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Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen

historically associated with diarrhea and pseudomembranous colitis in hospitalized

patients. In recent years, there have been dramatic increases in the incidence and severity

of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare

and community settings. C. difficile is an ancient and diverse species that displays

a sympatric lifestyle, establishing itself in a range of ecological niches external to the

healthcare system. These sources/reservoirs include food, water, soil, and over a dozen

animal species, in particular, livestock such as pigs and cattle. In a manner analogous

to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is

driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore

contamination of meat, vegetables grown in soil containing animal feces, agricultural

by-products such as compost and manure, and the environment in general (households,

lawns, and public spaces) is contributing to a persistent community source/reservoir

of C. difficile and the insidious rise of CDI in the community. The whole-genome

sequencing era continues to redefine our view of this complex pathogen. The application

of high-resolution microbial genomics in a One Health framework (encompassing clinical,

veterinary, and environment derived datasets) is the optimal paradigm for advancing

our understanding of CDI in humans and animals. This approach has begun to yield

critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of

C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the

C. difficile core genome shows strains common to humans and animals (livestock or

companion animals) do not form distinct populations but share a recent evolutionary

history. Moreover, forC. difficile sequence type 11 and PCR ribotypes 078 and 014, major

lineages of One Health importance, this approach has substantiated inter-species clonal

transmission between animals and humans. These findings indicate either a zoonosis

or anthroponosis. Moreover, they challenge the existing paradigm and the long-held

misconception that CDI is primarily a healthcare-associated infection. In this article,

evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic

factors that contribute to the spread of C. difficile from the farm to the community.
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INTRODUCTION

Last year was the 40th anniversary of the publication in 1978
of a series of papers from several research groups that provided
proof that Clostridium difficile caused pseudomembranous colitis
(1–4). While the spectrum of gastrointestinal disease caused by
C. difficile has broadened significantly since then, for much of
those 40 years C. difficilewas thought of as causing disease almost
exclusively within high-risk hospitalized patient populations (5).
In evolutionary terms, 40 years is a negligible length of time.
The Clostridia are an ancient prokaryotic lineage, estimated
to have diverged from the bacterial domain 2.34 Ga (billion
years) ago around the time when concentrations of molecular
oxygen in the atmosphere began to increase (6). With the
advances of next-generation sequencing, the taxonomy of the
Clostridia is currently undergoing a major revision. Indeed, given
the significant differences between C. difficile and some other
pathogenic clostridia, it has been proposed that it be renamed
Clostridioides difficile (7). While this has caused some angst in the
C. difficile community, both names are currently viewed as being
“validly published” and therefore acceptable (8).

In recent years, the vast majority of emerging or re-emerging
infections have been vector-borne or zoonoses—animal diseases
that are transmissible to humans (9). Most attention has focused
on viral infections because of highly publicized outbreaks; SARS,
avian influenza, and Ebola. However, disease associated with
C. difficile infection (CDI) has killed more people worldwide
in the last 15 years than all these viral infections combined,
around 30,000 per year in the USA alone according to the CDC
(10). CDI should always have been considered a zoonosis, either
direct or indirect. In some definitions of zoonoses, non-human
animal hosts play an essential role in maintaining the infection in
nature and humans are only incidental hosts. In CDI, all animals
(human and non-human) are likely hosts; the wide variety of
animals from which C. difficile has already been isolated suggests
this (11).

What then is the natural history of CDI following exposure
to C. difficile? C. difficile is ubiquitous in the environment.
C. difficile colonizes the gastrointestinal tracts of all animals
during the neonatal period, multiplies, and is excreted, but
cannot/does not compete well when other bacterial species start
to colonize. The exact timing of this change is not clear, but
it is probably linked to changes in diet in babies, i.e., weaning.
Through a process known as colonization resistance, a well-
developed microbiota provides protection against overgrowth
of C. difficile by inhibiting germination, vegetative growth, and
toxin production (12). In human and non-human animals,
antimicrobial exposure creates an environment that could be
thought of as mimicking the neonatal gut—characterized by an
underdeveloped microbiota and consequently reduced or absent
colonization resistance. In such a compromised host gut, C.
difficile spores rapidly germinate and begin to produce potent
cytotoxins (toxin A and toxin B) which cause extensive colonic
inflammation and epithelial tissue damage, the net effect being
a rapid fluid loss into the intestinal lumen which manifests as
diarrhea (13). Some strains also produce a binary toxin, an ADP-
ribosyltransferase that causes actin cytoskeletal disruption, and is

associated with more severe CDI, a higher case-fatality rate and
refractory disease (14).

When those antimicrobials were cephalosporins in the 1980s
and 90s, antimicrobials to which C. difficile is intrinsically
resistant, there was an expansion of CDI in hospitals
that continues today. Since the 1990s in North America,
cephalosporins have been licensed for use in food animals. There
has been an amplification of C. difficile in food animals since
then, with subsequent contamination of meat, and vegetables
grown in soil containing animal feces. In some animals such as
piglets, there is overt disease with significant impact on industry.
“Animal” strains of C. difficile are now infecting humans. C.
difficile ribotype (RT) 027 was found in animals in North America
in the early 2000s (15) but probably moved from animals to
humans a decade earlier around the time that RT027 developed
resistance to fluoroquinolone antimicrobials (16). This strain was
likely to have initially caused infections in the community at a
time when community-acquired (CA) CDI [defined as cases with
symptom onset in the community or ≤48 h after admission to
a healthcare facility (17)] was thought infrequent, and diarrhea
in the community was rarely investigated. The mutation to
fluoroquinolone resistance and high use of fluoroquinolones
drove RT027 spread, in North America and later Europe, once it
entered the hospital system (16). A similar process now appears
to be occurring with C. difficile RT078, another animal strain
that has increased significantly as a cause of CA-CDI in Europe
over the last 10 years (18, 19). C. difficile continues to expand
in food animal populations, driven by cephalosporin use, and
animal strains of C. difficile are driving the worldwide increase
in CA-CDI.

