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Background: Routine clinical data are widely used in many countries to monitor

quality of care. A limitation of routine data is missing information which occurs due

to lack of documentation of care processes by health care providers, poor record

keeping, or limited health care technology at facility level. Our objective was to address

missing covariates while properly accounting for hierarchical structure in routine pediatric

pneumonia care.

Methods: We analyzed routine data collected during a cluster randomized trial to

investigating the effect of audit and feedback (A&F) over time on inpatient pneumonia

care among children admitted in 12 Kenyan hospitals between March and November

2016. Six hospitals in the intervention arm received enhance A&F on classification and

treatment of pneumonia cases in addition to a standard A&F report on general inpatient

pediatric care. The remaining six in control arm received standard A&F alone. We derived

and analyzed a composite outcome known as Pediatric Admission Quality of Care

(PAQC) score. In our analysis, we adjusted for patients, clinician and hospital level factors.

Missing data occurred in patient and clinician level variables. We did multiple imputation

of missing covariates within the joint model imputation framework. We fitted proportion

odds random effects model and generalized estimating equation (GEE) models to the

data before and after multilevel multiple imputation.

Results: Overall, 2,299 children aged 2 to 59 months were admitted with childhood

pneumonia in 12 hospitals during the trial period. 2,127 (92%) of the children (level

1) were admitted by 378 clinicians across the 12 hospitals. Enhanced A&F led to

improved inpatient pediatric pneumonia care over time compared to standard A&F.

Female clinicians and hospitals with low admission workload were associated with higher

uptake of the new pneumonia guidelines during the trial period. In both random effects

and marginal model, parameter estimates were biased and inefficient under complete

case analysis.
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Conclusions: Enhanced A&F improved the uptake of WHO recommended pediatric

pneumonia guidelines over time compared to standard audit and feedback. When

imputing missing data, it is important to account for the hierarchical structure to ensure

compatibility with analysis models of interest to alleviate bias.

Keywords: missing data, multiple imputation, PAQC score, routine data, audit and feedback, pediatrics

INTRODUCTION

Routine data are widely used in many countries to monitor
quality of care and to inform intervention programmes for better
patients’ health outcomes (1).

Routine data can also be used to highlight areas of concern
in clinical performance thus prompting actions and strategies
to improve practice at individual or institutional levels (2).
Prior studies show that quality of care vary across place
and time in spite of standard clinical guidelines (3). These
variations can be attributed to multiple factors including
changes in clinical guidelines, degree of task complexity, and
patient’s characteristics, clinician characteristics in addition to
organizational and contextual factors at hospital level (3–5).
Between 2013 and 2014, the Kenya Medical Research Institute-
Wellcome Trust Research Programme in collaboration with
the Ministry of Health, the Kenya Pediatric Association and
14 county-level hospitals initiated a partnership known as the
Clinical Information Network (CIN). The main aim of CIN is to
collect and use routine pediatric data to promote adoption and
adherence to recommended clinical practices through audit and
feedback (A&F) cycles (3, 5–7). While such data from multiple
sites enhance generalization of results to wider population,
it leads to complex hierarchical data structures, for instance,
patients clustered within clinicians, who are then clustered
within hospitals.

Besides complex structures, routine data are subject tomissing
information at any level of hierarchy. Missing information
may occur due to lack of documentation of care processes by
health care providers, poor record keeping, or limited health
care technology at facility level (1, 8, 9). In the occurrence
of missing data, appropriate missing data methods at analysis
stage are recommended to avoid biased results (10) informing
clinical policies and ultimately leading to poor patients care and
outcomes (11).

In the recent past, there has been an increase in literature
on quality of care among children admitted with common
childhood illnesses in low and middle income countries (3, 12–
15). However, majority of the studies account for variation at
patient and hospital levels ignoring variation due to clinicians
characteristics in spite of their critical role in delivery of
routine care (16). Besides, missing data is a common problem
across these studies. Majority of the studies report using
complete case analysis (13, 17, 18) and multiple imputation
(15, 19, 20). A major limitation of complete case records is
biased and inefficient parameter estimates due to information
loss. In studies where multiple imputation is used to handle
missing data, the nature and details of the imputation model

are rarely reported posing uncertainty about conclusions and
barriers for replicate analyzes. Furthermore, when missing data
occur in multilevel data context, incompatibility between the
imputation model and the analysis models potentially leads
to biased estimates, underestimated cluster level variances,
and overestimated individual level variances (10, 21–23). For
example, incompatibilities occur when the imputation model
assumes data are single level (i.e., ignoring multilevel structure)
while the analysis model of interest is multilevel.

In this study, we aim to address missing covariates while
properly accounting for hierarchical structure in inpatient
routine data set, that is, patients nested within clinicians who are
then nested within hospitals. Specifically, we analyze data from a
cluster randomized trial investigating the effect of enhanced audit
and feedback on clinicians’ prescribed pediatric pneumonia care
in Kenyan hospitals. To achieve this objective, we construct and
analyze pneumonia Pediatric Admission Quality of Care (PAQC)
score adapted to new WHO recommendations on assessment
and treatment of inpatient pediatric pneumonia cases. PAQC
score is a newly developed ordered composite measure used
to benchmark quality of care among children admitted with
common childhood illnesses in low and middle income settings.

The remainder of this paper is structured as follows: In the
Methods section we present a description of pneumonia trial
data followed by statistical analysis methods for cluster correlated
and missing data methods, respectively. Thereafter, we present
results before and after multiple imputation and conclude with
a discussion.

