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Few studies have investigated longitudinal associations between early life phthalate

exposure and subsequent obesity and cardiovascular risks in children with inconsistent

results. We aimed to evaluate the associations between phthalate exposure during

gestation and childhood with offspring obesity and cardiometabolic risk factors in 500

mother-child pairs from the Rhea pregnancy cohort in Crete, Greece. Seven phthalate

metabolites [monoethyl phthalate (MEP), mono-n-butyl phthalate (MnBP), mono-isobutyl

phthalate (MiBP), monobenzyl phthalate (MBzP), mono(2-ethylhexyl) phthalate (MEHP),

mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethyl-5-oxohexyl)

phthalate (MEOHP)] were quantified in spot urine samples collected from mothers

(1st trimester) and their children at 4 years of age. We calculated the molar sum of

DEHP metabolites (MEHP, MEHHP, MEOHP). We measured child weight, height, waist

circumference, skinfold thicknesses, blood pressure (BP), and lipids at 4 and 6 years and

leptin, adiponectin, and C-reactive protein at 4 years. We used generalized estimating

equations to examine associations at each age and tested for interaction by sex. Child

exposure to phthalate metabolites was associated with lower BMI z-scores in boys and

higher BMI z-scores in girls. Each 10-fold increase in ΣDEHP was associated with a

change in waist circumference of −2.6 cm (95% CI: −4.72, −0.48) in boys vs. 2.14 cm

(95% CI:−0.14, 4.43) in girls (p-sex interaction= 0.003) and a change in waist-to-height

ratio of −0.01 (95% CI: −0.03, 0.01) in boys vs. 0.02 (95% CI: 0.01, 0.04) in girls (p-sex

interaction = 0.006). Phthalate metabolite concentrations at age 4 were negatively

associated with systolic and diastolic blood pressure. MEP was associated with lower

systolic BP z-scores (adj. β = −0.22; 95% CI: −0.36, −0.08) at 4 years. MnBP and

MBzP were associated with lower diastolic BP z-scores (adj. β = −0.13; 95%CI: −0.23,

−0.04, and adj. β = −0.11; 95% CI: −0.21, −0.01, respectively). A 10-fold increase
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in MiBP was associated with 4.4% higher total cholesterol levels (95% CI: 0.2, 8.7).

Prenatal phthalate exposure was not consistently associated with child adiposity and

cardiometabolic measures. Our findings suggest that early life phthalate exposure may

affect child growth and adiposity in a sex-specific manner and depends on the timing of

exposure.

Keywords: phthalates, pregnancy, children, obesity, cardiometabolic risk

INTRODUCTION

Childhood obesity is a risk factor for obesity-related health
outcomes such as cardiovascular and other chronic diseases later
in life and one of the most common public health problems
and challenges globally. The global prevalence of childhood
overweight and obesity has increased over the last three decades
to 124 million in 2016 (1) and if current trends continue, the
World Health Organization (WHO) predicts that 70 million
young children will be overweight or obese by 2025 (2). In
Greece, the leading country in the childhood obesity epidemic
worldwide, recent figures show that more than 40% of children
at the age of 5–17 years are overweight or obese (3). Obesity
and associated risk factors, such as high blood pressure and
dyslipidemia, in childhood can induce changes in metabolism
and contribute to the development of atherosclerosis in
adulthood (4). Diet and physical inactivity are recognized causes,
but exposure to environmental chemicals may also contribute to
the pathogenesis of obesity and related cardiometabolic disorders
(5, 6). Obesogens-chemicals that inappropriately regulate and
promote lipid accumulation and adipogenesis-may contribute
to obesity development, especially when exposure occurs during
pregnancy and early life (7–9).

Phthalates, or diesters of phthalic acid, are a class of man-
made chemicals used in a variety of common consumer and
industrial products. Low-molecular weight phthalates (LMWP)
are used as solvents and are typically found in medications and
personal care items such as shampoos, deodorants, and lotions,
while high-molecular weight phthalates (HMWP) are used in
the manufacturing of flexible plastics for purposes such as vinyl
flooring, adhesives, medical devices, and food packaging (10–
12). Exposure to phthalates is almost ubiquitous (13) and may
occur through dermal absorption, inhalation, or ingestion (14).
Moreover, detectable levels of phthalate metabolites have been
found in amniotic fluids and cord blood, indicating fetal exposure
(12). In the Rhea mother-child cohort in Greece, Myridakis et al.
found that daily intake of phthalate esters, calculated for 4 year
old children, was lower than the corresponding daily intake for
2.5 year old children and that phthalate esters generally were
assigned to combined exposure from plastic and diethyl phthalate
from personal hygiene products/cosmetics (15, 16).

Phthalates are endocrine-disrupting chemicals with anti-
androgenic and weakly estrogenic properties (17) and evidence
from experimental studies suggests that phthalates may influence
obesity through several mechanisms, including antithyroid
hormone activities, and/or activation of peroxisome proliferator-
activated receptors (PPARs), and epigenetic modulation (14, 18).

Results from cross-sectional studies in adults and children
show that higher urinary phthalates concentrations are positively
associated with adiposity and cardiometabolic markers (19–23).
However, only a few longitudinal studies have examined the
associations of early-life exposure to phthalate metabolites with
childhood growth and obesity (24–32) and these studies have
shown inconsistent results and sex-specific associations. In utero
exposures were found to be associated with decreased BMI z-
scores only in girls aged 4–7 years (25), or only in boys aged
4–7 years old (28, 29). A study in France that examined only
boys found that prenatal phthalate exposure was associated with
increased BMI at age 5 (26). Additionally, a US study that
examined only girls found that exposure to phthalates at ages
6–8 were associated with a predicted decrease in BMI from the
ages of 7–13 (31). Few studies have examined the effects of
early life phthalate exposure on offspring cardiovascular traits
other than adiposity. Valvi et al. (28) reported that prenatal
exposure to phthalates was associated with lower systolic blood
pressure z-scores at 4–7 years of age in girls but not in boys and
Perng et al. (33) reported that concurrent exposure to phthalates
was associated with lower cholesterol levels at 8–14 years
of age.

