the 
burden generated by infectious diseases (2). They have contrib-
uted to the eradication of smallpox and to the control of others 
infectious agents, such as polio. According to the estimates of 
the Global Alliance for Vaccines and Immunization (Gavi), they 
have contributed to avert up to 23.3 million projected deaths 
from 2011 to 2020, especially in Africa, Southeast Asia, and in the 
Eastern Mediterranean (3). Furthermore, they positively impact 
on perceived quality of life (3) and reduce inequity worldwide 
(1, 4).

While vaccines have been successfully designed for those 
infectious diseases preventable by preexisting neutralizing spe-
cific antibodies, for other communicable diseases, additional 
immunological mechanisms should be elicited to achieve 
a full protection. These additional mechanisms include the 
stimulation of effector and memory T lymphocytes, besides the 
release of antibodies by helper T cells-induced B cells (5). A 
better understanding of immune networks, their sophisticated 
tuning, and interactions is, as such, fundamental, in those 
vaccines against HIV/AIDS, malaria or tuberculosis, eluding 
classical vaccine development, which require new strategies 
and approaches (6).

“New vaccines” are particularly urgent in the nowadays society, 
in which economic growth, globalization, and immigration are 
leading to the emergence/reemergence of old and new infectious 
agents at the animal–human interface (7, 8).

Conventional vaccinology (the so-called “vaccinology 1.0”) 
was officially born in 1796 thanks to the contribution of Edward 
Jenner (1749–1823) and the pioneering discoveries of the New 
England Puritan minister Cotton Mather (1663–1728), and 
Lady Mary Wortley Montague (1689–1762), partially anticipated 
by Chinese and Indians different centuries before. The vaccine 
typical of vaccinology 1.0 is given by the rabies vaccine, the first 
human vaccine manufactured in 1885 in the laboratory (9). Other 
“first generation” vaccines are bacillus Calmette–Guérin (BCG), 
plague, pertussis, polio, and smallpox vaccines (9).

Entering the twenty-first century, vaccinology has shifted from 
a discipline in which serendipity and the Pasteurian principle of 

the three Is (isolate, inactivate, and inject) played a major role to 
a science, characterized by a rational design and plan (10).

If vaccinology 1.0 mainly consisted in isolating infectious 
agents, cultivating and inactivating them (as a whole or partially), 
and injecting the obtained product, vaccinology 2.0 utilizes puri-
fied microbial cell components. Example of “second generation” 
vaccines includes vaccines against tetanus, diphtheria, anthrax, 
pneumonia, influenza, hepatitis B, and Lyme disease (9). The 
transition from vaccinology 1.0 to vaccinology 2.0 has been made 
possible by several technological advancements, including genetic 
and protein engineering, recombinant DNA (11), polysaccharide 
and carbohydrate chemistry, combinatorial chemistry (12), among 
others.

Vaccinology 3.0 starts from the microbial genomic sequences 
(reverse vaccinology 1.0) or from the repertoire of protective 
human antibodies (reverse vaccinology 2.0) (13, 14). This shift 
has been possible thanks to omics data, which represent one type 
of Big Data, characterized by different aspects, such as enormous 
volume, velocity, and high variety of data (15).

High-throughput technologies-enabled omics disciplines [such 
as genomics and post-genomics specialties (16, 17), includ ing tran-
scriptomics, proteomics, metabolomics, cytomics, immunomics, 
secretomics, surfomics, or interactomics], briefly overviewed in 
Table 1, are able to produce a wealth of data and information, at a 
large-scale. Recently, these approaches have converged in what is 
termed vaccinomics, that is, to say the performance of large-scale, 
hypothesis-free, data-driven and holistic investigations. Poland 
and collaborators have defined vaccino mics as the “integration of 
immunogenetics and immunogenomics with systems biology and 
immune profiling” (18).