The whole-genome sequencing era continues to redefine
our view of this complex pathogen. The application
of high-resolution microbial genomics in a One Health
framework (encompassing clinical, veterinary, and environment
derived datasets) is the optimal paradigm for advancing our
understanding of CDI in humans and animals. This approach
has begun to yield critical insights into the genetic diversity,
evolution, AMR, and zoonotic potential of C. difficile. In this
review, evolutionary and zoonotic aspects of CDI are discussed,
including the anthropomorphic factors that contribute to the
spread of C. difficile from the farm to the community.

Community-Acquired CDI
Surveillance data indicate that CA-CDI comprises a significant
fraction of total CDI cases and that the incidence of CA-CDI
has been increasing globally (20). In the United States, CA-CDI
accounts for around a third of all CDI cases and increased 4-
fold during the period 1991–2005 (18, 21–24). In another US
study, comparable incidence rates for CA-CDI and hospital-
associated CDI (HA-CDI) were reported (11.2 cases/100,000
person-years and 12.1 cases/100,000 person-years, respectively)
(18). A recent European multi-center study (97 hospitals in 34
European countries) found 14% of 506 cases were classified CA-
CDI (25). In Australia, data from 2011 to 2012 showed CA-
CDI accounted for up to a quarter of all cases (26% of 5,109
CDI cases) and has been increasing in recent years (26–28).
More recent studies from the USA report higher proportions
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of CA-CDI around 40% (24). Many studies have noted that
individuals with CA-CDI often do not have the “classical”
risk factors for CDI acquisition and are generally younger,
healthy, and female, without contact with hospitalized patients
nor prior antimicrobial exposure (5, 20, 29). In up to 40% of
CA-CDI cases, infection is more severe and there are adverse
outcomes (hospitalization, treatment failure, complications,
colectomy, and recurrence) (19, 30). Notably, C. difficile strains
acquired in the community can differ in genotype from
predominant hospital strains (31), however, C. difficile RT078
(see below) has emerged as a significant pathogen associated
with both HA- and CA-CDI in the Northern Hemisphere
(21, 24, 32–35).

Zoonotic and Environmental Sources of
C. difficile
C. difficile shows remarkable adaption to life within a diverse
array of natural and host environments, including its primary
habitat the mammalian gastrointestinal tract (as a commensal
and/or pathogen), and several secondary habitats such as water,
soil, and compost. We have previously reviewed aspects of C.
difficile prevalence, pathogenicity and antimicrobial resistance
(AMR) in non-human reservoirs (36), as have others including
excellent reviews by Rodriguez et al. (11) and Candel-Pérez et al.
(37). Here we will briefly summarize the key prevalence and
molecular data that suggest a zoonotic origin for CDI. Figure 1
summarizes C. difficile prevalence data in farm animals, food
and the environment taken from 86 studies in 23 countries
worldwide (15, 38–122). In many of these studies, differences in
C. difficile prevalence, strain lineage, toxigenic status, and AMR
were identified. These were influenced by a variety of factors
including the age of the animal, geographic region, methods used
for isolation (e.g., sample type, spore selection, enrichment vs. no
enrichment) and veterinary and agricultural practices [see recent
reviews (11, 37)].

C. difficile is known to colonize numerous food-producing
animals including pigs, cattle, sheep, lambs, and poultry.
Neonatal animals are viewed as significant reservoirs for C.
difficile (Figure 1). Prevalence in domestic pigs and piglets
averages around ∼43%, ranging from 0% [Belgium and
Switzerland (98, 103)] to ∼50% [USA and Slovenia (61, 70)]
and 100% [Spain and The Netherlands (62, 68)]. In cattle and
calves, C. difficile prevalence averages around 14%, ranging from
0.5% [Switzerland (98)] to ∼20% [Italy, Belgium and the USA
(43, 46, 103)] to ∼50% [Australia and Canada (38, 40)]. On
average, a lower prevalence has been reported in ovine hosts
[sheep and lambs, ∼6% (77)] with prevalence in poultry [hens,
broiler chickens] varying considerably [0.3% in the USA (82), to
29.0% in Zimbabwe (83) and 62% in Slovenia (80), mean∼19%].
Due to an absence of colonization resistance afforded by amature
intestinal microflora, during the first weeks of life neonatal
pigs and calves are susceptible to disease caused by C. difficile.
Although data is limited for calves (46) the pathophysiology of
CDI in piglets is well-described; diarrhea, dehydration, weight
loss, enteritis histologically similar to human lesions, and high
mortality (123–125).

Other non-human animal reservoirs of C. difficile include
cats and dogs (prevalence 0–100%), horses and foals (3–
33%) and numerous wild animal species including rabbits,
zebra, kangaroos, birds, shrews, Kodiak bears, racoons, camels,
donkeys, feral swine, elephants, ibex, molluscs, tamarinmonkeys,
chimpanzees and, most recently, polar bears (0–100%) (37, 126,
127). The most common C. difficile lineage identified in many
of these animal studies is multilocus sequence type (MLST, ST)
11, predominated by RT078 and its close relatives RTs 033, 045,
066, 126, 127, and 288 (all binary toxin positive, toxinotype V
and cause CDI in humans) (Figure 1). Surprisingly, in Australia,
the predominant RT found in pig herds is RT014, one of the
most common strains causing CDI in humans worldwide (128)
(see below).