In the present study, using data from the Rhea birth cohort,
we assessed whether urinary phthalate metabolite concentrations
in pregnant women and their children in early childhood
were associated with measures of adiposity and a full range of
cardiometabolic traits at ages 4–6 years and evaluated differences
by child’s sex.

MATERIALS AND METHODS

Subjects and Study Design
The present study is part of the Rhea Study, a prospectivemother-
child cohort examining a population sample of pregnant women
and their children at the prefecture of Heraklion, Crete, Greece.
Methods are described in detail elsewhere (34). Briefly, women
(Greek and immigrants) who became pregnant during a period
of 1 year starting in February 2007 were asked to participate
in the study. The first contact was made at the time of the
first comprehensive ultrasound examination (mean ± SD 11.96
± 1.49 weeks) and several contacts followed (6th month of
pregnancy, at birth, 9 months, 1st year, 4 and 6 years after birth).
To be eligible for inclusion in the study, women had to have a
good understanding of the Greek language and be older than 16
years of age. The study was approved by the ethics committee
of the University Hospital in Heraklion, Crete, Greece, and all
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participants provided written informed consent after complete
description of the study.

Of 1363 singleton live births in the Rhea study, phthalate
concentrations were measured in spot urine samples collected
in the first trimester of pregnancy from 260 mothers and 500
children at 4 years of age; 500 children had at least one measure
of BMI between 4 and 6 years of age.

Maternal and Child Phthalate Biomarkers
Measurements
All spot urine samples were collected in sterile, polypropylene
urine cups, aliquoted in 4ml cryotube vials (Thermo
Fisher Scientific, USA) and stored at −80◦C. Analyses
were performed at the Environmental Chemical Processes
Laboratory (ECPL) in the Department of Chemistry of the
University of Crete. An aliquot of each urine sample (1mL)
was analyzed for the determination of the following 7 phthalate
metabolites, using a previously described analytical protocol
(35): monoethyl phthalate (MEP), mono-n-butyl phthalate
(MnBP), mono-isobutyl phthalate (MiBP), monobenzyl
phthalate (MBzP), mono(2-ethylhexyl) phthalate (MEHP),
mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and
mono(2-ethyl-5-oxohexyl) phthalate (MEOHP). Samples
exceeding the upper limit of linearity were reanalyzed, diluted
with nanopure water. Two quality control samples (spiked
pooled urine) and two blank samples (synthetic urine) were
analyzed with every forty six (46) urine samples. The amount
of each sample was quantified by the standard curve performed
in each assay. All samples were measured in duplicates. We
calculated the molar sums of ΣDEHP metabolites (MEHP,
MEHHP, and MEOHP) by dividing metabolite concentrations
by their molecular weight (MW) and summing across. Method
limit of detection (LOD) ranged from 0.01 to 2.5 ng/mL and
samples below LOD were assigned the value of LOD/

√
2. To

account for urine dilution, a second aliquot of 0.5mL urine was
analyzed for creatinine concentration using the OLYMPUS 2700
immunoassay system (Beckman Coulter, USA), and phthalate
metabolites concentrations were divided by urinary creatinine
levels (i.e., creatinine-adjusted concentrations, hereafter). All
creatinine-adjusted concentrations were log10 transformed to
obtain normal distributions, as the original distributions were
right skewed.

Child Anthropometry
At 4 and 6 years, child anthropometry measures, including
weight and length/height, waist circumference and skinfold
thickness at four sites of the body (subscapular, triceps,
suprailiac, and quadriceps) were obtained by specially trained
research assistants following standard operating procedures. We
calculated BMI (weight/height2) and converted raw values into
sex- and age-specific standard deviation (SD) scores (z scores)
by using internally generated growth reference curves (36). We
analyzed child BMI z-score as a continuous outcome and in
categories of overweight/obesity at 4 and 6 years according to the
BMI cutoff points for sex and age proposed by the International
Obesity Task Force (IOTF) definitions (37). The sum of the
four aforementioned skinfolds was calculated as an indicator of

subcutaneous fat. We also divided child waist circumference by
height to calculate the waist-to-height ratio.

Child Cardiometabolic Risk Factors
At the 4 and 6 year examination, after 5min rest in the seated
position, trained research assistants measured systolic (SBP), and
diastolic (DBP) blood pressure levels on the child’s right arm
using an automatic oscillometric device (Dinamap, Pro Care
400) with a cuff of appropriate size for arm circumference. Five
measurements were made with 1min intervals and the average
of these measurements was used for analysis (38). We calculated
age, sex, and height specific blood pressure SD scores. Non-
fasting blood samples were collected from the children at the end
of the visit in 10mL BD gel separator vacutainers with the use of
standard procedures, with samples immediately spun, separated,
and frozen at −80◦C. Analysis of lipids (total cholesterol and
high-density lipoprotein cholesterol [HDL-C]) was performed
by standard enzymatic methods (Medicon, Greece). Leptin,
adiponectin, and CRP levels were measured at 4 years of age. All
inter- and intra-assay coefficients of variation were <5.5%.