METHODS

Study Design
In this study we analyzed data from a cluster randomized trial
conducted by KEMRI-Wellcome Trust Research programme
between March 2016 and November 2016. Details of the trial
and the study population are described in full elsewhere (5, 24).
In summary, the trial was embedded within the larger CIN
study (ongoing) (6, 7, 25). The primary goal of the trial was
to investigate whether enhanced audit and feedback improved
quality of inpatient pediatrics pneumonia care (i.e., assessment,
diagnosis, and treatment of childhood pneumonia) in Kenyan
hospitals following new pneumonia guidelines recommended
by the World Health Organization (WHO) in 2013 (26). Six
hospitals were randomized to receive a standard audit and
feedback report on general inpatient pediatric care (control
arm). The remaining six hospitals received a standard audit
and feedback report in addition to an enhanced audit and
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feedback targeting assessment, classification and treatment of
pneumonia cases (intervention arm) (5, 24). Trained data clerks
abstracted routine data from the medical records into Research
Electronic Data Capture (REDCap) tool after patient’s discharge
from general pediatric wards. Data abstraction process was
guided by a standard operational procedure manual (5). Patients’
data spanned history of illness, physical examination, diagnosis,
laboratory investigations, treatments, and discharge plans (5, 24).
Details of admitting clinician including sex and professional
qualification were also recorded into a separate database linked
to the patients’ database by a unique clinician code.

Data quality assurance (DQA) exercises were conducted by
CIN research assistants in each hospital every 3 months to check
consistencies with data clerk’s entries. The Kenya Ministry of
Health and Kenya Medical Research Institute’s Scientific and
Ethical Review Unit approved data collection without individual
patient’s consent (5).

Outcome: Pneumonia Pediatric Admission
Quality of Care Score
Our outcome of interest was pneumonia PAQC score adapted
to 2013 WHO pediatric pneumonia treatment guidelines.
As earlier mentioned, PAQC score is a summary measure
spanning three quality of care domains namely, assessment,
clinical diagnosis, and treatment of common childhood illnesses
including pneumonia, malaria, diarrhea, and dehydration.
Details on PAQC score construction and validation are described
in full elsewhere (12, 27).With regard to pneumonia PAQC, there
are three binary subcomponents in the assessment domain. The
first subcomponent represents assessment and documentation
of two primary signs and symptoms required for pneumonia
identification (i.e., presence of cough or difficulty in breathing).
The value 1 in the binary indicator denotes documentation of
both cough and difficulty in breathing as either present or absent
while 0 denotes lack of documentation of least one primary sign
and symptom in a patient’s medical record.

The second binary indicator represents assessment and
documentation of secondary signs and symptoms required
for pneumonia severity classification (i.e., chest indrawing,
respiratory rate, grunting, central cyanosis, oxygen saturation,
ability to drink, or altered level of alertness). The value 1 in
the binary indicator denotes documentation of all secondary
signs and symptoms, respectively, while 0 denotes lack of
documentation of least one secondary signs and symptom. The
third binary indicator of the assessment domain corresponds to
1 when primary and secondary pneumonia signs and symptoms
(all primary and secondary signs and symptoms combined) are
documented and 0 otherwise (26).

The second PAQC score domain entails integration of
information on presenting signs and symptoms by admitting
clinician to correctly diagnose and classify pneumonia severity
(i.e., severe pneumonia or pneumonia). For example, pneumonia
was the correct diagnosis for a child who, in addition to cough
and/or difficult breathing (primary signs), presented with lower
chest indrawing or respiratory rate >50 for patients aged 2–11
months (or respiratory rate<40 for patients aged 12–59 months)

in the absence of all other secondary signs and symptoms. In this
study, a binary indicator was created with value 1 representing
correct pneumonia severity classification (i.e., is, pneumonia
severity documented in the medical record by the admitting
clinician was in line with severity implied by presenting signs and
symptoms) and 0 representing misclassified pneumonia severity.

The third PAQC score domain consists of two binary
indicators. The first binary variable indicates whether oral
amoxicillin was prescribed for pneumonia cases (denoted by
1) or not (denoted by 0). The second binary variable indicates
whether oral amoxicillin was prescribed according to guideline
recommended doses (26). In order to determine correctness
of the dose, we created a new variable “dose per kilo body
weight” using actual dose given at point of care, patient’s weight,
and frequency of administration. Among pediatric pneumonia
cases, the recommended oral amoxicillin dose should range
between 32 and 48 international units per kilogram (IU/Kg)
every 12 h. The new variable was then transformed into a
binary variable with 1 representing correct dose (that is, dose
per kilo body weight and frequencies of administration are
in line with guidelines recommendations) and 0 representing
incorrect dose (incorrect in either dose per kilo body weight
or frequency of administration) or missing dose. Subsequently,
we summed all the six binary components across domains to
obtain PAQC score; an ordinal outcome on a 7-point scale. We
constructed pneumonia PAQC score at patient level. Aminimum
score of zero corresponded to inappropriate pneumonia care
and maximum score of six represented complete adherence to
new pneumonia guidelines across domains of care. To assess
performance in terms of adherence to pediatric pneumonia
guidelines during the trial period, we calculated and plotted
the LOESS smoothing curves and the corresponding 95%
confidence bands for the mean monthly PAQC score for each
intervention arm.

Covariates
The covariates of interest were intervention arm, follow up time
in months with their interaction, hospital malaria prevalence
status, and hospital admission workload. At clinician level,
gender, and cadre were considered (here cadre refers to clinician’s
level of training that is, clinical officers with diploma-level
training and medical officers with a bachelor’s degree level
training). At patient level, we considered sex, number of
comorbid illnesses, and age at admission. Prior to analysis, we
converted age for all the patients into months before categorizing
them into two age groups that is, patients aged 2–11 months and
patients aged 12–59 months. With regard to comorbidities, we
determined the total number of clinical diagnoses documented
in patient’s medical records. The diagnoses of interest included
malaria, malnutrition, HIV, Asthma, Tuberculosis (TB), rickets,
anemia, diarrhea, and dehydration. For each patient, we created
separate binary variables for the diagnosis above with value 1
denoting the presence of a disease and 0 denoting absence of a
disease. We then summed the binary indicators and categorized
patients into four groups, that is those with 0, 1, 2, 3 or more
comorbidities, respectively.
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Missing Data Concepts
In the analysis of partially observed data, assumptions were
made about the missingness mechanism generating the data
(10). Suppose Y (representing both response and independent
variables) is an N × p matrix denoting a hypothetical data set
containing p variables (j = 1,...,p) for the ith study subject,
(i = 1,2,3,. . . ,N). For each study subject, Yi can be partitioned
into observed and missing components denoted by Yi