C. difficile has been recovered from meats and plant-
based foods sourced from processing plants, shops, farms and
markets throughout Europe, North America and the Middle
East (Figure 1). These include retail meat (veal, beef, pork,
lamb, chicken, goat, buffalo, and turkey), seafood (salmon, perch,
clams, shrimp, and mussels), and salads and vegetables (lettuce,
pea sprouts, ginger, carrots, potatoes, onions, and spinach). As
is the case with farm animals, the prevalence of C. difficile in
food varies widely with food type and geographic origin. A high
prevalence of C. difficile in retail pork, beef, and chicken has been
reported in the USA (42%) but studies elsewhere report a much
lower prevalence (Taiwan, 23%; Cote d’Ivoire, 14%), especially in
Europe (∼3.0%) (105, 129, 130). The prevalence of C. difficile
in seafood varies considerably from ∼5.0% in Canada, USA
and Wales (99, 108, 118) to ∼50.0% in Italy where its presence
has been tentatively linked to sewage contamination in local
rivers (95). Similarly, the prevalence of C. difficile on vegetables
varies from 3 to 8% in North America and Europe [ready to
eat salads (85, 101, 107, 109, 111, 118)] to 20–56% in Australia
[organic beetroot and potatoes (84)] reflecting, possibly, different
methods of processing. Themolecular epidemiology of C. difficile
recovered from food largely mirrors that of farm animals (ST11
RTs and common healthcare-associated lineages including 014
and 027, Figure 1).

Farm to Fork: Agricultural Practices
Presenting a Risk for CA-CDI
In its spore form, C. difficile persists in various different natural
ecosystems [soil, rivers, oceans, lakes, and sediments (114–
116, 118, 119)], animals and food (11), and many abiotic
environments for example toilets, floors, sinks, and soles of shoes
(112, 113, 131). The high transmissibility of the spore (132)
combined with its inherent resilience to desiccation, extremes of
temperature, and disinfection (133) facilitates the transmission
of C. difficile between these ecosystems. C. difficile spores
could be transmitted from the farm environment to humans
through a number of mechanisms including direct contact,
airborne dispersal, avian, rodent or arthropod vectors (134–137),
contamination of meat with feces during slaughter (53, 138)
and via animal effluent or effluent by-products such as compost
(139). However, CDI is a complex phenomenon encompassing
pathogen, host, anthropomorphic and environmental factors,
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FIGURE 1 | Global prevalence of C. difficile in farm animals, food and the environment. Data were taken from 86 studies in 23 countries worldwide (15, 38–122).

Categories: Poultry (hens and broilers, Seafood (salmon, perch, clams, shrimp, and mussels), Meat (veal, beef, pork, lamb, chicken, goat, buffalo, and turkey),

Vegetables (salads, lettuce, pea sprouts, ginger, carrots, beetroot, potatoes, onions, and spinach), Household (sandbox, shoes, toilet, vacuum, sink, floor), and

Natural Environment (compost, lawn, soil, sediment, lake, and river). Two-letter country codes (International Organization for Standardization, ISO): AU, Australia; BE,

Belgium; CA, Canada; CH, Switzerland; CI, Ivory Coast; CR, Costa Rica; CZ, Czech Republic; DE, Germany; ES, Spain; FR, France; GB, Great Britain and Northern

Ireland; IR, Iran; IT, Italy; JP, Japan; KR, Korea; NE, Nigeria; NL, The Netherlands; SA, Saudi Arabia; SE, Sweden; SI, Slovenia; TW, Taiwan; US, United States of

America; ZW, Zimbabwe. NAP, North American Pulse Type. RT027 and all ST11 RTs listed are binary toxin-positive.
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and our understanding of CDI transmission dynamics between
production animals and humans is nowhere near perfect. Within
Australia, two agricultural practices have been identified which
present a credible risk for transmission of C. difficile causing
CA-CDI: (i) slaughtering of neonatal animals destined for
human consumption, and (ii) the recycling of effluent for
agricultural purposes such as manufacturing compost which is
then disseminated into the community setting (140, 141).

The prevalence of C. difficile in Australian veal calves
is high although this decreases significantly with increasing
age of the animal; 56% from <7-day-old calves, 3.8% in 2–
6 month-old calves, and 1.8% in adult cattle (38). The C.
difficile population within these cattle was dominated by ST11
RTs that all cause disease in humans. Moreover, at slaughter,
the prevalence of C. difficile in calve feces was 60.0% and a
significant proportion of calf carcasses (25.3%) was positive
(with a spore concentration of 33 CFU/cm2), as a result of
spore contamination from gastrointestinal contents during the
slaughter process (138). As before, clinically important ST11
RT lineages dominated (138). Australia is one of the very few
countries that cull male neonatal dairy calves (veal calves), a
practice that exists because they are born male and considered
surplus to industry requirements. With C. difficile prevalence
highest in this neonatal period (127), the unique slaughter
age of these animals presents a significant and perhaps under-
appreciated risk for contamination of carcasses during the
slaughter process. Further, C. difficile spores contaminating
carcases would likely survive chilling, freezing, and cooking
processes (142–145) and may compromise the quality of veal
for domestic and export markets. To date, C. difficile has not
been recovered from retail meat in Australia although only
limited surveys have been undertaken mainly on meat from adult
animals. Consumer demand for newborn veal in Australia is low
and thus there is likely to be limited exposure of consumers to
contaminated meats. However, Australia is the third largest beef
and veal producer in the world (146), exporting 1.9 million tons
of beef and veal per annum to over 100 countries, particularly in
Africa, Asia and the Middle East. It is possible that contaminated
Australian veal may be contributing to CDI in these regions,
however, with the exception of Taiwan where ST11 strains are
commonly reported in humans with CDI and farm animals
(64, 102, 147), CDI surveillance is lacking in many of these
countries. Whatever the level of risk to the domestic and export
consumer, it is possible that it can be significantly mitigated by
increasing the age that the animal is slaughtered to >3 or more
weeks (38).