Statistical Analysis
Descriptive analyses of the study population characteristics,
exposures, and outcomes were conducted. Generalized additive
models (GAMs) were applied to explore the shape of the
relationships between prenatal or early-childhood phthalate
metabolite concentrations and outcomes under study. Linearity
was assumed if the p-gain defined as the difference in normalized
deviance between the GAM model and the linear model for the
same exposure and outcome was >0.10. We used generalized
estimating equations (GEEs) with a Gaussian or Poisson
family specification and with exchangeable correlation structure
to examine the associations between phthalate metabolite
concentrations and repeated continuous and binary outcomes,
respectively. We included interaction terms between the
exposure variable and child age at examination to explore the
possibility of age-specific associations. We used linear regression
analyses to test whether phthalatemetabolite concentrations were
associated with serum leptin, adiponectin and CRP levels at
4 years. Due to non-normal distributions, we natural log-(ln)-
transformed serum leptin, adiponectin, and CRP levels at 4 years,
and total and HDL cholesterol at 4 and 6 years and present results
as a % difference in each of these outcomes per 10-fold increase
in exposure.

For every outcome variable, we first studied the association
of interest in the crude model. To control for confounding,
we considered maternal and child covariates that were of a
priori interest as independent predictors of child adiposity and
growth or that may be related to phthalate levels: maternal
pre-pregnancy BMI (kg/m2), maternal age at birth (years),
parity (primiparous, multiparous), maternal educational level
[low level: ≤9 years of mandatory schooling, medium level:
>9 years of schooling up to attending post-secondary school
education and high level: attending university or having a
university/technical college degree], smoking during pregnancy
(never, ever), gestational weight gain [GWG (kg)], ethnic origin
(Greek, non-Greek), residence (urban, rural), delivery type
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(vaginal delivery, cesarean section), delivery hospital (private,
public), marital status (married, not married), and working
during pregnancy (yes, no), breastfeeding (yes, no), gestational
length, sex, age at outcome assessment, time watching television
at 4 and 6 years (<30min, 1–2 h, ≥3 h per day), and child’s BMI
at 4 and 6 years (for models that used cardiometabolic risk factors
as outcomes). We included covariates in the final models if they

TABLE 1 | Maternal and child characteristics, Mother-child cohort “Rhea” in

Crete, Greece (n = 500).

N % or Mean ± SD

MATERNAL CHARACTERISTICS

Maternal age (years) 497 29.5 ± 5.1

Pre-pregnancy BMI (kg/m2)

Underweight (<18.5) 23 4.9

Normal (≥18.5–25) 291 61.8

Overweight (≥25–30) 96 20.4

Obese (≥30) 61 13.0

Gestational weight gain (kg) 406 13.5 ± 5.7

Ethnic origin (Greek, %) 469 94.8

Education

Low 89 18.2

Medium 255 52.4

High 143 29.4

Parity (multiparous, %) 269 56.3

Smoking during pregnancy (yes, %) 166 36.1

Breastfeeding (yes, %) 406 86.2

Breastfeeding (months) 471 4.1 ± 4.3

CHILD CHARACTERISTICS

INFANCY

Sex (boy, %) 279 55.5

Birth weight (g) 479 3203 ± 462.8

Gestational age (completed weeks) 475 38.2 ± 1.5

AT 4 YEARS OF AGE

Weight (kg) 500 18.4 ± 3.1

Height (cm) 500 105.3 ± 4.3

BMI (kg/m2) 500 16.5 ± 1.9

Overweight/obese (yes, %) 120 23.9

Waist circumference (cm) 500 53.8 ± 5.0

Sum of skinfolds (mm) 463 41.0 ± 13.9

Systolic blood pressure (mmHg) 388 90.5 ± 7.5

Diastolic blood pressure (mmHg) 388 53.4 ± 5.3

Total cholesterol (mg/dL) 475 155.6 ± 27.7

HDL-C (mg/dL) 475 49.5 ± 11.0

C-reactive protein (mg/dl) 438 0.2 ± 0.7

Leptin (ng/ml) 479 3.1 ± 3.9

Adiponectin (ug/ml) 461 15.5 ± 8.8

AT 6 YEARS OF AGE

Weight (kg) 331 25.1 ± 5.4

Height (m) 331 1.2 ± 0.1

BMI (kg/m2) 331 17.2 ± 2.8

Overweight/obese (yes, %) 74 22.4

Waist circumference (cm) 330 59.2 ± 4.5

Sum of skinfolds (mm) 281 47.9 ± 47.3

Systolic blood pressure (mmHg) 329 105.1 ± 89.9

Diastolic blood pressure (mmHg) 329 65.1 ± 93.6

Total cholesterol (mg/dL) 312 161.7 ± 23.9

HDL-C (mg/dL) 312 58.2 ± 11.9

were associated with both exposure and any of the outcomes at
p-value < 0.2 or if they modified the coefficient for the phthalate
exposure variable by >10%. To assess the potential modifying
effects of child sex (male, female), we included interaction terms
between the exposure variable and sex in themodels and stratified
the sample, on the basis of prior studies (25, 28, 29). We also
performed sensitivity analysis in order to explore remaining
confounding. In particular, we repeated the analyses excluding
children who had been born preterm (<37 gestational weeks) or
at low birth weight (<2,500 g). Statistical significance was defined
by an alpha level of 0.10 for interaction terms and of 0.05 for
all other effect estimates. Analyses were conducted using STATA
software, version 13.0 (Statacorp, College Station, TX).

RESULTS

Maternal and child characteristics of the study population are
presented in Table 1. Participating mothers were predominantly
of Greek origin, had a mean (±SD) age of 29.5 (± 5.1) years
at delivery, about half of them had medium educational level
(52%) and were multiparous (56%). Before pregnancy, 20% of
mothers were overweight, themajority ofmothers (86%) initiated
breastfeeding and the mean (±SD) length of breastfeeding was
4.1 (± 4.3) months. Fifty-six percent of the children included in
the analysis were boys, their mean (±SD) birth weight was 3,203
(± 462.8) g and the average (±SD) gestation was 38.2 (± 1.5)
weeks. Twenty four percent of the children were overweight at 4
years and 22% at 6 years.