obs and
Yi

miss, respectively. Further letting a missingness indicator Ri
take the value 1 if Yi is observed and 0 if Yi is missing. Then
according to Rubin (28) data are said to be missing completely
at random (MCAR) when the probability of missing values in
variable is independent of the variable itself or any other observed
variable in the data set that is, P(Ri|Yi

miss, Yi
obs) = P(Ri). When

the probability of missing values in a variable does not depend
on the variable of interest but are conditionally dependent on
other observed variables in the data set, then data are said to be
missing at random (MAR) and denoted by P(Ri|Yi

miss, Yi
obs) =

P(Ri|Yi
obs). When MAR assumption does not hold, then data are

said to be Missing Not at Random (MNAR). MNAR mechanism
occurs when the missingness depends on the actual value of the
missed observation (10).

Investigating the Missing Data Mechanism
Before analyzing partially observed data, it was important to
investigate plausible missing data mechanisms (10, 29). In
this study we generated binary missingness indicators (Ri) for
partially observed variables in the pneumonia trial data set. The
binary missingness indicators were analyzed separately using a
logistic regression model below

logit[P(Ri)] = Xiβ (1)

where Xi is a vector of fully observed variables for the ith subject.
The vector β denotes fixed regression parameters to be estimated.
When the probability of missingness is independent on fully
observed variables (P-values for the regression coefficients
> 0.05), a variable is said to be MCAR. On the other hand,
when the probability of missingness is dependent on fully
observed variables (P-values for the regression coefficients
< 0.05), then MAR assumptions holds and restricting analysis
to complete observations yields bias and inefficient estimates
(10, 29, 30). Similarly, when the probability of missingness is
dependent on fully observed covariates but independent of the
response variable, then covariate dependent MAR assumptions
holds and restricting analysis to complete observations yields
unbiased but inefficient estimates due to information loss (10,
29, 30). We also used graphical methods to investigate missing
data patterns underlying pneumonia trial data (Figure A1 in
Supplementary Material).

Multiple Imputation
Multiple imputation (MI) involves substituting each missing
value with a set of plausible values given the observed data and
an imputation model (10, 31). MI is commonly used assuming
a MAR mechanism but can also be used when data are MNAR.
Multiple imputed data sets are then analyzed using standard

methods and results pooled into a single inference using Rubin’s
Rule (32). Multiple imputation is preferred over other missing
data methods such as list wise or pairwise deletion because
uncertainty about the missing values is taken into account (10,
23, 30, 31, 33). Additionally, MI separates imputation phase from
analysis phase therefore allowing inclusion of auxiliary variables
in the imputation model that are predictive of missing variables
and the missingness mechanism (10, 23, 27, 33–35).

In this study, we imputed missing level 1 and level 2 variables
within the joint modeling framework where replacement values
are drawn from a multivariate normal distribution in a single
step. Multilevel MI was implemented in the newly developed
jomo and mitmil packages in R (version 3.4.3) which allows
imputation of categorical variables with more than two levels in
the second and higher levels of the multilevel structure (36). For
the ith patient nested within jth clinician in hospital l, we defined
a two level JM imputation model corresponding to

Y
(1)
i,j,l

= X
(1)
i,j,l

β(1) + b
(1)
j,l

+ e
(1)
i,j,l

(2)

Y
(2)
j,l

= X
(2)
j,l

β(2) + b
(2)
j,l

ei,j,l ∼ N(0, σ 2
e ), and (b

(1)
j,l
, b

(2)
j,l
) ∼ N(0,Σb)

where Yi,j,l
(1) and Yj,l

(2) are vectors of partially observed level
1 variables (patient’s sex) and level 2 variables (clinician’s sex
and cadre), respectively. Predictor variables (Xi,j,l

(1)) of missing
patient’s sex included fully observed follow-up time interacted
with feedback arm, hospital admission workload and hospital
malaria prevalence status, patient’s PAQC score, patient’s age
and number of comorbid illnesses. Level 2 predictors (Xj,l

(2))
for missing clinicians’ sex and cadre included follow-up time
interacted with feedback arm, hospital admission workload, and
hospital malaria prevalence status. Column vectors β1 and β2

denote level 1 and level 2 fixed effects, respectively. A clinician
random intercept (bj,l) was included to account for clustering
at clinicians’ level and to ensure compatibility with substantive
models of interests. A burn-in of 1,000 updates and a 1,000
iterations between each of the 30 imputations were considered.
We used trace plots to assess convergence (37). Final estimates
were pooled according Rubin’s rules.

Statistical Analysis
We considered two model families to analyze pneumonia trial
data, that is, generalized estimating equations (GEE) and random
effects models. The random effects and GEE models differ in
terms of estimation and interpretation of parameter estimates
(30). We considered both models in order to assess the stability
of inferences and conclusions within and across the two methods
before and after multiple imputation.

Generalized Estimating Equations (GEE) Model
Generalized estimating equations (GEE) proposed by Liang and
Zeger (38) is a quasi-likelihood method for modeling correlated
responses within the marginal (population averaged) family of
models (29, 30). In GEE model a working correlation structure
is adopted. However, the parameter estimates in GEE model are
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consistent even when the association structure is misspecified
(29, 39). A GEE model is given by

h−1
{

E(Yi|Xi)
}

= Xiβ (3)

where the link function h−1(•) is a known function, Xi is a
design matrix for the fixed effects and β is the vector of unknown
regression parameters. The vector of regression parameters is
interpreted in terms of average response over the population
rather than prediction of the effect of changing covariates on a
given study subject (29).