New cutting-edge technologies include next-generation 
sequencing (NGS) techniques [RNASeq (19) and large-scale B- 
and T-cell receptor sequencing (20, 21)], mass cytometry (CyTOF) 
(22), and peptide/protein arrays (23). Data produced by molecular 
biology and NGS as well as by bioinformatics (24) can be used to 
perform mechanistic reductionist studies but can be also exploited 
to comprehensively capture immune dynamics and interactions 
(25), carrying out, for instance, network analysis or systems biology 
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TABLe 2 | Potential applications of Big Data in the different subfields of 
vaccinology.

Subfield of vaccinology examples of applications

Vaccine discovery and 
development

Structural/functional vaccinology
Systems vaccinology
Vaccine informatics/bioinformatics
In silico/computational vaccinology
Vaccine ontology
Reverse vaccinology
Vaccinomics/immunomics

Vaccine production and 
safety

Monitors and sensors

Vaccine campaigns Evidence-based prevention and evidence-based 
vaccinology
Immunization registry/information system
Personalized vaccinology

Vaccine efficacy and 
effectiveness

Vaccine trials
Vaccine ontology
Digital epidemiology/infodemiology and infoveillance

Vaccine side effects Vaccine adverse event reporting system (VAERS)
Vaccine adverse event ontology
Adversomics
Digital epidemiology/infodemiology and infoveillance

Vaccine literacy/vaccine 
hesitancy

Digital epidemiology/infodemiology and infoveillance
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(the so-called “systems vaccinology”). Novel bioinformatics tools 
and new approaches are needed to better integrate the enormous 
wealth of data originated from omics experiments, making the 
shift from single-omics to multi-omics possible.

Furthermore, the actual era is characterized by the widespread 
diffusion of the new information and communication technolo-
gies (26): electronic health or eHealth refers to their exploitation 
as “a means to expand, to assist, or to enhance human activities, 
rather than as a substitute for them” (27). As omics experi-
ments, eHealth generates as well an enormous wealth of data. 
Researchers have found that, usually, digital activities correlate 
with offline behaviors and other variables, such as vaccination 
knowledge and perception of own risk: for example, Betsch and 
Wicker (28), investigating a sample of 310 medical students found 
that explicitly surfing the Internet for vaccination risks-related 
websites led to fewer public health websites than generically 
searching for immunization practices.

Vaccinology has now entered a new phase, characterized by 
new challenges: within this new framework, Big Data hold prom-
ises and opportunities, which will be overviewed in the following 
paragraphs (Table 2; Figure 1).

vACCine DiSCOveRY AnD DeSiGn:  
THe ROLe OF BiG DATA

Computational vaccinology (29, 30) and immunoinformatics (31), 
utilizing algorithms, enable experimental immunology to save 
time, focusing only on prescreened vaccine candidate antigens and, 
thus, avoiding cost, time-consuming, and labor intensive steps.

Different in  silico tools exist, to aid and assist researchers 
in vaccine discovery and design (32, 33). Databases of vaccine 

candidates, such as MalVac (34), or Vaxar (35), software tools 
such as Vaxjo (36), VIOLIN (37–39), NERVE (40), Vaxign (41), 
Vacceed (42), Jenner-predict server (43), EpiToolKit (44), iVax 
(45), or VaxiJen (46), have been specifically implemented for 
vaccinology to enable prediction of vaccine antigens or adjuvants.

A successful example of rationally designed web-based vac-
cine is the vaccine against Neisseria meningitidis, commercially 
available with the trade name of Bexsero. For the selection of 
surface antigens, Masignani and collaborators (47) performed 
genome mining, using computational tools and algorithms, such 
as PSORT (48), PSI-BLAST (49), and FindPatterns to predict pro-
teins with transmembrane domains, leader peptides, lipo-boxes 
and outer membrane anchoring motifs. At the end, 570 proteins 
were selected and GNA1870, a new surface-exposed lipoprotein 
inducing high levels of bactericidal antibodies, was discovered.

Reverse vaccinology technique is being applied also to other 
microorganisms, including Leptospira (50, 51), Streptococcus 
pneumoniae (52, 53), malaria (54), Schistosoma (55), Echinococcus 
granulosus (56), Rickettsia prowazekii (57), Mycobacterium (58), 
Acinetobacter baumannii (59), Escherichia coli (60), Staphylococcus 
aureus (61, 62), Corynebacterium pseudotuberculosis (63), Herpes 
simplex (64), Vibrio cholerae (65), and Cryptosporidium (65, 66), 
among others.