In the case of Australian piglets and dissemination of the
major healthcare-associated lineage RT014, a growing body of
evidence points to zoonotic transmission extending from the
farrowing shed to the community. First, Australian piglets are
major amplification reservoirs for C. difficile (67% prevalence
nationwide with RT014 comprising 23% of isolates) (52). Second,
whilst suckling age piglets are not slaughtered for meat on a large
scale, C. difficile spores are abundant in treated biosolids, effluent,
and piggery wastewater (121, 148–150). These by-products of the
pig industry are subsequently recycled to pasture and agriculture
for composting and direct irrigation/fertilization of crops and

lawn. Third, C. difficile has been recovered from 30% of “high-
street” retail compost samples in Australia (122), 59% of new
roll-on lawn samples in Australia (151) and 20% of various
root vegetables from mainstream and organic markets (84). Both
lawn and organic vegetables are invariably grown in compost/soil
containing animal manure. In these studies, RT014 comprised 7,
39, and 10% of isolates, respectively. Finally, the use of potent, late
generation cephalosporins in human and veterinarymedicine is a
major driver of (i) C. difficile colonization and onset of disease in
pigs; (ii) amplification and persistence of C. difficile in piggeries;
(iii) spill-over of spores into the environment; and (iv) onset of
CDI in the community (135, 140, 141).

GENOMIC INSIGHTS INTO THE
EVOLUTION AND TRANSMISSION OF
C. DIFFICILE IN ANIMALS AND HUMANS

Microevolution in the C. difficile

Core Genome
The next generation sequencing era has seen the development of
exquisitely sensitive, cost-effective, and rapid, benchtop whole-
genome sequencing (WGS) technologies. Combined with new
WGS-based genotyping tools, these technologies are shaping
the future of infectious diseases surveillance. Core genome
single nucleotide variant (SNV) analysis is an ultra-fine scale
discriminatory method that uses WGS to detect transmission
and outbreaks of bacterial pathogens (152, 153). SNV analysis is
restricted to the non-repetitive, non-recombinative core genome
which contains essential genes common to all isolates under
analysis that are often vertically inherited and most likely to have
the strongest signal-to-noise ratio for inferring phylogeny (152,
153). For C. difficile, SNV analysis uses a fixed-rate molecular
clock derived from serial isolation of strains from clinical cases,
estimated to be in the region of 1.47 × 10−7 to 5.33 × 10−7

mutations per site per year, to identify signatures of plausible
clonal transmission (154, 155). This equates to 1–2 SNVs per
genome per year. For studies of C. difficile transmission, a clonal
group is therefore defined as two or more strains differing by
<2 SNVs in their core genome, with ≥10 SNVs used as a
threshold for genetically distinct isolates (154–157). For longer-
term ecological studies, these thresholds may not hold true as
the genetically quiescent nature of C. difficile spores may result in
underestimating the evolutionary distance between strains (19).

The ultra-fine scale resolution of this technique is superior
to conventional C. difficile typing methods including PCR
ribotyping, pulsed-field gel electrophoresis (PFGE), MLST,
Rep-PCR, toxinotyping, and amplified fragment-length
polymorphism (AFLP) fingerprinting (152). It also shows
discriminatory power comparable, and in some cases superior,
to multilocus variable-number tandem repeat analysis (MLVA)
(152, 157) and the recently developed core genome MLST
scheme (158). Supplementary Table 1 provides a summary of
bioinformatics tools and algorithms involved in a C. difficile
SNV pipeline.

For C. difficile, SNV-based typing has been used to study
the microevolution of CDI in the hospital setting (154)

Frontiers in Public Health | www.frontiersin.org 5 June 2019 | Volume 7 | Article 164

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Knight and Riley Transmission of Zoonotic Clostridium difficile

and to investigate localized transmission and international
dissemination of major clinically important lineages such as
RTs 027 (16) and 017 (159). But as outlined below, this
approach has also been used to delineate cryptic transmission
pathways of C. difficile between animals, humans, and their
shared environment. In doing so, these genomic studies have
redefined our understanding of the ecology and evolution of this
complex species.

C. difficile RT078
C. difficile RT078 belongs to evolutionary clade 5 and is the
principal ST11 sublineage (Figure 2). Between 2005 and 2008,
RT078 rose from 11th to become the 3rd most frequently
encountered RT in European hospitals (25), an increase
particularly evident in the Netherlands where, from 2005 to
2008, Dutch hospitals would see the total prevalence of RT078-
associated cases increase from 3 to 13% (32). These RT078 cases
of CDI were in younger patients and with community-onset
(32, 33). Comparable rates have been found in North America
(21, 24, 35) with one study reporting 46% of all RT078 isolates
were community acquired (160). As with many toxigenic C.
difficile RTs, RT078 can be carried asymptomatically (161, 162).
C. difficile RT078 has established significant reservoirs in North
American, European, and Asian pigs and cattle and is often
reported as the dominant type irrespective of age, diarrheal
status or other farm-specific factors (37, 127). In an important
Dutch study of C. difficile spore acquisition, Hopman et al. (68)
demonstrated that piglets delivered by cesarean-section were
C. difficile-negative yet were rapidly colonized with C. difficile
RT078 spores within 48 h.