When the responses are ordered and the proportional
odds assumptions of parallel logits hold, the cumulative logits
(proportional odds) model is considered (40). For instance,
considering ordered pneumonia PAQC score (outcome) for
the ith patient nested within jth clinician in hospital l, the
proportional odds GEE model of interest corresponds to

logit[P(YPACQ Score : i,j,l ≤ k)] = αk + β1Xage group : i,j,l (4)

+ β2Xpatient′s sex : i,j,l + β3Xcomobidity : i,j,l + β4Xclinician′s cadre : j,l

+ β5Xclinician′s sex : j,l + β6Xadmission workload : l

+ β7Xmalaria prevalence : l + β8Xtime in months : l ∗ Xtrial arm : l

where αk, k = 1,2,3,4,5,6 are PAQC score intercepts and β ′s are
regression coefficients common across all k−1 cumulative logits.

Random Effects Model
In contrast to population-averaged models, random effects
models are useful when drawing inferences with respect
to the subject-specific parameters. Given the covariates and
random effects, the responses are assumed to be conditionally
independent in this model (29, 30). A random effects model is
denoted by

h−1
{

E(Yi|Xi)
}

= Xiβ + Zibi (5)

bi ∼ N(0,6)

where h−1(•) is a known link function, Xi and Zi are design
matrices for the fixed effects and random effects while β and
bi are vectors of fixed and random parameters, respectively.
The vector biis assumed to be sampled from a multivariate
normal distribution with mean vector 0 and covariance matrix
6. The vector of regression parameters (β) has subject specific
interpretation in terms of the transformed mean response for in
individual. Considering pneumonia trial data with ordinal PAQC
score as above, proportional odds random intercepts model of
interest corresponds to

logit[P(YPACQ Score : i,j,l ≤ k)] (6)

= αk + β1Xage group : i,j,l + β2Xpatient′s sex : i,j,l

+ β3Xcomobidity : i,j,l + β4Xclinician′s cadre : j,l + β5Xclinician′s sex : j,l

+ β6Xadmission workload : l + β7Xmalaria prevalence : l

+ β8Xtime in months : l ∗Xtrial arm : l + bjl

where αk, k = 1,2,3,4,5,6 are PAQC score specific intercepts,
β ′s are estimated regression coefficients (common across all

k−1 cumulative logits) and bj,l are clinician’s random intercepts.
Hospital level random effects were not considered in these
analyses due to the few number of clusters.

Statistical Tests for Multiple Parameters
We used Wald tests and likelihood-ratio tests to determine
covariates with statistically significant effect on pneumonia
PAQC score. The likelihood-ratio tests was used to test for
statistical significance of covariates in the random effects models
(10, 41, 42). On the other hand, Wald tests suggested by Rubin
(10, 41) was used for the GEE model. The full (saturated) models
contained all the covariates while the reduced (null) models
dropped one covariate at a time. The tests were conducted on
complete case records and after multiple imputation. Details on
multi-parameter hypothesis tests after MI using Wald tests and
likelihood-ratio tests are available in Carpenter and Kenward
(10, p. 53–54) and Van Buuren (42, p. 157–158). All analyses
were conducted in R version 3.4.3. A 5% level of significance
was considered under complete case analysis and after MI of
missing covariates.

RESULTS

Descriptive Summaries
In total, 2,299 children aged 2–59 months were admitted
in general pediatric wards with childhood pneumonia in 12
CIN hospitals during the trial period. We linked patients and
clinicians’ databases using unique clinician code present in
both databases with a success rate of 92.5% (2,127/2,299) after
exclusion of 172/2,299 case records lacking admitting clinician’s
information. This resulted to three levels of clustering i.e., 2,127
patients admitted by 378 clinicians in 12 hospitals. Of the
2,127 pneumonia cases, 953/2,127 (44.8%) were admitted in six
hospitals assigned to enhanced A&F (intervention) arm. The
number of pneumonia cases varied across hospitals with a range
of 42–356 patients (Table 1).

Five out of 12 hospitals were drawn from high malaria
endemic regions (three control and two intervention hospitals)
while the remaining seven hospitals (four control and three
intervention hospitals) were drawn from low malaria regions
in Kenya (25). Furthermore, four in 12 hospitals were high
admission workload hospitals that is, more than 1,000 pediatric
admissions per annum (three control and one intervention
hospitals) while 8/12 were low admission workload hospitals
i.e., <1,000 pediatric admissions per annum (three control
and five intervention hospitals) irrespective of admission
diagnosis. On average, there were 32 clinicians per hospital
with a standard deviation of nine clinicians. The number
of patients per clinician ranged between 3 and 46. Majority
of the admitting clinicians were clinical officer interns at
48.7% (185/378) followed by Medical officer interns at 26.2%
(99/378). Clinical officer and medical officers accounted for 1.6%
(6/378) each. Approximately, 21.9% (83/378) and 21.7% (82/378)
clinicians had missing gender and cadre, respectively (Table 1).
In subsequent analyses we grouped clinicians into two cadres
from the initial four. That is, clinical officers (CO) combining
clinical officers and clinical officer interns and medical officers
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TABLE 1 | Descriptive characteristics of hospitals, clinicians and patients in pneumonia trial data.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 Total

Enhanced A&F arm No Yes No No Yes Yes Yes Yes No No No Yes

Admission workload Low Low High Low Low High Low Low Low High High Low

Malaria prevalence High Low High Low Low Low High High Low Low Low High

Pneumonia admissions,

n (%)

132

(6.21)

215

(10.11)

210

(9.87)

243

(11.42)

110

(5.17)

356

(16.74)

63

(2.96)

167

(7.85)

88

(4.14)

172

(8.09)

329

(15.57)

42

(1.97)

2,127

(100)

Patients aged 2–11 months,

n (%)

44

(33.3)

79

(36.7)

71

(33.8)

89

(36.6)

49

(44.6)

193

(54.5)

22

(34.9)

70

(41.9)

45

(51.1)

99

(57.6)

