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Over the last decade, a technical revolution has taken place in several industrial sectors, starting 
with internet companies. The computerization and interconnection of a wide variety of services 
and devices has facilitated the collection and storage of data, which has since increased by several 
orders of magnitude. The exploitation of these data has completely reshaped some services, such 
as Internet advertising, which has become largely personalized, while bringing with it its fair share 
of privacy issues. As data management and analysis have become central to many businesses, 
computer scientists have been called upon to provide tools capable of extracting knowledge from 
ever-growing, structured and unstructured databases. In this context, a paradigm shift occurred 
in data analysis as more data became available; with deep learning, data-driven approaches are 
nowadays often surpassing domain-specific approaches (1). Indeed, in very diverse predictive 
tasks, such as machine translation (2), object recognition (3) or speech recognition (4), general 
purpose models such as artificial neural networks have outperformed advanced algorithms devel-
oped by experts with domain-specific knowledge. Additionally, these machine learning algorithms 
have often reached experts’ performance level at various tasks, including medical diagnosis (5–8). 
However, these great successes have often been achieved at great expense: the acquisition of a large 
amount of structured and unstructured data.

Big health-care data are already a reality; academias, industries, insurance agencies, and public 
health systems struggle to adapt their infrastructure to a data volume whose size is doubling every 
12–14 months (9). Such storage systems are also challenging in terms of accessibility, ownership, 
and privacy issues (10). Still, medical uses remain mainly in the field of research, aiming to provide 
information about patients’ conditions by analyzing massive amounts of data and assisting with 
decision-making. Within hospitals, some data-driven softwares are being developed to identify 
patients at high risk of hospital mortality (11), while others predict patient affluence and/or wait-
ing times in emergency departments (12). Outside the hospital, data-driven applications are also 
flourishing in various fields, such as telemonitoring systems, implementing advanced prediction of 
asthma exacerbations (13), or automatic detection of falls in the elderly population (14). Moreover, 
precision medicine aims to provide a personalized recommendation of the optimal treatment for 
each patient, relying on the analysis of large heterogeneous datasets, including imaging, genomics, 
or various biological values extracted from electronic health records. This framework can be applied 
in many areas of medicine, such as radiation oncology (15), psychiatry (16), and infectious diseases 
(17). While these developing medical applications will require rigorous clinical validation, many 
should find their way into daily clinical practice over the next few decades (Figure 1). How will such 
innovations impact clinicians and their relationships with patients?

First, let us explore what was driving this relationship before data science found its way into 
health care. Traditionally, the work of physicians is a balancing act between technical expertise and 
human interpersonal skills. On the one hand, medical doctors aim to improve their knowledge to 
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FiguRe 1 | Revolution in healthcare.
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diagnose diseases more accurately and recommend optimal treat-
ment for each specific health condition. On the other hand, they 
strive to be more empathetic toward patients, taking into account 
their psychosocial background and cultural beliefs. Today, most 
doctors know that engaging in a dialog with each patient is criti-
cal in delivering adapted information, improving adherence to 
treatment, and ensuring an understanding of their condition. 
However, in the mid-twentieth century, with the biomedical 
revolution reaching its peak, medicine became increasingly 
efficient but also more technical. In addition, the trust between 
doctors and patients has always faced multiple challenges, 
including language and cultural barriers, potentially threatening 
alternative medicine, or more recently the decreasing importance 
of family practice (18). In light of these evolutions, data science 
is not going to be the first phenomenon to challenge physicians’ 
ability to adapt and rethink their profession (Figure 2).

This rapid increase in technical knowledge regarding medi-
cine and biology brought, as a corollary, the development of 
methodically conceived standardized guidelines for physicians 
to apply. In an effort to push evidence-based medicine onto the 
field, health authorities worked with experts to offer, promote, 
and soon enforce the strict application of these guidelines by 
more and more professionals (19). This phenomenon aimed to 
increase health-care quality, equity, and security to patients, is 
sometimes criticized for being too rigid to apply individually 
and for reducing the autonomy of physicians (20). In France 
for instance, it is not yet mandatory to follow such guidelines, 
but physicians may be held responsible for not being able to 
justify their deviation from them. Some physicians have now 
traded this decision-making privilege with much more implica-
tion in research, public health, the elaboration process of these 
guidelines, or simply the exploration of new areas of expertise in 

their field. And all these new tasks, including the ones that came 
along with the standardization of health care, have taken up 
an increasing amount of personal and collective efforts, leaving 
ever less time to dedicate to the improvement of doctor–patient 
relationships.

