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The One Health concept stresses the ecological relationships between human, animal,

and environmental health. Much of the One Health literature to date has examined the

transfer of pathogens from animals (e.g., emerging zoonoses) and the environment to

humans. The recent rapid development of technology to perform high throughput DNA

sequencing has expanded this view to include the study of entire microbial communities.

Applying the One Health approach to the microbiome allows for consideration of both

pathogenic and non-pathogenic microbial transfer between humans, animals, and the

environment. We review recent research studies of such transmission, the molecular and

statistical methods being used, and the implications of such microbiome relationships

for human health. Our review identified evidence that the environmental microbiome

as well as the microbiome of animals in close contact can affect both the human

microbiome and human health outcomes. Such microbiome transfer can take place in

the household as well as the workplace setting. Urbanization of built environments leads

to changes in the environmental microbiome which could be a factor in human health.

While affected by environmental exposures, the human microbiome also can modulate

the response to environmental factors through effects onmetabolic and immune function.

Better understanding of these microbiome interactions between humans, animals, and

the shared environment will require continued development of improved statistical and

ecological modeling approaches. Such enhanced understanding could lead to innovative

interventions to prevent and manage a variety of human health and disease states.
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INTRODUCTION

The Microbiome—From Single Pathogens to Microbial
Communities
While clinical microbiology has traditionally focused on the role of individual pathogens in
human disease, breakthroughs in high throughput DNA sequencing now allow the study of entire
microbial communities. The diverse communities of bacteria, archaea, and microbial eukaryotes
that compose the human microbiome include non-pathogenic organisms that can impact human
health and homeostasis throughmechanisms such as nutrient and drugmetabolism (1, 2), synthesis
of essential vitamins (3), defense against pathogens (4), secondary processing of host bile acids
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(5), immune modulation (6, 7), resistance and susceptibility
against infection (8), and even modification of behavior (9).

Microbiomes Across the One Health
Spectrum
The One Health concept stresses the ecological relationships
between human, animal, and environmental health (10).
Applying the One Health approach to the microbiome
requires examination of both pathogenic and non-
pathogenic microbial transfer between humans, animals,
and the environment (11–13). These transmission
relationships are shown in Figure 1. Understanding the
implications of microbiome relationships between the
environment and the health of the humans and animals
inhabiting it opens the potential for innovative and holistic
approaches to diagnosis, treatment, and intervention
(14).

Different animal species house unique microbiomes, often
of equal or greater complexity compared to the human
microbiome. As in humans, animal microbiomes influence
the health of livestock, pets, disease vectors, and foundational
species that uphold ecosystems. For example, the microbiome
of pigs affects their incidence of respiratory disease (15),
while the microbiome of reef building corals plays a key role
in the response of reef ecosystems to overfishing, nutrient
pollution, and global warming (16). Similarly, environments
have characteristic microbiomes, and these may impact human
health. For example, urbanization parallels increases in allergies,
asthma, and other chronic diseases in humans (17), possibly
related to reduced exposure to diverse microorganisms (7). Our
understanding of environmental microbiomes have increased
through sampling efforts in subways (18–21), ambulances (22),
restrooms (23), university classrooms and office buildings1,
as well as outdoor biomes and habitats across the globe
(24).

Understanding the human health impact of exposure to
microbes from animals or the environment will require
integration of exposure assessment frameworks with predictive
models of microbial ecology and associated health outcomes.
Current evidence suggests that the assembly of the microbiome
of humans and other animals is influenced by several
processes: exposure to microbes (e.g., from parents, other
people, animals, and the environment); filtering of microbial
exposures based on the interaction of microbial and host
traits (e.g., metabolism and immunity); and the outcome of
competitive or cooperative interactions among microbes and
phage within the host environment. In this mini-review, we
discuss key findings on the interplay between these processes,
emphasizing current knowledge of how microbial transfer
between humans, animals and the environment may influence
human health. We then outline key methodological challenges,
and potential solutions, to a predictive understanding of these
processes.

1Sloan Program on the Microbiology of the Built Environment. Available online

at: https://www.microbe.net/alfred-p-sloan-foundation.