129

(39.2)

13

(30.95)

903

(42.5)

Patients aged 12–59

months, n (%)

88

(66.7)

136

(63.3)

139

(66.2)

154

(63.4)

61

(55.5)

162

(45.5)

41

(65.1)

97

(58.1)

43

(48.9)

73

(42.4)

200

(60.8)

29

(69.1)

1,224

(57.5)

Male patients, n (%) 80

(60.6)

118

(54.9)

103

(49.1)

138

(56.8)

55

(50.0)

194

(54.5)

35

(55.6)

100

(59.9)

42

(47.7)

95

(55.2)

181

(55.1)

23

(54.8)

1,164

(54.72)

Female patients, n (%) 52

(39.4)

97

(45.1)

107

(50.9)

101

(41.6)

55

(50.0)

162

(45.5)

27

(42.9)

67

(40.1)

46

(52.3)

76

(44.2)

141

(42.9)

19

(45.2)

950

(44.6)

Missing patients sex, n (%) 0

(0.0)

0

(0.0)

0

(0.0)

4

(1.7)

0

(0.0)

0

(0.0)

1

(1.6)

0

(0.0)

0

(0.0)

1

(0.6)

7

(2.1)

0

(0.0)

13

(0.6)

0 comorbidities, n (%) 29

(21.9)

121

(56.3)

30

(14.3)

155

(63.8)

55

(50.0)

219

(61.5)

24

(38.1)

52

(31.1)

30

(34.1)

70

(40.7)

191

(58.1)

19

(45.2)

995

(46.8)

1 comorbidity, n (%) 64

(48.5)

56

(26.1)

109

(51.9)

41

(16.9)

22

(20.0)

62

(17.4)

23

(36.5)

65

(38.9)

36

(40.9)

51

(29.7)

87

(26.4)

17

(40.5)

633

(29.8)

2 comorbidities, n (%) 28

(21.2)

31

(14.4)

54

(25.7)

41

(16.9)

22

(21.6)

63

(17.7)

12

(19.1)

36

(21.6)

14

(15.9)

37

(21.5)

37

(11.3)

6

(14.3)

381

(17.9)

3 ≥ comorbidities, n (%) 11

(8.3)

7

(3.3)

17

(8.1)

6

(2.5)

11

(10.0)

12

(3.4)

4

(6.4)

14

(8.4)

8

(9.1)

14

(8.1)

14

(4.3)

0

(0.0)

118

(5.5)

Number of clinicians: n (%) 31 36 43 33 25 36 24 39 32 20 44 15 378

Female clinicians, n (%) 15

(54.55)

11

(30.56)

15

(34.9)

13

(39.4)

2

(8.0)

14

(38.9)

13

(54.2)

16

(41.0)

0

(0.0)

0

(0.0)

24

(54.6)

5

(33.3)

128

(33.9)

Male clinicians, n (%) 16

(45.45)

18

(50.0)

28

(65.2)

20

(60.6)

8

(32.0)

10

(27.8)

11

(45.8)

23

(59.0)

3

(9.4)

1

(5.0)

20

(45.4)

10

(66.7)

168

(44.4)

Clinicians with missing sex,

n (%)

0

(0.0)

7

(19.4)

0

(0.0)

0

(0.0)

15

(60.0)

12

(33.3)

0

(0.0)

0

(0.0)

29

(90.6)

19

(95.0)

0

(0.0)

0

(0.0)

82

(21.7)

Clinicians’ cadre: CO, n (%) 0

(0.0)

0

(0.0)

0

(0.0)

2

(6.1)

3

(12.0)

0

(0.0)

0

(0.0)

0

(0.0)

1

(3.1)

0

(0.0)

0

(0.0)

0

(0.0)

6

(1.6)

Clinicians’ cadre: CO

interns, n (%)

20

(64.5)

18

(50.0)

31

(72.1)

20

(60.6)

2

(8.0)

14

(38.9)

16

(66.7)

29

(74.4)

1

(3.1)

0

(0.0)

25

(56.82)

8

(53.3)

184

(48.7)

Clinicians’ cadre: MO‡,

n (%)

1

(3.2)

12.8

(2.8)

0

(0.0)

0

(0.0)

0

(0.0)

1

(2.8)

0

(0.0)

1

(2.6)

0

(0.0)

1

(5.0)

1

(2.3)

0

(0.0)

6

(1.6)

Clinicians’ cadre: MO

interns, n (%)

10

(32.3)

10

(27.8)

12

(27.9)

11

(33.3)

5

(20.0)

9

(25.0)

7

(29.2)

9

(23.1)

1

(3.1)

0

(0.0)

18

(40.9)

7

(46.7)

99

(26.2)

Clinicians with missing

cadre, n (%)

0

(0.0)

7

(19.4)

0

(0.0)

0

(0.0)

15

(60.0)

12

(33.3)

1

(4.1)

0

(0.0)

29

(90.6)

19

(95.0)

0

(0.0)

0

(0.0)

83

(21.9)

‡CO-Clinical Officer, MO-Medical Officer, H1–H12 denote hospitals participating in the trial.

(MO) combining medical officers and medical officer interns,
respectively. Approximately, 42% (903/2,127) of patients were
aged between 2 and 11 months and 45% (950/2,127) were
females. Patient’s sex was missing in 0.7% (17/2,127) of case
records (Table 1).

Examining pneumonia PAQC score over time graphically,
hospitals in the standard A&F arm (red curve) exhibited a higher
mean PAQC score at baseline with no significant fluctuations
over time (Figure 1). On the other hand, hospitals assigned to
enhanced A&F arm (blue curve) had a lower mean PAQC score
at baseline which rapidly improved toward higher score in the
first 6 months of follow-up. Although enhanced A&F arm’s trend
line surpassed that of standard A&F arm after 6 months of

follow-up, the 95% confidence bands of the two intervention
arms overlapped substantially (Figure 1).