Alongside these changes, a cultural movement inspired by 
the social sciences and humanities appeared in North America 
in the late 1970s, focusing on the importance of human skills in 
clinical practice (21). One trigger may have been the realization 
that patient adherence to treatment was much lower under real 
conditions than in clinical trials, sometimes making efforts to 
improve treatment efficacy irrelevant (22, 23). As end-of-life 
situations became more and more medicalized, patients’ expecta-
tions of care attitudes often contrasted with physicians’ healing 
behaviors. This led to the development of palliative care (24, 25), 
with a special focus toward patients’ reported experience. Patient 
empowerment through stronger patient organizations has also 
led to more patient-centered care (26, 27). Additionally, atten-
tion to patient choice, consent, psychosocial context, and cultural 
beliefs has become increasingly important in research (28, 29) 
and clinical practice, so much so that it became a key element 
in the concept of Evidence-Based Medicine. Medical schools 
then started training their students in medical ethics, patient 
communications, therapeutic education, and narrative medicine  
(30, 31). In most developed countries, laws have been amended to 
recognize patients’ right to refuse treatment or to be informed of 
their medical conditions, thus striking a blow to the long-lasting 
paradigm of medical paternalism. How will these cultural move-
ments respond to the arrival of medical data-driven applications, 
a new set of technologies aimed at further “dehumanizing” clini-
cal practice?

In light of these recent changes in health care, one may 
anticipate the impact of data science and its medical applica-
tions on clinical practice and doctor–patient relationships.  
At first glance, it is tempting to see such disruptive new technolo-
gies as a factor for an evermore dehumanized medicine, where 
doctors–patient relationships would come down to sensors and 
computer screens. Based on remote monitoring signals provid-
ing detailed clinical information, machine learning algorithms 
could, for example, display risks of various patient outcomes for 
each hypothetical therapeutic strategy. Ultimately, physicians 
may no longer require direct interaction with their patients to 
accurately assess their clinical and even psychological status. 
Conversely, one can argue that the progressive automation of 
various tasks of clinical practice could free up more time for 
physicians to invest in an improved doctor–patient relationship. 
Today, most physicians spend a large amount of time trying to 
detect potential drug interaction, searching for specific events 
in the patient’s medical history, and surveying repeated and 
various lab results. This precious medical time could arguably 
be better spent with the patient, discussing therapeutic choices, 
assessing treatment comprehension, or detecting psychological 
vulnerability. Moreover, continuously used monitoring devices, 
if correctly deployed, could very well enhance doctor–patient 
relationships by extending it beyond the walls of the physi-
cian’s office. Take the case of type 2 diabetes: today’s protocols 
recommend for a regular follow-up consult in a predetermined 
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FiguRe 2 | Evolution of the physician’s role in healthcare.

sequence, depending on stage and complications; yet, based on 
multiple inputs (e.g., gly cemia controls, self-reported symp-
toms, urine test strips, etc.), predictive algorithms could very 
easily generate and send a warning to the patient’s care-givers; 
this would allow the physician to instantly decide whether to ask 
his patient to come for an earlier consult. Such system would 
continuously adapt rigid pre-established guidelines to a more 
time-flexible and appropriate consult sequence, thus potentially 
enhancing patient acceptance while optimizing mobility costs.

Additionally, precision medicine could help physicians rec-
ommend the best treatment to a given patient. There is no doubt 
that physicians will be in competition with machine learning 
algorithms to accurately diagnose diseases or to recommend 
optimal treatment to patients. Not because machine learning 
algorithms will reach human intelligence, but because they 
can quickly access large amounts of data at much lower cost. 
However, machine learning algorithms are unlikely to achieve 

the intelligence needed to build mutual understanding between 
doctors and patients, necessary to establish a quality trusting 
relationship, which we know plays a central role in the clinical 
outcomes.

Moreover, some technical aspects of medicine will probably 
remain in the hands of physicians and other health professionals. 
Clinical data collection, through both medical interrogatory and 
physical examination, is on top of the list. The first one requires 
the translation from common language to medical symptoms, 
and even though translation algorithms are developing fast, this 
specific field might be too much of a “niche” for such technolo-
gies to take over just yet. The latter seems even more out of reach 
of automation. Physical examination includes a wide variety of 
gestures and sensors (e.g., pressure, temperature, sight, hearing), 
and it requires a level of dexterity to switch and combine those 
skills that today’s robots can not match. Some surely are superior 
in specific tasks, but robotization is not moving forward as quickly 
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full personalized physical examination is still decades away. That 
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and although physicians are still in the lead thanks to their key 
role in collecting clinical data, machines are closing in fast.

Additionally, as evidence-based medicine shifted medi-
cal professions toward more standardized, specialized, and 
research-oriented tasks, data science could very well increase 
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of this new generation of tools. Moreover, physicians will be 
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for care follow-up of type 2 diabetes or different algorithms 

recommending a personalized sequence of chemotherapy in 
lung cancer will be available. Physicians will have to provide 
patients with their professional expertise and experience of 
these systems, in order to give recommendations about which 
algorithms are the most efficient, the same way they are asked 
today about medications. In this sense, physicians’ role will 
remain central, filling the gap between their patients and an 
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the profession by investing more in human skills. But it is prob-
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