The distribution of urinary phthalate metabolite
concentrations in the pregnant women and their children
is shown in Table 2. The majority of samples show detectable
concentrations of creatinine-corrected metabolites, with the
lowest detection in MEOHP in the mothers. The phthalate
metabolite with the highest concentrations in maternal and child
urine was MEP. Spearman correlations of creatinine-corrected
individual phthalate metabolites were weakly to highly correlated
(range 0.11–0.95) within each time period while concentrations
between prenatal and child measures were not consistently
correlated with each other (data not shown).

GAMs examining the shape of the relationships of phthalate
metabolite concentrations at age 4 with adiposity indicators and
cardiometabolic risk factors at all ages showed no significant
departures from linearity (see Figure S1 for blood pressure at
age 4).

Prenatal MnBP was associated with a change in waist-to-
height ratio at ages 4 to 6 years of 0.19 (95% CI: 0.11, 0.27) in boys
vs.−0.01 (95% CI:−0.03, 0.01) in girls (p-sex interaction<0.001;
see Table S1). MiBP was associated with lower diastolic BP z-
score overall (adj. β = −0.2; 95% CI: −0.37, −0.03) and in
boys (adj. β = −0.26; 95% CI: −0.48, −0.04; Table 3). There
was a marginally significant association between ΣDEHP and
systolic (adj. β = −0.16; 95% CI: −0.35, 0.03) and diastolic
(adj. β = −0.12; 95% CI: −0.25, 0.01) BP z-score. There was a
significant interaction of prenatal MEP and age (P-interaction <

0.05); the association betweenMEP and HDL-C was negative at 4
years (adj. β = −5.8; 95% CI: −11.3, 0.0) and positive but not
statistically significant at 6 years of age (adj. β = 2.8; 95% CI:
−3.6, 9.7).
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TABLE 2 | Maternal and children urinary concentrations of phthalate metabolites (µg/g creatinine), Mother-child cohort “Rhea” in Crete, Greece.

Percentile

LOD %>LOD GM (GSD) min 25th 50th 75th max

Prenatal (n = 230)

MEP 1.26 100 141.1 (3.7) 4.8 55.0 130.6 389.5 3993.8

MnBP 2.48 98.1 37.1 (2.4) 0.7 23.3 38.6 59.6 720.0

MiBP 2.09 95.8 33.5 (3.1) 2.5 16.8 33.5 61.3 48799.3

MBzP 1.76 96.6 23.1 (2.9) 0.4 13.2 25.6 39.5 5095.4

MEHP 2.20 92.4 16.0 (3.1) 0.4 8.9 16.5 30.0 2935.4

MEHHP 0.82 91.7 7.1 (2.5) 0.9 3.9 7.0 12.1 132.0

MEOHP 0.94 72.0 6.9 (3.3) 0.7 2.8 7.3 13.7 2765.3

ΣDEHPa – – 0.1 (2.6) 0.02 0.1 0.1 0.2 20.2

Child (n = 500)

MEP 0.40 99.8 62.7 (2.9) 0.9 31.2 53.7 111.5 17611.8

MnBP 0.25 93.4 21.7 (4.6) 0.2 15.5 28.1 53.0 695.0

MiBP 0.41 96.8 41.1 (3.3) 0.2 28.9 49.3 79.4 671.4

MBzP 0.02 99.0 7.4 (3.2) 0.0 3.8 7.0 13.6 313.6

MEHP 0.84 100 11.1 (2.3) 1.7 6.1 10.5 19.4 300.7

MEHHP 0.01 100 43.3 (2.3) 0.2 26.9 40.9 68.1 2246.1

MEOHP 0.18 100 34.6 (2.4) 0.4 21.3 35.4 58.3 1652.7

ΣDEHPa – – 0.3 (2.1) 0.01 0.2 0.3 0.5 14.1

ΣDEHP: molar sum of MEHP, MEHHP, MEOHP. a
∑
DEHP is expressed as micromoles/g.

Child sex modified the relationships between MnBP and
ΣDEHP and CRP at 4 years (Table 5). A 10-fold increase
in prenatal MnBP was associated with −49.1% (95% CI:
−76.7, 11.2) lower and 144.3% (95% CI: 26.0, 373.8; p-sex
interaction = 0.001) higher CRP levels in boys and girls,
respectively (p-sex interaction=0.001; Table 5). Associations
of prenatal ΣDEHP with CRP were negative in boys (adj.
β = −22.8; 95% CI: −58.8, 44.7) and positive in girls (adj.
β = 116; 95% CI: −18.9, 475.1; p-sex interaction = 0.053) but
not statistically significant. There were no other associations with
adiposity indicators and cardiometabolic risk factors detected
from the prenatal exposure period and we did not observe any
modification of associations by sex.

Overall, creatinine-adjusted phthalate metabolite
concentrations at age 4 were not significantly associated
with BMI z-scores at 4 to 6 years of age (Figure 1 and
Table S2). However, we detected sex-specific associations
with respect to postnatal exposure. Child urinary phthalate
metabolite concentrations were negatively associated with
BMI z-scores in boys and positively in girls at ages 4 to 6
(Figure 1). MEP and MnBP were associated with lower BMI
z-scores in boys (adj. β = −0.22; 95% CI: −0.44, −0.01 and
adj. β = −0.1; 95% CI: −0.35, −0.15, respectively) and with
higher BMI z-scores in girls (adj. β = 0.17; 95% CI: −0.12,
0.45 and adj. β = 0.39; 95% CI: 0.11, 0.66, respectively; p-
sex interaction = 0.051 and 0.010, respectively; Table S2).
Each 10-fold increase in MiBP was associated with a change
in BMI z-score of −0.31 (95% CI: −0.6, −0.02) in boys vs.
0.74 (95% CI: 0.37, 1.1) in girls (p-sex interaction<0.001).
Similar associations were observed for ΣDEHP (Figure 1 and

Table S2). When we analyzed dichotomous outcomes, results
for overweight were consistent with those for BMI z-scores (data
not shown).