An assessment of missing data patterns suggested
a multivariate missing data pattern (Figure A1 in
Supplementary Material). The missing data pattern further
revealed similarities between of missing clinician’s cadre and sex.
That is, nearly all clinicians with missing sex had missing cadre
as well. Further investigations into missing data patterns showed
that missing clinicians’ cadre and sex only occurred in six out of
12 hospitals (Figure 2).

Logistic regression results on plausible mechanisms
underlying pneumonia trial data indicated that the probability
of missing patient’s sex was neither dependent on the outcome
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(PAQC score) nor fully observed covariates (interaction
between intervention arm and follow up time in months,
hospital admission workload, and malaria prevalence,
patient’s age group, and the number of presenting comorbid
illnesses). That is, the P-values were >0.05 suggesting a
MCAR mechanism (Table A1 in Supplementary Material).
On the other hand, the probabilities of missing clinician’s
cadre and gender were dependent on both the outcome
and fully observed covariates suggesting evidence against
MCAR (Table A1 in Supplementary Material). Therefore,

FIGURE 1 | Mean PAQC score and 95% confidence bands for six hospitals in

the standard A&F arm and six hospitals in the enhance A&F arm.

we imputed missing data assuming a MAR mechanism. MI
diagnostic test indicated satisfactory convergence (Figure A2 in
Supplementary Material).

Random Effects and GEE Model Results
Test for proportional odds assumption was not statistically
significant at 5% level (P = 0.17). Therefore, we assumed
parallel logits and fitted proportional odds models to complete
case records and imputed datasets. In Table 2, we present the
likelihood ratio test and Wald test results for proportional
odds random effects and GEE model, respectively. After MI of
missing covariates, we observed consistent results between the
random effects model and the GEE model in terms of statistical
significance of covariates of interest (Table 2). Specifically,
we found statistically significant interaction effect between
intervention arm and follow-up time. Similarly, admission
workload at hospital level was significant at 5% level. At patients’
level, age and the number of comorbidities were statistically
significant while at clinicians’ level, sex showed significant effect
on pneumonia PAQC score (Table 2).

In Table 3, we present proportional odds ratios and the
corresponding 95% confidence interval obtained after fitting the
random intercepts model and GEE models before and after
multilevel multiple imputation. Standard errors before and after
MI are presented in Table A2 (Supplementary Material). For
the GEE model, we reported robust (empirically corrected)
standard errors which were in agreement with model based
(naive) standard errors (Table A2 in Supplementary Material).
Under complete case analysis, only 1,619/2,127 (76.1%) case
records were considered.

This loss information led to larger standard errors comparison
to those obtained after MI of missing covariates in both random

FIGURE 2 | Proportion of missing clinicians’ cadre and sex at hospital level and across all hospitals combined.
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TABLE 2 | Likelihood ratio test and Wald test statistics for random effects model and GEE model under complete case analysis and after multilevel multiple imputation of

missing covariates.

Random effects model GEE model

Complete case analysis N =

1,619 (76.1%)

Multilevel MI

N = 2,127 (100%)

Complete case analysis

N = 1,619 (76.1%)

Multilevel MI

N = 2,127 (100%)

Effect LRT P-value LRT P-value Wald test P-value Wald test P-value

Patients’ age 3.49 0.06 4.66 0.03 4.18 0.04 7.81 0.01

Patients’ sex 0.08 0.77 0.01 0.92 0.003 0.96 0.02 0.88

Comorbidities 4.46 0.02 4.83 0.03 2.42 0.49 5.48 0.02

Clinicians’ sex 5.06 0.02 4.02 0.04 6.32 0.01 4.47 0.03

Clinicians’ cadre 0.01 0.91 0.23 0.63 1.36 0.24 2.96 0.08

Hospital workload 0.143 0.71 3.39 0.04 1.46 0.23 4.95 0.03

Malaria prevalence 0.067 0.79 1.35 0.25 0.98 0.32 0.012 0.91

Time (months) 11.98 <0.001 14.16 <0.001 11.37 0.003 11.16 <0.001

Enhanced A&F arm 28.58 <0.001 17.51 <0.001 28.86 <0.001 17.76 <0.001

Time × Enhanced A&F 14.92 0.02 14.16 <0.001 17.85 <0.001 9.45 <0.001

LRT, Likelihood ratio test; A&F, Audit and feedback; MI, Multiple imputation; GEE, Generalized estimating equations.

effects and GEE model families. Furthermore, the proportional
odds ratios were consistently smaller under complete case
analyses compared to those obtained after MI (Table 3). These
results were an indication of bias and inefficiency of parameters
estimated under complete case analysis. The six PAQC score
intercepts presented in Table 3 denote thresholds (cut points)
differentiating adjacent levels of the response variable. For
example, intercept 1 in Table 3 denote the odds of PAQC score
= 1 vs. PAQC score ≥ 2 for a female patient aged 2–11 months
admitted with no comorbidities admitted by a male medical
officer in a high workload hospitals located in high malaria
prevalence region. The individual fixed effect parameters are the
proportional odds ratios of individual variables on PAQC score
holding all other variables in the model constant.

From study results, enhanced audit and feedback led to
improve uptake of new pneumonia pediatric guideline over time.
For instance, considering a patient admitted in an intervention
hospital (enhanced audit and feedback arm), the odds of PAQC
score = 1 vs. PAQC score ≥ 2 were 1.16 (95% CI: 1.02–
1.308) times higher the odds of a patients admitted in a control
hospital, for a unit increase in follow-up time and holding other
variables at reference levels. Likewise, for a patient admitted in

an intervention hospital, the odds of PAQC score = 1 vs. PAQC

score ≥ 2 were 1.29 (95% CI: 1.17–1.482) times higher the odds
of a patients admitted in a control hospital, for a unit increase
in follow-up month (GEE model after MI). These interpretations
hold for all other response (PAQC score) levels.