KEY ASPECTS OF ONE HEALTH
MICROBIOME RELATIONSHIPS

Environmental Microbiome Effects on the
Human Microbiome
The human microbiome can be affected by contact with surfaces,
animals (25, 26), and other people; ingestion of food and water;
or inhalation (27, 28). Conversely, the gut microbiota may also
affect resistance to environmental exposures to parasites and
other pathogens by altering innate and adaptive immunity, and
through effects on the gut mucosa (29).

The effects of microbial exposure are thought to begin
early in life. Vaginal vs. cesarean section (C-section) delivery
has been shown to impact microbial seeding of the newborn
gastrointestinal tract (30). This change in early life microbial
composition carries potential health implications to immune
system development influencing health outcomes such as
allergic rhinitis, asthma, celiac disease, diabetes mellitus, and
gastroenteritis (31).

The built environment can be a source of microbial transfer
to inhabitants, and the more closed the environment, the
greater potential for such transfer (12, 32). A study of captive
Komodo dragons identified microbiome sharing between the
enclosure environment and Komodo dragon fecal, salivary, and
skin microbiomes (12). The same study found greater beta
diversity (differences in species composition) distances between
the microbes of humans and their homes than between the
Komodo dragons and their enclosures, suggesting that more
confined living may be associated with greater built environment
effect on host microbiomes (12). Captive vs. wild rearing has been
associated with decreases in bacterial community beta diversity
in a wide range of animal species (33). For example, placing wild
amphibians (34, 35) into enclosed environments diminished the
bacterial diversity on their skin unless they were housed with a
soil substrate from their natural habitats.

Analogous to captivity in animals, urbanization of human
populations results in more enclosed built environments and
less diverse diets that could have microbiome effects (36). The
household microbiome in rural villages differs from that in
more urban settings (36). Similarly, the microbiome of homes
of pig farmers have greater microbial diversity and abundance
compared to suburban homes (37).

The microbiome of work environments may also affect the
human microbiome. In a study of workers in animal research
laboratories, SourceTracker (a method for inferring microbial
sources) analysis found that the work microbiome contributed
to the oral, nasal and skin microbiome of workers (38).

Microbiome Sharing Between Animals and
Humans
Elements of microbial communities can transfer between both
humans and animals through close contact. A study of the skin
microbiota of co-habiting couples found that in addition to
person-person microbial sharing, pet ownership was associated
with greater skin microbiome diversity (39). Other studies have
found microbiome sharing between humans and dogs in the
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FIGURE 1 | The use of the cutlery, zoo, and city vector icons is licensed under the CC BY 3.0 from www.shareicon.net, www.onlinewebfonts.com/icon, and Thibault

Geffroy of the Noun Project, respectively. The dog, pregnancy, balance scale, biohazard, and cat vector icons were taken from Wikimedia Commons and/or have

been released into the public domain.

same household, in particular skin microbiota (11). Additionally,
cohabiting couples who owned dogs had more skin bacteria in
common than other couples without dogs, potentially due to
the additional transmission vehicle of a pet (11). Another study
found that people living in a household with pets had greater
similarities in their nasal and skin microbiomes compared to
people who did not have pets, suggesting the influence of pets on
promoting microbial exchange (40). Similar patterns have been
reported in sharing of microbes between humans and nearby
livestock. Pig farming has been found to have significant impact
on the nasal microbiome of pig farmers (41). A study of children
in Kenyan villages with close livestock contact found that while
the greatest amount of gut microbiome similarity was between
siblings in the same household, in certain households there was
evidence of sharing ofmicrobiome components between children
and nearby cows (42).

Human and Animal Effects on the
Environmental Microbiome
Source-sink ecological models are based on the concept that there
are high quality habitats (sources) in which organisms thrive and
lower quality habitats (sinks) into which excess organisms move
from the source (13). There is evidence that humans and animals
can be a source of microbes moving to their environmental sink.
More urbanized and walled-in built environments have a greater
content of human-associated microbes compared to more rural
and open dwellings (36). Introducing pets into a household can
lead to significant changes in the house dust microbiome (43, 44).
Often this colonization of environmental sinks by humans and
animals is rapid and the environmental microbial signatures
transient unless there is continual shedding and presence of the
source (13, 45).