The virulence potential of RT078 has been likened to that of
epidemic RT027 with which it shares similar genetic features.
These include the major virulence genes tcdA, tcdB, and cdtA/B
involved in toxin production, and an aberrant toxin regulator
gene tcdC (deletions, nonsense mutations, and premature stop
codons) leading to a reduction in log phase repression of toxin
expression. The role for the latter in the observed hyper-virulent
disease phenotype seen also in RT078 infections i.e., more toxin,
increased mortality and morbidity, remains speculative (32, 163–
167). C. difficile RT078 strains are often multidrug-resistant
(MDR) (161, 168) and, compared to other RTs, including RT027,
show remarkable resilience to extremes of temperature (80 to
96◦C) and water treatment processes (142, 143, 145). It has also
been proposed that the emergence and global dissemination of
RT078 in humans is linked to an enhanced ability to metabolize
the food additive trehalose (169). These virulence and survival
traits may explain the successful dissemination of this lineage in
production animals and humans worldwide. Unsurprisingly, it
has received major attention as a potentially zoonotic lineage.

Zoonotic Transmission of C. difficile RT078
Between Humans and Animals
Genetic studies using MLST, MLVA, Rep-PCR and AFLP
fingerprinting have all provided significantly higher strain
resolution of RT078 populations compared to conventional PCR
ribotyping. In 2010, Bakker et al. (170) found 85% of RT078
isolates of human and porcine origin in the Netherlands were

FIGURE 2 | Evolutionary clade 5. Maximum-likelihood phylogeny based on

concatenated MLST allele sequences (seven loci, 3,501 bp) for 32 known

clade 5 STs. For global phylogenetic context, well-characterized

representatives of major MLST clades C1 (ST54, RT012), C2 (ST1, RT027),

C3 (ST22, RT023), and C4 (ST37, RT017) are also shown. Branches for clade

5 are shown in red. The inset box highlights major ST11 RT sublineages of

clinical and agricultural/livestock importance with associated toxin gene

profiles and graphical representation of 16s−23s rRNA PCR ribotyping

banding patterns.

genetically related and, in many instances, indistinguishable by
high-resolution MLVA. In 2012, Stabler et al. (171) used MLST
to analyse 385 C. difficile isolates from different geographical
locations (Europe, North America, and Australia) and sources
(human, food, and animal). Strains of RT078 from humans, food
and animals, some from different countries and continents, were
indistinguishable (all sharing seven identical housekeeping genes,
ST11) (171). More recent work from Taiwan showed RT078
isolated from pig farms shared identical Rep-PCR fingerprints
as RT078 strains derived from humans with CDI in hospitals in
the same region (64). Similarly, in Spain, RT078 of human and
animal origin were clustered together by AFLP (172). Evidence
from Japan suggests RT078 has been introduced from Europe.
Usai et al. found Japanese pig RT078 strains clustered (by MLVA)
with European human and pig RT078 strains (86), and Niwa et al.
found a single MLVA cluster of RT078 responsible for five cases
of colitis in Japanese racehorses (173). Both pigs and racehorses
are internationally traded in Japan; thus, RT078 may have been
imported into Japan from Europe via live animals.

Natural and diverse reservoirs of RT078 support the
hypothesis that CDI may have a zoonotic origin. To date, a
few key WGS-based studies have led to significant advancement
in understanding the true zoonotic potential and evolution of
the RT078 and its close relatives. In 2013, Knetsch et al. (161)
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used core genome SNV typing to compare 65 C. difficile RT078
isolates of human and porcine origin sourced over a 10-year
period in The Netherlands. Using Bayesian techniques, an RT078
population-specific mutation rate was estimated to be 2.72 ×

10−7 substitutions per site per year, equating to around 1 SNV
per genome per year—a figure comparable with earlier estimates
(154, 155). A core genome phylogeny showed isolates of human
and porcine origin clustering together. Notably, the analysis
showed a pair of human and pig isolates from the same pig farm
in The Netherlands to be indistinguishable (zero SNVs difference
in their core genome). Working in pig husbandry or living in (or
visiting) areas with a high density of pigs increased the risk of
acquiring C. difficile due to exposure to pig feces (161). Whilst
the transmission of RT078 between a pig and pig farmer within
the confines of a pig-rearing facility might not be that surprising,
it was nonetheless the first ever confirmation that interspecies
transmission of C. difficile had occurred (161). The exact mode
of transmission between these species remains unclear. Whilst
these data appear to support the theory that CDI is a zoonosis,
a common environmental source, asymptomatic carriage and/or
zooanthroponotic (human to animal) transmission cannot be
ruled out.

In 2017, the same authors (174) extended these findings.
They investigated microevolution in the core genome of 248 C.
difficile RT078 strains sourced from humans and animals in 22
countries. This study provided the first estimate of the global
RT078 population structure and yielded new insights into the
potential and extent for zoonotic spread. Extensive clustering of
C. difficileRT078 from human clinical cases and food animals was
observed, with clear instances of interspecies clonal transmission,
only this time, the significant clustering of clones supported
evidence of bidirectional spread of C. difficile RT078 between
production animals and humans. Moreover, there was only
limited geographic clustering with clones of C. difficile RT078
spread multiple times across multiple towns, countries and
continents, in particular between North America and Europe:
one example was the transmission of an RT078 clone between
an animal in Canada and humans in the United Kingdom.
This indicated interspecies transmission of C. difficile RT078 was
not restricted to a local population of humans and production
animals, as previously shown in the 2014 Dutch study. Together,
these data revealed a highly linked intercontinental transmission
network of C. difficile RT078 between humans and animals and
provided further evidence that CDI has a significant zoonotic
component (174). Yet it also showed that, in contrast to another
classic enteric pathogen Salmonella enterica which has distinct
animal- and human-associated populations, C. difficile RT078
appeared to be a clonal population moving frequently (and likely
over long time periods) between production animal and human
hosts, with no geographical constraints.