Similarly, child urinary phthalate metabolite concentrations
were negatively associated with waist circumference, sum of
skinfolds and waist-to-height ratio in boys and positively in girls
at age 4 and 6 (Table S2). For example, each 10-fold increase of
ΣDEHP was associated with a change in waist circumference of
−2.6 (95% CI: −4.72, −0.48) in boys vs. 2.14 (95% CI: −0.14,
4.43) in girls (p-sex interaction = 0.003) and a change in waist-
to-height ratio of −0.01 (95% CI: −0.03, 0.01) in boys vs. 0.02
(95% CI: 0.01, 0.04) in girls (p-sex interaction= 0.006).

We observed consistent negative associations between
phthalate metabolite concentrations at age 4 and systolic and
diastolic blood pressure at all ages, overall and in girls and boys
separately (Table 4). For example, MEP was associated with
lower systolic BP z-score (adj. β=−0.22; 95% CI:−0.36,−0.08).
MnBP and MBzP were associated with lower diastolic BP z-score
(adj. β = −0.13; 95%CI: −0.23, −0.04 and adj. β = −0.11; 95%
CI: −0.21, −0.01, respectively). A 10-fold increase in MiBP was
associated with 4.4% higher total cholesterol levels (95% CI:
0.2, 8.7).

Sex modified the associations between child MBzP and leptin
(p-sex interaction= 0.059), and childMnBP,MBzP, andΣDEHP
and adiponectin (p-sex interaction = 0.047, 0.082, and 0.016,
respectively) with negative associations in boys vs. positive in
girls at 4 years, but none of the associations reached the level
of statistical significance (Table 5). In contrast, among boys we
observed higher CRP with increases in ΣDEHP whereas in girls
the association was positive (p-sex interaction= 0.021).
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TABLE 3 | Sex-stratified associations between prenatal urinary individual and summed ΣDEHP phthalate metabolites (log10 Transformed, in µg/g Creatinine) with lipids

and blood pressure levels in children aged 4–6 years.

All Boys Girls

n β (95% CI) n β (95% CI) n β (95% CI) p-sex interaction

Systolic BP z-score

MEP 206 0.02 (−0.13, 0.18) 117 −0.04 (−0.24, 0.15) 89 0.13 (−0.12, 0.38) 0.176

MnBP 195 −0.08 (−0.29, 0.13) 114 0.01 (−0.25, 0.26) 81 −0.18 (−0.54, 0.18) 0.429

MiBP 202 −0.03 (−0.28, 0.22) 116 −0.16 (−0.49, 0.17) 86 0.17 (−0.2, 0.54) 0.136

MBzP 174 0.06 (−0.19, 0.32) 98 0.18 (−0.12, 0.47) 76 −0.23 (−0.7, 0.25) 0.213

ΣDEHP 189 −0.16 (−0.35, 0.03) 111 −0.09 (−0.31, 0.13) 78 −0.28 (−0.65, 0.1) 0.489

Diastolic BP z-score

MEP 206 −0.02 (−0.13, 0.09) 117 −0.07 (−0.2, 0.07) 89 0.04 (−0.13, 0.21) 0.201

MnBP 195 −0.08 (−0.22, 0.07) 114 −0.04 (−0.21, 0.14) 81 −0.09 (−0.34, 0.15) 0.890

MiBP 202 −0.2 (−0.37, −0.03) 116 −0.26 (−0.48, −0.04) 86 −0.08 (−0.33, 0.17) 0.266

MBzP 174 0.04 (−0.14, 0.22) 98 0.1 (−0.1, 0.31) 76 −0.06 (−0.39, 0.27) 0.372

ΣDEHP 189 −0.12 (−0.25, 0.01) 111 −0.09 (−0.24, 0.05) 78 −0.17 (−0.42, 0.08) 0.636

Total Cholesterol % Change (95% CI) % Change (95% CI) % Change (95% CI) p-sex interaction

MEP 208 −1.0 (−4.7, 2.8) 114 −2.5 (−7.3, 2.6) 94 0.9 (−4.5, 6.7) 0.420

MnBP 197 1.9 (−2.3, 6.4) 111 −1.5 (−7.5, 4.8) 86 4.4 (−1.5, 10.6) 0.155

MiBP 202 1.4 (−4.3, 7.5) 113 −2.0 (−9.8, 6.4) 89 5.1 (−2.9, 13.7) 0.277

MBzP 178 1.8 (−4.4, 8.3) 97 −1.4 (−9, 6.9) 81 7.9 (−2, 18.8) 0.129

ΣDEHP 192 2.8 (−1.8, 7.7) 108 −0.1 (−5.5, 5.6) 84 9.1 (0.7, 18.2) 0.074

HDL-C

MEP 208 −2.0 (−7.1, 3.3)* 114 −3.9 (−9.8, 2.4) 94 −0.8 (−8.9, 7.9) 0.456

MnBP 197 −3.2 (−9.0, 3.0) 111 −2.5 (−10.1, 5.7) 86 −4.9 (−13.1, 4.1) 0.797

MiBP 202 1.6 (−6.4, 10.2) 113 −2.3 (−12, 8.4) 89 7.2 (−5.1, 21.1) 0.427

MBzP 178 4.7 (−4.0, 14.1) 97 4.2 (−5.5, 14.8) 81 6.7 (−8.1, 23.8) 0.571

ΣDEHP 192 1.2 (−5.1, 7.8) 108 0.6 (−6.0, 7.6) 84 0.3 (−11.5, 13.8) 0.960

ΣDEHP: molar sum of MEHP, MEHHP, MEOHP. Total and HDL Cholesterol were log transformed to normalize their distributions. We calculated percent change by exponentiating beta

coefficients, subtracting by 1 and multiplying by 100. All models are adjusted for child sex, exact age at examination, and maternal characteristics (age at delivery, parity, education,

pre-pregnancy BMI, and smoking in pregnancy). Statistically significant associations (P <0.05) are displayed in bold type.*Interaction of exposure variable with child age at examination

is statistically significant (P < 0.10).