Environmental Chemical and Pathogen
Interactions With the Human Microbiome
Exposure to chemicals in the environment can induce
dysbiotic changes to gut microbiome composition or alter
the metabolic activity of the gut microbiota (46). Conversely,
differences in the composition of the gut microbiota can
alter how environmental toxicants are metabolized (46). The
health relevance and mechanisms of such interactions are
active areas of investigation (47, 48). Taking antibiotics can
significantly reduce human gut microbiome diversity and
abundance (49). Through enzyme families such as azoreductases,
nitroreductases, β-glucuronidases, sulfatases, and β-lyases (46),
gut microorganisms can influence xenobiotic metabolism.
Gut bacteria can also metabolize a variety of environmental
chemicals such as polycyclic aromatic hydrocarbons (PAHs)
pesticides, polychlorobiphenyls, benzene derivatives, melamine,
artificial sweeteners, and metals (46), altering toxicity (50–52).
Other microbiomes beside the gut may modulate response to
environmental toxicants. Studies in rodents indicate that the
respiratory microbiome, by producing short chain fatty acids,
can modulate the airway response to ozone exposure (53).

Implications of Non-pathogenic Microbial
Transfer for Human Health
While the consequences of transfer of pathogenic microbes
are apparent, a growing literature also addresses the health
consequences of transmission of non-pathogenic microbes
between humans, animals, and the environment. Infants with
fewer microbial exposures, such as those experiencing C-section
births and urbanized environments, have been found to have
higher asthma and allergy risk compared to children growing
up on farms, supporting the “hygiene hypothesis” (54). The
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microbiome of dust samples has been found to differ between
houses of children with and without asthma (27), and the
diversity of a house dust microbial community can be a predictor
of asthmatic status in children residing in that household (28).
Gnotobiotic mouse models support the causal effects of non-
pathogenic microbial transmission on host health. For example,
transfer of feces from obese humans to gnotobioticmice increases
weight gain relative to gnotobiotic mice transplanted with feces
from lean humans (55). In combination with the effects of
microbiome composition on the metabolism of pharmaceuticals
and environmental toxicants, these observations suggest that
transfer of non-pathogenic microbes can have significant health
consequences.

STATISTICAL TOOLS FOR ANALYZING
ONE HEALTH MICROBIOME
RELATIONSHIPS

Uncovering Interactions Between Human,
Animal, and Environmental Microbiomes
One Health approaches aim to understand the reciprocal
influences of human, animal, and environmental microbiomes
on one another in order to ultimately design interventions
that improve human health. A first step in doing so is to
characterize how a factor of interest alters microbial communities
and human health. Follow-up studies that directly manipulate
the microbiome (e.g., in gnotobiotic mice) can help to test
whether observed microbiome changes play a causal role,
or represent a secondary consequences of changes in health
status.

After sample collection and extraction of microbial DNA,
marker gene sequencing amplifies a gene of interest and then
sequences it to infer the phylogeny and taxonomic composition
of a microbiome. Commonly targeted genes include the 16S
ribosomal RNA(16S rRNA) gene for studies of bacteria and
archaea, ITS2 for studies of fungi, or the 18S rRNA gene
for microbial eukaryotes. In contrast, shotgun metagenomics
fragments and sequences all available microbial DNA, and then
analyzes the set of sequences to identify not only bacterial species,
but also the presence, absence, and variety of particular genes
(56, 57).When conducted at very high sequencing depth, shotgun
metagenomics can also recover partial microbial genomes using
compositional binning or correlations in genes belonging to the
same organism across samples (58).Whatever technology is used,
careful sampling design that addresses the specific hypotheses
to be tested, and collection of sufficient metadata (e.g., on
confounding variables) are essential to allowing results to be
interpretable (59).