ST11 Is a Heterogeneous Lineage of Major
One Health Importance
ST11 is an ancient evolutionary lineage comprising at least
a dozen CDT+ ribotypes that cause CDI in humans with
significant ecological niches in production animals worldwide

(175) (Figure 2). As is apparent, and for good reasons, there has
been a strong focus on the ST11 sub-lineage RT078, however,
until recently, little was known about the evolutionary history
and zoonotic potential of other ST11 RTs. Our recent study
(175) addressed this knowledge gap, using WGS to investigate
population structure and clonal transmission in over 200 strains
of major ST11 RTs 078, 126, 127, 033, and 288 sourced from
human and veterinary/environmental origin across Australia,
Asia, Europe, and North America. A core genome phylogeny
showed the global ST11 population structure largely mirrored
RT sub-lineage, with discrete evolutionary clusters congruent
with RTs 078/126, 127, 033/288. Core genome SNV analysis
found multiple instances of inter- and intra-species clonal
transmission in all RT sub-lineages. Interspecies clonal groups
comprised C. difficile isolates derived from health care facilities
and farm animals spread across different states, countries,
and continents, often without any healthcare association. Our
findings independently confirm and extend the work of Knetsch
et al. (161, 174) revealing a globally-disseminated network
of C. difficile ST11 clones with the capability and proclivity
for reciprocal zoonotic and/or anthroponotic transmission.
Moreover, this study showed for the first time that non-RT078
ST11 strains such as RTs 126, 127, 033, and 288 also display a
high zoonotic potential and should also be considered lineages of
emerging One Health importance.

Antimicrobial Resistance and ST11
Evolution
Antimicrobials are a crucial component in the pathogenesis of
CDI; they play a central role in the establishment of infection and,
paradoxically, remain the preferred option for treatment (176).

AMR is, therefore, a key factor driving epidemiological
changes in CDI (1). As we have seen with virulent C. difficile
RT027 epidemic lineage, outbreaks emerge when the inherent
resistance of C. difficile to cephalosporins is combined with
acquired resistance to high-risk antimicrobials known to incite
CDI, such as fluoroquinolones (16). In all the above WGS-based
studies of RT078 and ST11, substantial AMR repertoires were
identified. In the Dutch study (161), interspersed throughout
the RT078 phylogeny were clones common to humans and
livestock harboring identical mobile genetic elements (MGEs)
conferring resistance to streptomycin (Tn6235, aphA1+) and
tetracycline (Tn6190, tetM+) (161). In the later study by Knetsch
et al. (174), the global population of RT078 contained a broad
array of AMR genes encoding resistance to aminoglycosides
and streptothricin (aph3′-III, ant6′-Ib, Sat4A), erythromycin
(ermB+), and tetracycline (tetM, tetO, tet32, tet40, tet44). The
gene cdeA encoding a multidrug efflux transporter was found in
all isolates (174).

In our ST11 study (175), half of all strains showed
phenotypic resistance to one or more of tetracycline,
moxifloxacin, erythromycin, and clindamycin, of which a
quarter, predominantly RTs 126/078, were resistant to ≥3 of
these agents. Underscoring this resistance was an array of
AMR genetic loci including chromosomal mutations in gyrA/B
(fluoroquinolone resistance) and MGEs conferring resistance to
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macrolides and lincosamides (Tn6194; ermB+), and tetracycline
(Tn6190; tetM+ and Tn6164; tet44+), the latter a 106 kb genetic
island apparently specific to RT078 (177). This was the first such
report of Tn6194 from animals in the world. This element is
the most common ermB-containing element found in human
clinical isolates in Europe and is a defining genetic feature of
epidemic RT027 (16, 178, 179). A phenotypically silent vanB2
transposon (likely from Enterococcus faecalis) was also found
in a C. difficile RT033 strain isolated from an Australian veal
calf at slaughter (180). Another common ruminant species
Erysipelothrix rhusiopathiae appeared to be the origin of the
numerous aminoglycoside resistance gene clusters present in all
ST11 sub-lineages.

In a compelling new study, Dingle et al. (181) present a
strong case for antimicrobial selection influencing the recent
evolutionary history of C. difficile RT078. A time-scaled
phylogeny built from the core genome of over 400 international
C. difficile RT078 strains revealed three major clonal expansions
(a rapid, recent international spread of RT078 clones). Two-
thirds of all RT078 were tetracycline resistant. Remarkably, a
common ancestor of each clonal expansion had independently
evolved tetracycline resistance via the acquisition of distinct
tetM alleles carried on closely related Tn916-like elements,
an analogous situation to the emergence of fluoroquinolone
resistance in RT027 (16). The parallel tetM associated clonal
expansions were estimated to have occurred sometime around
the year 2000, at a time when the number of RT078-associated
clinical cases (at least in Europe) started to increase. Moreover,
the three tetM alleles show significant homology (97–100%
sequence identity) with tetM genes belonging to established
zoonotic species such as E. faecalis, Escherichia coli, and
Streptococcus suis—further supporting an agricultural origin for
RT078. The authors note that S. suis has striking parallels with
C. difficile RT078—it is a globally disseminated human pathogen
which has established substantial reservoirs in pigs and has
displayed recent increases in tetracycline resistance (182, 183).
In summary, these phylogenetic data are consistent with an
evolutionary response to tetracycline selective pressure. The
inappropriate and overuse of tetracycline in animal husbandry is
well-recognized (184). This selective pressure, combined with the
rapid, international spread of C. difficile RT078 via the food chain
and other agricultural vectors provides a plausible explanation for
the clinical prominence of this lineage in humans.