Effect estimates of the crude models for the associations
between phthalate metabolite concentrations and all the obesity-
related outcomes under study did not differ substantially from
the final models adjusted for child and maternal characteristics
(data not shown). The exclusion of preterm newborns and infants
with low birth weight did not appreciably change our results (data
not shown).

DISCUSSION

In this prospective cohort study we found that childhood
exposure to phthalate metabolites was associated with markers
of adiposity and metabolic function and many of these
associations were dependent on sex. Additionally, we observed
consistent negative associations between phthalate metabolite
concentrations at age 4 and systolic and diastolic blood pressure
at all ages, overall and in girls or boys separately. To our
knowledge this study is the first to examine the relationship
between exposure to phthalate metabolites measured prenatally
and during childhood with repeated measures of adiposity and a
full range of cardiometabolic traits in children.

We observed that child phthalate concentrations were
negatively associated with BMI z-score, waist circumference, sum
of skinfolds and waist-to-height ratio in boys and positively
in girls at age 4 to 6. These findings are consistent with
the observations by Yang et al. (27) that, in cross-sectional
analyses, found a negative association of child’s urine phthalate
concentrations with waist circumference and sum of skinfold
thicknesses in boys. However, our findings are not consistent
with a US study that examined only girls and found that
exposure to phthalates at ages 6–8 were associated with a
predicted decrease in BMI from the ages of 7–13 (31). We
did not observe statistically significant associations between
prenatal phthalate metabolites and any of the examined adiposity
measures in childhood, consistent with observations from US
cohort, where no associations with fat mass in children aged
4–9 years were observed (24), a Mexican study that did not
observe any relationships between prenatal phthalate exposure
and child BMI after excluding children who had initiated
puberty (27) and the HOME study from Ohio that reported
no association between prenatal phthalate exposure and child
adiposity at age 8. However, depending on age, sex, timing
of exposure, and phthalate metabolites, other studies report
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TABLE 4 | Sex-stratified associations between child urinary individual and summed ΣDEHP phthalate metabolites (log10 Transformed, in µg/g Creatinine) with lipids and

blood pressure levels in children aged 4–6 years.

All Boys Girls

n β (95% CI) n β (95% CI) n β (95% CI) p-sex interaction

Systolic BP Z-score

MEP 409 −0.22 (−0.36, −0.08) 229 −0.23 (−0.4, −0.05) 180 −0.18 (−0.41, 0.05) 0.829

MnBP 385 −0.09 (−0.24, 0.06) 213 −0.09 (−0.3, 0.11) 172 −0.11 (−0.33, 0.11) 0.726

MiBP 399 0.05 (−0.14, 0.24) 223 0.01 (−0.23, 0.24) 176 0.03 (−0.27, 0.34) 0.872

MBzP 404 −0.01 (−0.16, 0.14) 228 −0.03 (−0.22, 0.16) 176 0.02 (−0.22, 0.26) 0.846

ΣDEHP 409 −0.1 (−0.3, 0.1) 229 −0.15 (−0.42, 0.11) 180 −0.06 (−0.37, 0.24) 0.848

Diastolic BP Z-score

MEP 409 −0.09 (−0.18, 0.01) 229 −0.06 (−0.18, 0.05) 180 −0.12 (−0.27, 0.04) 0.518

MnBP 385 −0.13 (−0.23, −0.04) 213 −0.16 (−0.29, −0.02) 172 −0.13 (−0.27, 0.02) 0.977

MiBP 399 −0.04 (−0.16, 0.09) 223 −0.1 (−0.25, 0.05) 176 −0.01 (−0.21, 0.2) 0.515

MBzP 404 −0.11 (−0.21, −0.01) 228 −0.1 (−0.22, 0.03) 176 −0.14 (−0.3, 0.02) 0.538

ΣDEHP 409 −0.04 (−0.18, 0.09) 229 −0.14 (−0.31, 0.04) 180 0.02 (−0.19, 0.23) 0.275

Total Cholesterol % Change (95% CI) % Change (95% CI) % Change (95% CI) p-sex interaction

MEP 436 −0.1 (−3.1, 3) 243 1.5 (−2.6, 5.7) 193 −3.6 (−8.1, 1.2) 0.128

MnBP 408 0.9 (−2.3, 4.2) 225 1.5 (−3.1, 6.2) 183 0.5 (−3.8, 5.1) 0.966

MiBP 423 4.4 (0.2, 8.7) 235 2.3 (−3.1, 8) 188 7.6 (1.1, 14.6) 0.248

MBzP 431 2.7 (−0.6, 6.1) 242 1 (−3.2, 5.5) 189 5.1 (0, 10.5) 0.224

ΣDEHP 436 3.1 (−1.3, 7.7) 243 −0.5 (−6.3, 5.6) 193 7.1 (0.5, 14.1) 0.075

HDL-C

MEP 436 0.8 (−3, 4.7) 243 2.7 (−2.2, 7.7) 193 −2.8 (−8.6, 3.5) 0.170

MnBP 408 1.2 (−2.8, 5.4) 225 2.4 (−3, 8.1) 183 −0.5 (−6.1, 5.5) 0.997

MiBP 423 0.8 (−4.1, 6) 235 1.3 (−5, 8.1) 188 1.2 (−6.6, 9.6) 0.869

MBzP 431 −0.2 (−4.2, 3.9) 242 −1.7 (−6.6, 3.5) 189 0.3 (−5.9, 6.8) 0.443

ΣDEHP 436 4.3 (−1.2, 10.2) 243 5.5 (−1.8, 13.3) 193 3.1 (−5.1, 11.9) 0.913

ΣDEHP: molar sum of MEHP, MEHHP, MEOHP. Total and HDL Cholesterol were log transformed to normalize their distributions. We calculated percent change by exponentiating beta

coefficients, subtracting by 1 and multiplying by 100. All models are adjusted for child sex, exact age at examination, and maternal characteristics (age at delivery, parity, education,

pre-pregnancy BMI, and smoking in pregnancy). Statistically significant associations (P <0.05) are displayed in bold type.