In the field of veterinary vaccinology, the reverse vaccinology 
approach is being applied, for instance, to organisms like cattle 
neosporosis (67, 68), Rhipicephalus microplus (69–71), Ehrlichia 
ruminantium (72, 73), and bovine herpesvirus 4 (74).

These computational approaches, using massive data mining 
techniques, rely on brute force (the so-called “test-all-to-lose-
nothing” approach). Altindis and collaborators (75) have recently 
attempted to refine this framework, based on the idea that 
protective antigens share specific structural/functional features, 
termed as “protective signatures” or “immunosignatures,” differ-
ing from other pathogen components, in terms of immunological 
properties. Instead of focusing on protein localization, as in pre-
vious investigations, Altindis and coworkers concentrated their 
computational analyses on protein biological role and function. 
In this sense, their approach, termed as “protectome,” is protein 
localization unbiased, in that it leads to the identification of 
surface-exposed and secreted or cytoplasmic protective antigens.

BiG DATA AnD vACCine PRODUCTiOn 
AnD DeLiveRY

After production, to properly preserve, store, handle, ship, and 
deliver vaccine supplies, it is fundamental to maintain cold chain 
from the manufacturer to the point of use, keeping temperatures 
within a precise range of values, and avoiding temperature excur-
sions or fluctuations. Vaccines need, indeed, to be stored within 
a safe zone, namely, between 2 and 8°C (76–78), otherwise their 
quality is compromised, and their potency cannot be restored. 
According to the World Health Organization (WHO) and the 
United Nations Children’s Fund, approximately two percent of 
health-care facilities in low- and middle-income countries are 
equipped with proper functional technology for maintaining 
cold chain.
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To solve these issues, Merck and Microsoft have, for example, 
established a collaboration, in which Merck exploits Microsoft 
R Server for Hadoop for analyzing, monitoring, and predicting 
variables that could affect the cold chain, including origin, desti-
nation, and delivery route as well as external weather and logis-
tics providers, utilizing special thermal-protection containers 
equipped with temperature-recording sensors and temperature-
sensitive vaccine vial monitors.

Nexleaf has produced ColdTrace (currently, ColdTrace ver-
sion 5), which has already been implemented in more than 7,000 
health-care facilities worldwide, and has recently established a 
new partnership with www.Google.org and Gavi.

The benefits provided by these technologies are the fact they are 
low-cost and particularly useful in developing countries, which 
often rely on stem thermometers or 30-day temperate loggers.

BiG DATA AnD vACCine CAMPAiGnS

Other major sources of Big Data are immunization registries and 
surveillance systems such as SmiNet-2 (79), or SurvNet@RKI 

(80). These enormous databases are precious databanks, which 
can be mined to capture data concerning vaccination coverage 
rate and its determinants.

Non-conventional data sources or novel data streams, such 
as Internet search data and tools monitoring web queries, like 
Google Trends (GT) (81), social media (YouTube, Facebook, 
Google Plus, Twitter, Pinterest, Instagram, and so on), or news 
source scraping like HealthMap (82), provide researchers and 
public health workers with real-time information concerning 
public reaction to epidemic outbreaks. Novel data streams can 
track different vaccine-preventable infectious diseases, such as 
influenza (83–85), pertussis (86, 87), or measles (88), among 
others. As such, they can be exploited to predict epidemiological 
figures as well as monitor the effect of vaccine campaigns.

BiG DATA AnD vACCine eFFiCACY/
eFFeCTiveneSS

Big Data enable also to individuate molecular signatures and 
predictors of the outcomes of vaccination, being correlates of 
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vaccine efficacy/effectiveness in different populations (89). Haks 
and collaborators (89), for instance, utilized transcriptomics to 
quantitatively assess the immunogenetic signature of immuniza-
tion response. Dunachie and coworkers (90) explored the differ-
entially expressed genes induced by a malaria candidate vaccine 
and found that most genes conferring immunological protection 
belonged to the interferon-gamma and to the proteasome/anti-
gen presentation pathways, differently from genes associated with 
hemopoietic stem cells, regulatory monocytes, and the myeloid 
lineage modules.