Interspecies Transfer of C. difficile RT014
Between Humans and Animals
C. difficile RT014 is a toxigenic (A+B+CDT−) and highly
successful lineage of C. difficile belonging to MLST clade 1.
RT014 is consistently among the most common RTs causing
CDI in European healthcare systems, and in Australia it has
been the most prevalent RT causing human infection for many
years, accounting for ∼25% of all CDI cases (10, 185–188). The
zoonotic potential of this RT was initially thought to be quite low
as its prevalence in production animals in Europe was low and
it was absent from livestock in Asia. In Australia, there was a
completely different and intriguing story. In 2013, a nationwide

cross-sectional study of C. difficile in 21 pig farms in Australia
found RT014 to be the most prevalent RT in neonatal pigs aged
<14 days, accounting for 23% (n = 26/154) of isolates (52).
With rates of CDI in Australia increasing markedly in recent
years (24% in 2011–2012 alone) and a significant rise in CA-
CDI (26), the establishment of significant RT014 reservoirs in
porcine populations in Australia suggests zoonotic transmission
as a plausible source of human infection.

To examine the true extent of genetic relatedness, a collection
of 40 contemporaneous isolates of RT014 of human and porcine
origin in Australia were subjected to WGS (128). A total of
three distinct STs were identified in this RT014 collection (STs
2, 13, and 49), and in each, human and porcine populations
were intermingled, signaling a very recent shared ancestry.
A phylogeny based on evolution in 1,260 core orthologous
genes (1,019,160 bp, ∼25% of bases in an average C. difficile
genome) showed geographically and temporally unconstrained
clustering of human and animal C. difficile RT014 strains in
all three STs again supporting a close genetic relationship.
Finally, a phylogeny-based on evolution in non-recombinant
1,287 core genome SNVs provided ultra-fine scale resolution
of the RT014 population, identifying multiple instances of
plausible interspecies clonal transmission. In total, 42% of C.
difficile RT014 strains from humans with CDI showed a clonal
relationship (differing by no more than two SNVs in their
core genome) with one or more RT014 strains derived from
pigs. Remarkably, many RT014 clones originated from pigs
and humans in states separated by thousands of kilometers,
collected many months apart, and half of the human isolates
in these clonal groups originated from cases classified as CA-
CDI, representing the acquisition of CDI outside of the hospital
system (Figure 3). Long range transmission of C. difficile RT014
clones suggests direct contact between humans and colonized
livestock is perhaps unlikely, and there was no evidence here.
Given what we know of the C. difficile colonization-transmission
cycle in the farrowing environment and wider livestock industry,
it is conceivable that over an extended period there has been
frequent long-range indirect interspecies transmission through
human exposure to contaminated retail meat but more likely
contaminated piggery by-products such as manure and compost
in the community setting (Figure 3). Indeed, genomic studies
from the USA and Europe have shown that the household
environment and pet dogs are colonized with C. difficile
RT014/ST2 representing reservoirs of RT014 in the community
(124, 125).

The C. difficile Pan-Genome: Insights Into
the Ecology of a Complex Pathogen
A bacterial pan-genome describes the full complement of genes
in a species or individual phylogenetic lineage. It comprises a core
component (those genes present in all strains) and an accessory
or adaptive component (genes absent from one or more strain
or unique to a particular strain) (189). Early microarray-based
studies estimated the C. difficile pan-genome to be comprised of
9,640 coding sequences (CDS) with a core genome component
many orders of magnitude lower at 600–3,000 CDS (190–192).
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FIGURE 3 | Transmission networks and community reservoirs of C. difficile RT014 in Australia. (A) summary of ST13 (n = 8) and ST2 (n = 10) RT014 clonal groups

found in pigs and humans with CDI in Australia, adapted from Knight et al. (128). A clonal group is defined as two or more strains differing by <2 SNVs in their core

genome. HCF, healthcare facility; NSW, New South Wales; SA, South Australia; VIC, Victoria; QLD, Queensland; INDET, indeterminate. (B) summary of RT014

ecological niches in Australia. 1Knight et al. (186); 2Collins et al. (188); 3Knight et al. (52); 4Moono et al. (151); 5Lim et al. (84); 6Lim et al. (122).

More recent WGS based studies of RT014 (128), RT078 (174),
and ST11 (175) from humans and animals have provided further
insights into the genetic diversity, plasticity and ecology of
zoonotic C. difficile lineages.

Analysis of 44 Australian RT014 genomes (STs 2, 13, and
49) revealed a large pangenome (7,587 genes) comprising a
core genome of 2,296 genes (30.3% of the total gene repertoire)
and an accessory genome of 5,291 genes (128). Moreover, the
human and porcine populations shared near identical proteomes
(128). The global RT078 population (248 genomes from four
continents) possessed a large pangenome of 6,239 genes with a
core genome of 3,368 genes (53.9% of the total gene repertoire)
and an accessory genome of 2,871 genes (174). Finally, the global
ST11 population (207 genomes from four continents including
RTs 078, 126, 127, 033, and 288) was defined by a massive pan-
genome (10,378 genes), a remarkably small core genome of 2,058
genes (only 19.8% of the gene pool) and an accessory genome
of 8,320 genes (175). In the case of RT014 and ST11, power-law
regression analysis determined the pangenomes to be “open,”

that is, size increases indefinitely when adding new genomes. For
example, in the ST11 analysis, after sequencing over 200 genomes
there is an average of 16 new genes contributed to the gene pool
with each additional sequenced strain (175).