discrepant findings (25, 26, 28–32). Prenatal exposure to MEP
was associated with increased obesity outcomes at ages 5–
12 years (30) and increased weight growth velocity at ages
2 and 4 years and increased BMI at 5 years in boys from
the French EDEN cohort (26). Furthermore, in utero exposure
to phthalate metabolites was associated with increased BMI
and risk for overweight/obesity between 5 and 12 years of
age in the US CHAMACOS study (30). In contrast, prenatal
exposure to different phthalate metabolites was associated with
decreased BMI z-scores only in girls aged 4–7 years (25),
or only in boys aged 4 or 7 years old (28), and 5–7 years
old (29).

Our results indicate that that exposure to phthalates may
influence adiposity differently in boys and girls. Although still not
clear, there are several potential biologic mechanisms underlying
associations between phthalates and body size that may be
linked to some of the previously observed sex-specific effects.
The most plausible mechanism for associations, specifically for
body weight and adiposity measures, is that phthalates interfere
with peroxisome proliferator-activated receptors (PPARs),
which are involved in the metabolism of fat, carbohydrates, and
protein (18) and are key regulators of adipogenesis and energy

storage, in both rodent and human cell lines (39). Phthalates can
activate PPAR-γ resulting in changes in adipocyte differentiation
and release of leptin and adiponectin from adipocytes (40).
We found some evidence suggesting that sex also modifies
the association between phthalates and adipokines. Because
early childhood adiposity has been positively associated with
leptin levels (41) these sexually dimorphic associations might
explain the positive associations that we observed with adiposity
markers in girls, however, effect heterogeneity by child sex merit
further exploration in larger populations. Moreover, differences
in PPAR activity by sex could potentially explain sex-specific
associations (42–44). Some phthalates also have anti-androgenic
and weakly estrogenic properties (17) and they have been
associated with altered sexual differentiation in male rodents
(45), lower testosterone levels in an vitro study using human
testis (46), and decreased steroid hormone levels in adult men
(47) which may explain some of the sex differences reported
previously. Another potential mechanism linking phthalates
to obesity is through thyroid disruption (14) and negative
associations of phthalates with thyroid hormones, insulin-like
growth factor I (IGF-I), and growth have been reported in
children (48).
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TABLE 5 | Sex-stratified associations between maternal and child urinary individual and summed ΣDEHP phthalate metabolites (log10 Transformed, in µg/g Creatinine)

with leptin, adiponectin and CRP levels in children aged 4 years.

All Boys Girls

Maternal metabolites n % Change (95% CI) n % Change (95% CI) n % Change (95% CI) p-sex interaction