Typical questions thatcan be addressed through microbiome
sequencing approaches, in combination with targeted
experiments, include: what external factors influence the
microbiome; how each of those factors alters microbiome
richness and evenness (60–62), composition (63–66), stability,
and function; the source (67), direction, and magnitude of
microbial transfers; and which microbial species (or species
consortia) mediate key health outcomes (Box 1).

Toward Predictive Models of Microbial
Transfer
Predicting and potentially manipulating transfers of microbes
between humans, animals, and the environment depends on
an understanding of the factors that allow or inhibit transfers.
This objective parallels the role of predictive models—such as
human exposure modeling—in exposure science, with the added
complication that the exposures in question are biological entities
with their own complex ecological and evolutionary dynamics.

Indicator species analysis has been a key method for
detecting the source of microbial contamination of sites in
the environment (87). However, indicator species methods

typically assume that there are species unique to source vs.
sink samples. Dirchlet multinomial models are an alternative
approach that try to explain observed microbial communities
as a mixture of microbial profiles from different source

communities, as occurs during transfer of microbes. For example,
SourceTracker software uses a estimates the proportion of a
particular microbiome comprising microbes from a specified
source (88). However, because microbial transmission can be
circular in a closed system, longitudinal datasets or additional

experiments are often needed to establish the direction and
dynamics of microbial transmission. Lax et al. addressed this by
applying SourceTracker longitudinally to examine transmission
of microbes between seven families and their homes during
periods of continuous residence vs. moves (45). They additionally

coupled their SourceTracker analyses with dynamic Bayesian
networks to test the direction of microbial transfer and confirm
that humans were more likely to be sources of bacteria than
physical surfaces. One limitation of SourceTracker is that
all source samples are considered separately—interdependence

between source environments is not modeled. One solution
currently being explored by packages such as BioMiCo is to
model source environments hierarchically (89). All of these
methods still assume that transfer was instantaneous. Accurately

predicting the consequences of microbiome transfer over
time, or detecting microbiome changes due to past transfers
will likely require more detailed and environment-specific
models that incorporate microbe-microbe, and microbe-phage
interactions.

The ecological concept of keystone species predicts that

certain species can exert especially large influences on microbial
interaction networks (67, 90, 91), including those of the

gut microbiome (92, 93). However the complex interactions

in ecological systems can make it difficult to identify and

validate the presence and role of such keystone species (93).
Lotka-Volterra models of predator-prey interactions are one

approach to inferring competitive and cooperative interactions
within microbial communities (94). The generalized Lotka-
Volterra framework models the dynamics of an arbitrary
number of species and can be extended using a combination of
machine learning and ecological modeling to infer underlying
microbial networks and model time-dependent perturbations
(94). Data driven approaches such as the generalized Lotka-
Volterra framework benefit greatly from time-series data,
emphasizing the need for longitudinal studies. Establishing
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BOX 1 | Microbial ecology methods.

Two primary metrics for describing a microbiome are alpha and beta diversity. Alpha diversity examines the number (richness) and distribution (evenness) of taxa

within a single population (60). Specific metrics for quantifying richness include the number of observed observational taxonomic units (OTUs), and the Chao1

richness estimator (60, 61). Evenness is typically measured with equitability or the Gini index (which is also used to characterize income inequality in economics). The

Simpson index (68) and the Shannon diversity (69) metric incorporate both richness and evenness. Faith’s phylogenetic diversity is a richness measure that weights

richness according to phylogenetic diversity (70). Whatever method is chosen must account for differences in the numbers of sequences in each DNA library. This is

commonly addressed by either randomly resampling each sample to an even number of sequences (rarefaction) or through statistical models designed to incorporate

sequencing depth (71).

Beta-diversity metrics examine the differences between two microbiome communities by quantifying the overlap of shared taxa between them (60). Metrics of beta

diversity include weighted and unweighted UniFrac, Bray-Curtis dissimilarity, and Jaccard index (60, 61, 72, 73). Beta-diversity metrics can be quantitative (e.g.,

weighted UniFrac), taking into account sequence abundance, or qualitative (e.g., unweighted UniFrac), considering only the presence or absence of sequences (74).