The size and openness of a pan-genome is also a very
useful proxy for characterizing the lifestyle of a bacterial species
(193). The pan-genome data derived from these zoonotic and
agricultural-associated C. difficile lineages predict a species
with a sympatric lifestyle, occupying niches in extremely
diverse environments that are enriched with mixed microbial
communities of prokarya and archea (193). This is true of C.
difficile, a versatile species which shows extraordinary adaption
to multiple ecosystems including the gastrointestinal tract of
multiple mammalian hosts, and several secondary habitats
such as water, soil, and composts and invertebrate species
(179). In contrast to allopatric and intracellular species such
as Rickettsia rickettsii and Chlamydia trachomatis, which have
small closed pan-genomes and live in isolated niches with
limited exchange with the global microbial gene pool, sympatric
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species like C. difficile (and C. botulinum) have larger, more
complex open pan-genomes. Sympatry also means a higher
frequency of gene acquisition events and a higher probability
of acquiring parasitic DNA i.e., transposons and bacteriophages,
both contributing to an increase in pan-genome size (193,
194). Indeed, underscoring the substantial genetic diversity
in these zoonotic C. difficile lineages were large and diverse
collections of clinically important prophages of the Siphoviridae
andMyoviridae (128, 175) and AMR genetic elements (128, 174,
175). As corroborated by Dingle et al. in RT078 (181), many
of these underlying AMR elements show evolutionary origins
in commensal species residing within the gut of farm animals.
Examples being macrolide resistance genes from Campylobacter
coli (cryptic), aminoglycoside, and streptothricin genes cassettes
from E. rhusiopathiae, and a plethora of tetracycline resistance
genes from S. suis, E. faecalis, Megasphaera elsdenii, C. jejuni,
and C. perfringens (128, 161, 174, 175). Moreover, AMR elements
Tn6194 (ermB+) and Tn5397 (tetM+) are capable of intra-species
transfer to different C. difficile RTs and even inter-species transfer
to other genera (16, 191, 195).

Together, the phylogenetic, pangenome, and AMR data show
that these zoonotic C. difficile lineages have the capability
and propensity to move between humans, production animals,
and their shared environment. By occupying niches within
multiple host species, these C. difficile lineages are able
to access and exchange DNA with an enormously diverse
metagenome, particularly the ruminant gut and soil microbiota.
Such promiscuous behavior provides C. difficile with a potential
selective advantage over taxa inhabiting the same gut ecosystem,
be it the pig, cow or human intestinal tract, therefore greatly
enhancing their ability to adapt to fluctuating environmental
factors and their likelihood of success.

Finally, in the case of ST11, it is remarkable that even after
sampling >200 ST11 strains from over a dozen unique RT
sub-lineages spread over four different continents; the complete
gene complement of this lineage was not captured (175). With
over 420 STs and >600 RTs currently recognized, it is likely
that the complete species pan-genome for C. difficile could be
astonishingly high. Such enormous diversity is more typical for
phylogenetic distances between genera within a family, rather
than strains within a species (179). In light of recent calls for
taxonomic revisions (196–199), it is possible that C. difficilemay,
in fact, be a complex of sub-species divided along the major
evolutionary clades.

FUTURE DIRECTIONS AND CHALLENGES

The One Health paradigm is a philosophical approach to
improving and safeguarding the health of humans, animals and
the environment and, importantly, recognizes that these three
areas are inter-related (200). Specifically, improved treatment of
disease common to humans and animals can be achieved through
the application of interdisciplinary approaches between human
and veterinary medicine, and the analysis of environment-
derived isolate datasets. In this regard, CDI is the quintessential
One Health issue (141). As we have highlighted here, the
application of high-resolution microbial genomics in a One
Health framework is the optimal paradigm for advancing our

understanding of CDI in humans and animals. Together, this
body of evidence challenges the existing paradigm and long-
held conception that CDI is primarily a healthcare-associated
infection and provides compelling evidence that CDI has a
significant zoonotic component. More important, these findings
should stimulate new discussions about One Health focused
interventions for CDI.

Collaboration between human and veterinary medicine will
be essential if we are to safeguard the health of humans and
production animals (141). First and foremost, measures which
reduce the levels of C. difficile spores in the piggery environment
are of paramount importance, not only for mitigating the
risk of community acquisition but also for improving animal
health (141). In human medicine, these measures comprise
stringent infection control policies such as case isolation, reduced
use of late-generation cephalosporins, hand hygiene and deep
environmental cleaning (201, 202). Analogous interventions
have been employed in the veterinary hospital setting with a
significant reduction in CDI cases (203); however, the vast scale
of modern production animal systems may hinder successful
implementation. Also, the frequent disagreement between
clinicians, veterinarians and the livestock industry regarding
appropriate risk management of C. difficile in animal populations
remains an additional, significant hurdle to overcome (141, 204).

With several candidate C. difficile vaccines in development
(205), immunization of livestock could be a highly effective
way to reduce the overall prevalence of C. difficile and is a good
example of an integrative One Health approach to tackling CDI
(141). Finally, continued genetic and phenotypic surveillance
of C. difficile is critical to an enhanced understanding of
epidemiological and genetic factors contributing to the
emergence, evolution, and spread of CDI (152, 179). Crucially,
if we are to identify improved infection prevention and
control strategies, and public health interventions designed to
mitigate the risk of C. difficile transmission, it is imperative
that such studies should have a strong One Health focus
by including analysis of C. difficile strains derived from
humans, animals and food, and their shared environment.
As much of the focus to date has been on the ST11 group
and RT014, future studies should examine the potential for
clonal relationships between other lineages circulating in
clinical and animal/environmental settings. As illustrated
by the studies highlighted in this review, WGS will play
a central role in this, providing a level of discrimination
far beyond that achievable by conventional molecular
typing methodologies.
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