Leptin

MEP 187 4.9 (−10.9, 23.3) 101 8.9 (−14.5, 38.5) 86 −2.7 (−22.6, 22.2) 0.567

MnBP 177 6.6 (−11.1, 27.8) 98 16.2 (−14.9, 58.8) 79 2.6 (−18.3, 29) 0.505

MiBP 182 12 (−12.8, 43.8) 100 13.7 (−24.5, 71.3) 82 9.9 (−19.9, 50.7) 0.744

MBzP 159 20.4 (−7.3, 56.3) 84 19.2 (−17.2, 71.4) 75 15 (−23.5, 72.8) 0.807

ΣDEHP 173 17.7 (−3.6, 43.8) 95 21.5 (−7.2, 59.1) 78 6.4 (−23.5, 47.9) 0.559

Adiponectin

MEP 189 −11.8 (−25.3, 4.2) 103 −15.1 (−32.5, 6.9) 86 −3.4 (−25.2, 24.6) 0.643

MnBP 179 −0.7 (−17.9, 20) 100 −17.9 (−39, 10.4) 79 10 (−15.7, 43.5) 0.094

MiBP 184 1.2 (−21.7, 30.7) 102 −0.9 (−32.6, 45.7) 82 0.7 (−29.4, 43.6) 0.931

MBzP 161 −11.8 (−32.5, 15.3) 86 −18.9 (−42.2, 13.9) 75 −3.4 (−39.1, 53.4) 0.213

ΣDEHP 175 1 (−17.7, 24) 97 0.1 (−22.3, 28.9) 78 3.6 (−28.8, 50.7) 0.638

CRP

MEP 168 25.7 (−17.7, 91.8) 90 21.9 (−31.4, 116.7) 78 51.5 (−24.8, 205.5) 0.94

MnBP 158 34.8 (−16.7, 118.3) 87 −49.1 (−76.7, 11.2) 71 144.3 (26, 373.8) 0.001

MiBP 163 1 (−46.3, 90) 89 19.7 (−53.7, 209.6) 74 −14.8 (−66.4, 116.4) 0.682

MBzP 142 −9.2 (−53.1, 75.6) 75 −1.9 (−58.6, 132.2) 67 −13.1 (−72.8, 177.6) 0.87

ΣDEHP 154 1.3 (−39.4, 69.4) 84 −22.8 (−58.8, 44.7) 70 116 (−18.9, 475.1) 0.053

Child metabolites

Leptin

MEP 417 2 (−11.1, 17.1) 230 5.7 (−12.4, 27.5) 187 −0.4 (−19.7, 23.6) 0.652

MnBP 389 2.3 (−11.5, 18.2) 212 0.9 (−18.6, 24.9) 177 2.7 (−16.1, 25.5) 0.719

MiBP 404 4.5 (−12.6, 24.9) 222 −0.3 (−22.2, 27.7) 182 11.5 (−15.6, 47.4) 0.46

MBzP 412 0.1 (−13.7, 16.1) 229 −11.6 (−27.7, 8) 183 16.4 (−7.2, 46) 0.059

ΣDEHP 417 −2.3 (−19.4, 18.3) 230 −9 (−30.8, 19.6) 187 6.8 (−19.3, 41.4) 0.376

Adiponectin

MEP 419 1.4 (−10.3, 14.8) 231 −8.4 (−22.5, 8.4) 188 14.5 (−4.9, 37.8) 0.144

MnBP 391 −0.9 (−13.1, 13) 213 −8.7 (−24.5, 10.5) 178 9.8 (−8.3, 31.5) 0.047

MiBP 406 0.2 (−14.4, 17.4) 223 0.7 (−18.5, 24.5) 183 0.8 (−21.4, 29.2) 0.821

MBzP 414 4.8 (−8.2, 19.6) 230 −2.7 (−18.8, 16.5) 184 15.9 (−4.6, 40.8) 0.082

ΣDEHP 419 −0.8 (−16.4, 17.8) 231 −21.1 (−38.1, 0.7) 188 24.2 (−2.4, 58) 0.016

CRP

MEP 385 −23.5 (−43.4, 3.3) 211 −24.6 (−49.6, 12.8) 174 −13.5 (−46.8, 40.6) 0.531

MnBP 357 −2.8 (−29.4, 33.8) 193 37.8 (−12.6, 117.4) 164 −34.7 (−58.7, 3.3) 0.021

MiBP 372 −26.8 (−50.3, 8) 203 −21.6 (−54.3, 34.3) 169 −35.9 (−65, 17.4) 0.695

MBzP 380 21.5 (−12.5, 68.7) 210 16.5 (−25.5, 82.2) 170 25 (−24.5, 106.7) 0.982

ΣDEHP 385 −12.1 (−42.7, 35) 211 −11.3 (−50.7, 59.9) 174 −8.5 (−52.6, 76.6) 0.862

ΣDEHP: molar sum of MEHP, MEHHP, MEOHP. Total and HDL Leptin, adiponectin and CRP were log transformed to normalize their distributions. We calculated percent change by

exponentiating beta coefficients, subtracting by 1 and multiplying by 100. All models are adjusted for child sex, exact age at examination, BMI z-score, and maternal characteristics (age

at delivery, parity, education, pre-pregnancy BMI, and smoking in pregnancy). Statistically significant associations (P <0.05) are displayed in bold type.

Investigations of early life phthalate exposure and
cardiometabolic outcomes in humans are scant. Our results
suggest that prenatal MEP exposure is associated with lower
HDL cholesterol, at age 4 and postnatal MiBP exposure is
associated with higher total cholesterol at 4–6 years. The
only other study that examined associations of in utero and
concurrent phthalate exposure with lipid profile reported that
prenatal phthalate exposure was not associated with lipid profile

at 8–14 years but concurrent exposure was associated with lower
total and LDL cholesterol in boys (33).

Moreover, we found that exposure to DEHP metabolites
during pregnancy was associated with lower systolic and diastolic
BP z-scores and we observed consistent negative associations
between phthalate metabolite concentrations at age 4 and systolic
and diastolic blood pressure at all ages, overall and in girls or
boys separately. These findings are consistent with the only other
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FIGURE 1 | Sex-stratified associations between child urinary individual and summed ΣDEHP phthalate metabolites (log10 Transformed, in µg/g Creatinine) with child

BMI z scores at 4 to 6 years of age. All models are adjusted for child sex, exact age at examination, and maternal characteristics (age at delivery, parity, education,

pre-pregnancy BMI, and smoking in pregnancy).

prospective study that examined prenatal phthalate exposure and
blood pressure in childhood and found that ΣHMWPm and
ΣLMWPm were associated with lower systolic blood pressure
z-scores but only in girls at 4–7 years of age in Spanish
INMA cohort (28). However, a recent cross-sectional study of
children who participated in the National Health and Nutrition
Examination Survey (NHANES), reported positive associations
between phthalate exposure and systolic blood pressure in
children 6–19 years (23).

There are some biologically plausible mechanisms linking
phthalates to increased cardiovascular risk, independent of body
mass effects. Laboratory studies have found that phthalate
metabolites increase cytokine production (49), while biomarkers
of phthalate exposure have been associated with increases in
serum markers of inflammation and oxidative stress in adults
(50). Recent findings suggest that phthalates may produce
increases in low-grade albuminuria in children, a marker of
vascular dysfunction associated with chronic kidney and CVD
risks (51). Thus, further prospective follow-up of the observed
associations will be required to explore whether the associations
shown between phthalate exposure and blood pressure persist or
reverse at later ages.

The current study has several strengths including the
population-based prospective design, our ability to examine
the potential effects of phthalate exposure in two critical
developmental time periods (pregnancy and childhood), and
our comprehensive assessment of adiposity and cardiometabolic
outcomes. Limitations of this study include the possibility of
exposure misclassification due to the use of a single spot-urine
during pregnancy and childhood, and the potential for residual
confounding, in particular with respect to unmeasured factors
such as parental income or social class. Additionally, as this
analysis was exploratory, we have chosen not to control for
multiple comparisons, thus we cannot rule out the possibility of
some false significant findings.

CONCLUSIONS

Our findings suggest that the effect of early life exposure
to phthalate metabolite may influence postnatal growth and
adiposity in a sex specific manner and depends on the timing of
exposure. Additional longitudinal studies with multiple repeated
phthalate measurements throughout childhood and adolescence
and diverse study populations are necessary to confirm these
findings.
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