They can also be phylogeny-based (e.g., UniFrac) or not (e.g., Bray-Curtis) (61). Beta diversity metrics can be visualized through PCoA plots and different sample

categories, such as cases and controls, tested for differences in composition and dispersion using a variety of methods such as adonis, ANOSIM, PERMANOVA

etc. (74). While predictable shifts in beta-diversity associated with disease have been most commonly studied, care should be taken to characterize variance as well

as increased microbiome instability is associated with multiple human and animal diseases (75). PERMDISP (76, 77) and the betadisper (78) function in the vegan

R package are two common methods for characterizing dispersion in cohort data, whereas time-series datasets allow assessment of the volatility of microbiomes

within individuals over time.

The bacterial 16S ribosomal RNA (rRNA) gene contains 9 hypervariable regions (V1–V9) that are surrounded by conserved regions in most bacteria (79). Choice of

variable region and primers have been shown to have significant effects on biological conclusions (80). While there is no consensus on the “best” target region, the

most commonly sequenced regions surround V2, V4, and V6. V2 and V4 have been found to have the lowest error rates during taxonomic assignment (63, 64)

while the V4–V6 regions have the highest phylogenetic resolution (62). The V1–V3 and V1–V4 regions have also been highly recommended for bacterial analysis

because these regions provide more reliable estimates of species richness and identification, are more divergent and therefore offer more phylogenetic resolution,

and have corresponding sequences that have been cataloged extensively in databases such as RDP (81). Due to the significantly different results that come from

selection of target hypervariable regions and equivalently primers, it is important for cross-study comparability to select a standardized region. In the absence of a

strong motivation for picking another hypervariable region, there are significant potential advantages to sticking with regions cross-comparable with other reference

datasets of interest e.g., Human Microbiome Project or Earth Microbiome Project.

There is also no consensus on the “best” reference database for taxonomic assignment of DNA sequences.This remains an important consideration since the

taxonomy used can have significant effects on study results (64). A recent paper by Balvočiute and Huson compared the SILVA (66), RDP (63), Greengenes (65),

NCBI (82), and Open Tree of Life Taxonomy (OTT) (83) databases (84). The authors recommended the NCBI taxonomy for studies that use both shotgun and 16S

marker gene sequencing data as it is one of the largest taxonomies and is updated daily (84). However, a major advantage of SILVA and Greengenes is that they

are tree-based whereas NCBI is just a taxonomy. For researchers interested in eukaryotic organisms, the SILVA taxonomy is a widely used reference as it contains

comprehensive information for not only Bacteria and Archaea, but also Eukarya (66). For 16S marker gene sequencing studies that involve environmental samples,

SILVA and Greengenes may be of particular utility as these taxonomies contain a number of phylum-level taxa specific to environmental sequences (66). Additionally

for 16S sequencing studies, it may be of interest to note that RDP and SILVA are updated more frequently than Greengenes (last updated in August 2013). Ultimately,

the choice of reference taxonomy is dependent on the research objective keeping in mind that there are strengths and limitations with each reference database and

that choosing a taxonomic reference database similar to reference datasets of interest would be advantageous for cross-study comparability.

Of additional note, data resources, including the percentage of microorganisms with available genome sequences, tend to be much lower in non-model animals

than in humans. This can limit the accuracy of methods such as predictive functional profiling, which rely on sequenced genomes to estimate functional roles from

phylogeny (85) or taxonomy (Tax4Fun), as well as the accuracy of taxonomy assignment methods for shotgun metagenomics that depend on knowledge of gene

family combinations that are diagnostic for particular strains (86).

causality rather than just correlation will continue to be a
major challenge for One Health-related microbiome research.
For example, competitive or cooperative microbial interactions
inferred through modeling can be tested experimentally (in vitro
or in model organisms).