Novel data streams, such as mobile/smartphone applications, 
can be utilized in the monitoring and management of vaccine-
related data (91).

BiG DATA AnD vACCine SiDe eFFeCTS

Vaccine adverse events and reactions are very rare. As such, 
most studies are statistically underpowered to capture the rate of 
rare/very rare side effects. Meta-analytical approaches and data 
mining have emerged as useful strategies with this regard. As 
claimed by Chandler (92), the classical paradigm of the actual 
pharmacovigilance/vaccine vigilance system based on three 
stage-approach (namely, signal detection, development of a 
causality hypothesis, and testing of the causality hypothesis) is 
plagued by some limitations, in that “routine vaccine pharma-
covigilance practice is not sufficient to understand suspected 
harms that are poorly defined and whose pathophysiology are 
not completely understood. Furthermore, estimations of risk at 
the population level fail to acknowledge that vaccines may cause 
harm in subgroups with individual-level risk factors” for adverse 
events following immunization. As such new approaches are 
needed to capture new side effects and, also in this case, Big Data 
could play a major role.

“Adversomics” is a term coined by Poland in 2009 and is an 
emerging discipline defined as “the study of vaccine adverse reac-
tions using immunogenomics and systems biology approaches” 
(93, 94).

Berendsen and coworkers (95) exploited Big Data, to explore 
BCG-related “non-specific effects,” that is to say effects induced 
by the vaccination on health beyond its target disease. In par-
ticular, they evaluated the effect of timing of BCG on stunting 
in Sub-Saharan African children under 5 years, analyzing cross-
sectional data for 368,450 subjects from 33 controls. Authors 
found that BCG vaccination did not affect stunting, with timing 
of BCG vaccination being statistically significant. Similar patterns 
could be detected for diphtheria–tetanus–pertussis and measles 
vaccinations.

Vaccine ontology (96, 97), a class of biomedical ontologies, that 
is to say a consensus-based computer and human interpretable set 
of terms and relations indicating specific biomedical entities, is 
another valuable approach. It enables support integrative adverse 
events-related data collection and analysis, utilizing a normaliza-
tion strategy more effective than other controlled terminologies. 
These include the Medical Dictionary for Regulatory Activities, 
the Common Terminology Criteria for Adverse Events, and the 
WHO Adverse Reactions Terminology, among others. Using 
Ontology-Based Vaccine Adverse Event representation, Xie and 

He (96) explored the adverse events related to Flublok, a recom-
binant hemagglutinin influenza vaccine.

Novel data streams can be used to see how often people 
Google for vaccination and for vaccination-related adverse 
events. Bragazzi and collaborators (98) utilized GT for monitor-
ing the interest toward preventable infections and related vac-
cines. Authors found that, generally speaking, vaccine was not a 
popular topic, with the valuable exception of the vaccine against 
Human Papillomavirus, with vaccines-related queries being 
approximately one third of the volumes regarding preventable 
infections. Users tended to search information about possible 
vaccine-related side effects.

BiG DATA AnD vACCine LiTeRACY/
vACCine HeSiTAnCY

Big Data enable to track and monitor interest toward vaccination 
practices (99). The increasing phenomenon of vaccine hesitancy 
(an umbrella term that includes indecision, uncertainty, delay and 
reluctance) is multifactorial, and closely linked to social contexts, 
with different determinants, ranging from geographical area, to 
political situation, complacency, convenience and confidence in 
vaccines. Novel data streams, providing a snapshot of perceptions 
of vaccination in a given place and at a specific time, could be 
used to assess lay-people’s perceptions of vaccination, enabling 
health-care workers to actively engage citizens and to plan ad hoc 
communication strategies and plans to contain vaccine hesitancy 
and to promote vaccine literacy (100).