The study results also exhibited shifts in statistical significance
before and after multiple imputation for selected variable.
Specifically, adjusting for other variables, complete cases analysis
lead to insignificant difference between low and high admission
workload hospitals on levels of PAQC score in both random
effects model and GEE model where the 95% CI confidence
intervals contained the value 1. But after MI, the odds of
higher pneumonia PAQC score in low workload hospitals were
1.12 (95% CI: 1.08–1.372) and 1.40 (95% CI: 1.103–2.063)

times higher than for high workload hospitals for the random
intercepts and GEE model, respectively (Table 3).

With regard to random effects model, the variance component
between clinicians and the corresponding standard error were
inflated under complete cases analysis. A possible explanation
for this results is that clinicians with missing cadre and sex were
discarded under complete case analysis resulting to fewer number
of clinicians (clusters) hence inflated clinicians’ variability. On
the other hand, all clinicians were retained after MI hence lower
variability between clinicians.

DISCUSSION

This study sought to investigate the effect of enhanced A&F
on routine pediatric pneumonia care in 12 Kenyan hospitals
during a cluster randomized trial. In the analysis we adjusted for
patients, clinicians, and hospital levels factors while accounting
for covariate missingness across the three levels of hierarchy. The
number of pneumonia admissions varied widely across hospitals
during the trial period. The outcome of interest (pneumonia
PAQC score) is a composite measure representing multiple
aspects of pediatric pneumonia care on a 7-point ordinal scale.
The advantage of using composite outcomes over individual
performance measures is increased statistical efficiency (43–47).
Although we reported and analyzed a fully observed outcome,
we note that variations in pneumonia PAQC on the 7-point
ordinal scale was attributable to missing data in some of the
subcomponents in addition to inappropriate pneumonia care
across domains of care (12). Specifically, missing components
and those corresponding to inappropriate care were scored
zero. Among covariates, clinician variables exhibited the highest
proportions of missingness. Approximately 21% of all admitting
clinicians had missing sex and cadre, respectively. These
observations were consistent with previous results of a cluster
randomized trial evaluating the effectiveness of a multifaceted
intervention to improve admission pediatric care in eight Kenyan
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TABLE 3 | Odds ratios (95% confidence intervals) estimated under complete case analysis and after multilevel multiple imputation of missing covariates.

Random effects model GEE model

Complete case analysis

N = 1,619 (76.1%)

Multilevel MI

N = 2,127 (100%)

Complete case analysis

N = 1,619 (76.1%)

Multilevel MI

N = 2,127 (100%)

Effect Odds ratios

(95% CI)

P-value Odds ratios

(95% CI)

P-value Odds ratios

(95% CI)

P- value Odds ratios

(95% CI)

P-value

Intercept: PAQC score 0 Reference Reference Reference Reference

Intercept: PAQC score 1 0.06 (0.031, 0.14) <0.001 0.18 (0.071, 0.375) <0.001 6.13 (3.188, 9.456) <0.001 4.18 (2.010, 6.128) <0.001

Intercept: PAQC score 2 0.07 (0.036, 0.138) <0.001 0.17 (0.082, 0.365) <0.001 7.73 (3.258, 18.316) <0.001 4.98 (2.056, 2.078) <0.001

Intercept: PAQC score 3 0.22 (0.11, 0.42) 0.03 0.53 (0.251, 1.105) 0.07 3.12 (1.345, 7.23) 0.03 2.02 (0.852, 4.809) 0.08

Intercept: PAQC score 4 0.67 (0.342, 1.294) 0.12 1.63 (0.779, 3.427) 0.67 1.29 (0.561, 2.981) 0.56 0.84 (0.354, 1.987) 0.96

Intercept: PAQC score 5 2.74 (1.401, 5.347) <0.001 6.69 (3.166, 14.14) <0.001 0.44 (0.192, 1.012) 0.12 0.29 (0.122, 0.678) <0.001

Intercept: PAQC score 6 7.24 (3.678, 4.253) <0.001 7.79 (8.336, 3.964) <0.001 0.21 (0.089, 0.501) <0.001 0.14 (0.057, 0.336) <0.001

Age-group: 12–59 1.20 (0.991, 1.464) 0.06 1.19 (0.986, 1.454) 0.09 1.15 (0.922, 1.432) 0.09 1.16 (0.932, 1.454) 0.08

Patients’ sex: males 0.97 (0.806, 1.174) 0.77 0.97 (0.805, 1.173) 0.93 0.95 (0.759, 1.185) 0.96 0.95 (0.760, 1.183) 0.91

Comorbidities: 1 0.99 (0.783, 1.267) 0.94 0.99 (0.782, 1.253) 0.93 1.02 (0.810, 1.295) 0.84 1.03 (0.815, 1.304) 0.80

Comorbidities: 2 1.01 (0.766, 1.327) 0.95 1.01 (0.767, 1.326) 0.96 1.01 (0.779, 1.304) 0.94 1.01 (0.781, 1.312) 0.92

Comorbidities: ≥3 0.63 (0.398, 0.985) 0.04 0.61 (0.387, 0.955) 0.03 1.37 (0.906, 2.063) 0.14 1.41 (0.937, 2.126) 0.09

Clinicians’ sex: female 1.51 (1.057, 2.183) 0.02 1.53 (1.064, 2.195) 0.02 1.44 (1.095, 1.910) 0.01 1.45 (1.106, 1.894) 0.01

Clinicians’ cadre: MO 1.02 (0.709, 1.468) 0.91 1.04 (0.720, 1.49) 0.98 1.18 (0.878, 1.582) 0.24 1.20 (0.888, 1.611) 0.18

Hospital workload: low 0.93 (0.624, 1.376) 0.71 1.12 (1.080, 1.372) 0.04 1.42 (0.974, 2.068) 0.23 1.40 (1.103, 2.063) 0.02

Malaria prevalence: low 0.95 (0.644, 1.401) 0.79 0.94 (0.640, 1.389) 0.25 1.18 (0.748, 1.865) 0.32 1.18 (0.742, 1.87) 0.95