Several recent advances have applied ecological insights
to predict the response of microbiomes. For example, an
understanding of the role of niche competition in microbial
establishment allowed Kearney et al., to engineer a microbe’s
establishment in the human gut by matching the strains known
metabolic capabilities to construction of a niche through addition
of seaweed to the diet (95). Predictions of microbial competition
or cooperation—based on positive or negative co-occurrence
patterns—successfully predicted which microbes would increase
alpha-diversity inNematostella vectensis (96). A similar approach
has been applied in predicting zoonotic viral infections. Risk
factors for the emergence of zoonotic viral infection from
mammal hosts include the phylogenetic relatedness of the host to
humans, animal taxonomy (a proxy for traits), and range overlap
with human populations (likely a proxy for exposure) (97).

Methodological Challenges Particular to
One Health Approaches
Because One Health approaches often compare changes
in human microbiomes with multiple animal or
environmental interactors, several particular methodological
challenges arise that may not apply to purely clinical
studies.

One such challenge for integrated microbiome studies of
humans, animals, and environments will be to disentangle the
role of host genetics on microbial transmission dynamics and
health impacts. Across human patients, genetic differences have
been recognized as an important factors that shapes the gut
microbiota (98). Susceptibility to microbial transfer may be
related to host genetic factors that influence the presence/absence
of microbial strains. Host genetics may also potentially influence
the potential health impacts of transfers that do occur. As
such, future studies examining the role of host genetics in
modulating transmission dynamics are promising avenues for
research. However, the role of host genetics is likely much
larger when comparing breeds of domesticated animals or across
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animal species. A recent analysis of zoonotic viral infections
found bats to be an especially important vector (97). Yet there
are between ∼950 and 1,2502 species of bats worldwide, each
with their own variation in diet, life-history strategy, degree
of overlap with human habitation, and extent of intra-specific
genetic variation. Therefore, One Health approaches will benefit
from ecological and evolutionary studies that distill natural
variation in host-microbe interaction into a more tractable
number of general rules. For example, many groups of animal
and plant groups exhibit phylosymbiosis (99), in which the
overall composition of microbial communities between species
follows the structure of the phylogenetic tree that relates their
hosts.

Animal species are related by the tree-like structure
of evolution. In comparing microbiomes between multiple
animal species, correcting for phylogenetic dependence using
phylogenetic comparative methods is essential (100). Comparing
any traits, including microbiome composition, across animal
species using traditional, phylogenetically-naïve statistic across
species implicitly assumes that all species are equally related
(a “star phylogeny”). This can induce very high rates of false
positives (100). If two traits happen to arise together once by
chance, but the lineages in which they arose subsequently speciate
extensively, the traits will appear to be strongly correlated, even
if the two traits have no causal bearing on one another at
all. This problem is well understood in ecology and evolution,
and can be addressed using methods such as phylogenetic
independent contrasts and phylogenetic generalized least squares
(PGLS). A number of R packages implement these methods,
including ape (101), phangorn (102), phytools (103), picante
(104), caper (105), Geiger (106), and phylolm (107). Similar
considerations apply when comparing features—such as genes
underlying host range—across diverse microbial pathogens or
symbionts (108).

2From the Integrated Taxonomic Information System on-line database. ITIS.

Available online at: http://www.itis.gov (Accessed July 7, 2018).

FUTURE DIRECTIONS AND CHALLENGES

In humans, fecal transplants show significant clinical promise
for treatment of recurrent Clostridium difficile infection (109).
An improved understanding of the health consequences of
different microbiome configurations in humans and animals
could similarly open up opportunities for clinical interventions
that modify the microbiome directly, as well as health policy
interventions that modify it indirectly. With the growing
availability of ’omics data, assessing the health risks and benefits
from particular microbiome relationships will require new
predictive models that take into account complex microbiome
interactions (110). Incorporation of ecological models to predict
the behavior of the ecosystem into such risk assessment may
increase predictive capability. This could include assessing and
modifying the built environment microbiome to enhance the
health of humans and animals in the household. Another
possibility would be to regulate the microbiomes of companion
animals through diet or probiotics to impact their effect on
the health of cohabiting humans. Such intervention possibilities
remain speculative at this point, but a goal of One Health
microbiome research should be to define healthy coexistence
and test interventions to optimize microbiome exchange between
humans, animals, and the environments they share.
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