Shah and colleagues (101) compared time series of rotavirus-
related Internet searches as captured by GT with rotavirus 
laboratory reports from the United States and United Kingdom 
and with hospitalizations for acute gastroenteritis in the United 
States and Mexico, before and after national vaccine introduc-
tions. Authors found a strong positive correlation between web 
queries and laboratory reports in the United States (R2 = 0.79) and 
United Kingdom (R2 = 0.60) and between the Internet searches 
and acute gastroenteritis hospitalizations in the United States 
(R2 = 0.87) and Mexico (R2 = 0.69). Correlations were stronger 
in the prevaccine period and after vaccine introduction, the mean 
Internet queries decreased by 40–70% in the United States and 
Mexico, with a loss of seasonal variation in the United Kingdom.

Bakker and coworkers (102) exploited GT to monitor the 
interest toward chicken pox, over an 11-year period, from 36 
countries. Authors found seasonal peaks with striking latitudinal 
variation in information seeking behavior. Authors concluded 
that novel data streams are able to track the global burden of 
childhood disease as well as to investigate effects of immunization 
at population level.

Goldlust and collaborators (103) investigated the use of 
large-scale medical claims data for local surveillance of under- 
immunization for childhood infections in the United States, devel-
oping a statistical framework for integrating disparate data sources 
on surveillance of vaccination behavior. In this way, authors were 
able to identify the determinants of vaccine hesitancy behavior. 
Within the “Vaccine Confidence Project,” Larson and colleagues 
(104) extensively analyzed data from 10,380 reports (from 144 
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countries) and found that 7,171 (69%) contained positive or neu-
tral content whereas 3,209 (31%) contained negative content (rela-
ted to vaccine programs and disease outbreaks, vaccine-related 
beliefs, awareness, and perceptions; vaccine safety; and vaccine  
delivery programs).

Within the ambitious “Project Tycho” (freely accessible at 
www.tycho.pitt.edu) launched by the University of Pittsburgh, 
United States (105, 106), authors have digitized all weekly sur-
veillance reports of notifiable diseases for United States cities 
and states published in the period between 1888 and 2011. This 
data set consists of 87,950,807 reported individual cases and has 
been used to derive a quantitative history of disease dynam-
ics and transmission in the United States. Pattern analysis has 
documented, in a statistically robust way, a significant reduction 
of infections-generated burden, underlining the positive effect 
of vaccination programs (105). This use of big data emphasizes 
the dimension of “veracity,” through which is possible to contrast 
vaccine-related “fake news” and “post-modern, post-factual 
truths,” disseminated by the anti-vaccination movements (107).

COnCLUSiOn: STATe-OF-THe-ART, 
CURRenT CHALLenGeS, AnD FUTURe 
PROSPeCTS

Big Data have contributed and are expected to continue contrib-
uting toward facilitating the discovery, development, production, 
and delivery of rationally designed vaccines. Further, enabling to 
identify predictive biomolecular signatures of response to vacci-
nation, vaccination will shift from the classical “one-size-fits-all” 

paradigm to a personalized approach. Moreover, Big Data can 
be used to track the success of vaccination campaigns, in term of 
vaccination coverage rate, as well as the rare/very rate vaccine-
related adverse events, for which “classical epidemiological stud-
ies” would be statistically underpowered.

However, a number of pitfalls and challenges should be pro-
perly recognized to be addressed by future research: Big Data 
and Big Data sources, as previously overviewed, are highly het-
erogeneous and should be effectively integrated and harmonized 
together. Moreover, some algorithms underlying novel data 
streams need to be refined in that, sometimes, do not exactly pre-
dict epidemic outbreaks (108), even though some scholars have 
shown that, in principle, is possible to correct them to achieve 
higher predictive power (109). Further, efforts should be done 
to preserve and protect privacy, confidentiality, and identity. 
The emerging field of “Big Data Ethics” is trying to address all 
these issues (110, 111). Currently, we are only witnessing the very 
beginning of the ongoing “Big Data revolution.”
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