Time (months) 1.05 (0.969, 1.145) 0.22 1.05 (0.967, 1.141) 0.81 0.99 (0.904, 1.094) 0.86 0.99 (0.905, 1.103) 0.40

Enhanced A&F arm 0.18 (0.095, 0.349) <0.001 0.18 (0.093, 0.341) <0.001 0.11 (0.054, 0.227) <0.001 0.11 (0.053, 0.236) <0.001

Time × Enhanced A&F 1.15 (1.018, 1.307) 0.02 1.16 (1.020, 1.308) <0.001 1.27 (1.125, 1.484) <0.001 1.29 (1.117, 1.482) <0.001

Variance (standard error)

between random clinicians’

intercepts

1.328 (1.151) 1.161 (1.073)

SE, Standard Error; CI, Confidence interval; MO, Medical Officer; A&F, Audit and feedback.

hospitals (10, 48). In the said study, 14 and 20% of the clinicians
had missing sex and years of experience, respectively.

In contrast, patient level variables were fully observed except
patient’s sex which had <1% missingness. The sharp contrast
missingness between clinicians and patients level variables
could be due the fact that continued CIN audit and feedback
reports focus on the documentation of patient level variables
rather than documentation of clinicians’ characteristics. Through
preliminary investigations, we established that missing clinicians’
characteristics occurred in six out of 12 hospitals participating in
the trial. The patterns of missingness in the two clinicians level
variables was highly correlated. That is, clinicians who did not
document their sex were also likely not to document their cadre
and vice versa.

To alleviate bias and inefficiency, we usedmultiple imputation
within the joint modeling (JM) imputation framework assuming
a MAR mechanism (10, 30, 31). Although JM imputation
framework does not address the full range of complexities that
are typical of multilevel data (22, 23), it was preferred due to its
flexibility coupled with recent statistical software developments
in handling categorical variables with more than two levels in
second and higher levels of hierarchy (36).

Consistent with our expectations, results demonstrated that
multilevel imputation led to more precise parameter estimates

compared to complete case analyses in both random effects
and GEE models. Adjusting for patients, clinicians and hospital
level factors, enhanced A&F improved uptake and adherence
to recommended pediatric pneumonia guidelines over time
among children aged 2–59 months admitted in six CIN hospitals
during the trial period compared to standard A&F on general
inpatient pediatric care. The significant difference in the uptake
of the pneumonia guidelines between the intervention arms
could be due to difference in baseline performance observed
in the Loess curves. That is, control hospitals exhibited high
baseline performance (on average) thus leaving smaller room
for improvement compared to low baseline performance in the
enhanced A&F arm hence larger room for improvement over
time. These results were consistent with those of the primary
analysis (24).

A key difference between our study and that primary analysis
is that whereas we analyzed a composite outcome spanning
three quality of care domain, Ayieko et al. (24) considered
proportion of patients with correct pneumonia classification and
treatment, respectively. Furthermore, our study accounted for
clinicians’ characteristics in addition to patients and hospitals
level characteristics accounted for in the primary analysis. From
results, the quality of pneumonia care differed between male
and female clinicians. It was also evident that junior clinicians
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(medical officers and clinical officer interns) were responsible for
much care during the trial period. However, the quality of care
provided did not differ between the cadres. The high number of
interns is an indication that hospitals in the trial were teaching
and referral hospitals.

Strengths and Implications of the Study
In this study, we investigated plausible missing data mechanism
underlying pneumonia trial data. Though often ignored, this step
is important in assessing and understanding the implications
of missingness in a given data set under analysis. That is,
inefficient estimates or both biased and inefficient estimates.
In addition to missing data mechanism, we evaluated missing
data patterns underlying the trial data set. This was useful
in revealing trends and gaps in the quality of routine care.
Insight into such information is useful when designing cost
effective follow-up or new interventions programmes for optimal
and efficient utilization of already stretched resources (49). For
instance, based on our study results, a follow up intervention
programme aimed at improving documentation and reporting of
clinician characteristics should be directed to specific hospitals
low documentation of clinicians’ level data while resources
in hospitals with good documentation practices should be
directed elsewhere.

To address missing data, we employed recent statistical
software tools to impute missing variables in routine pediatric
data. Our choice of imputation tools and method was in
consideration of the hierarchical structure of the data and type
of variables in the data set. This ensured compatibility between
imputation and analysis models of interest thus minimizing
bias in parameter estimates (10, 23). Further, our choice of
proportion odds models to analyze the ordinal outcome was
ascertained through formal test further enhancing the validity
of our study results. In instances when the proportional
odds assumptions are violated, multinomial logistic regression
model is recommended (40). In contrast to previous studies
reporting quality of inpatient pediatric routine care in CIN
hospitals (3, 13, 15), our study accounted for clinicians who
are essential for the delivery of health intervention (16).
Ignoring variation at clinician level may lead to biased estimates,
overestimation or underestimation of variations in other levels of
clustering (50).

LIMITATIONS

A limitation of this study is that we relied on data collected after
patient discharge. Therefore, we are unable to ascertain if patients
received pneumonia care as documented by health workers (24).
We imputedmissing data assumingMARmechanism. Therefore,
sensitivity analyses will be undertaken to explore the robustness
of the inferences to MAR assumptions.

CONCLUSION

Adjusting for hospitals, admitting clinicians, and patient level
factors, enhanced audit, and feedback improved uptake of
WHO recommended pediatric pneumonia guidelines compared

to standard audit and feedback. Additionally, female clinicians
and hospitals with low admission workload were associated
with higher uptake of the new pediatric pneumonia guidelines
during the trial period. In both random effects and marginal
model, parameter estimates were biased and inefficient under
complete case analysis. Therefore, multiple imputation is
recommended. When analyzing partially observed data with
more than one level of clustering, it is paramount to accounts
for the hierarchical structure in the imputation model to
ensure compatibility with analysis models of interest and hence
alleviate bias.
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