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Genomic and epidemiological monitoring have become an integral part of our response

to emerging and ongoing epidemics of viral infectious diseases. Advances in

high-throughput sequencing, including portable genomic sequencing at reduced costs

and turnaround time, are paralleled by continuing developments in methodology to infer

evolutionary histories (dynamics/patterns) and to identify factors driving viral spread in

space and time. The traditionally static nature of visualizing phylogenetic trees that

represent these evolutionary relationships/processes has also evolved, albeit perhaps

at a slower rate. Advanced visualization tools with increased resolution assist in drawing

conclusions from phylogenetic estimates and may even have potential to better inform

public health and treatment decisions, but the design (and choice of what analyses

are shown) is hindered by the complexity of information embedded within current

phylogenetic models and the integration of available meta-data. In this review, we discuss

visualization challenges for the interpretation and exploration of reconstructed histories

of viral epidemics that arose from increasing volumes of sequence data and the wealth

of additional data layers that can be integrated. We focus on solutions that address joint

temporal and spatial visualization but also consider what the future may bring in terms of

visualization and how this may become of value for the coming era of real-time digital

pathogen surveillance, where actionable results and adequate intervention strategies

need to be obtained within days.

Keywords: visualization, phylogenetics, phylogenomics, phylodynamics, infectious disease, epidemiology,

evolution

1. VIRUS EPIDEMIOLOGY AND EVOLUTION

Despite major advances in drug and vaccine design in recent decades, viral infectious diseases
continue to pose serious threats to public health, both as globally well-established epidemics
of e.g., Human Immunodeficiency Virus Type 1 (HIV-1), Dengue virus (DENV) or Hepatitis
C virus (HCV), and as emerging or re-emerging epidemics of e.g., Zika virus (ZIKV), Middle
East Respiratory Syndrome Coronavirus (MERS-CoV), Measles virus (MV), or Ebola virus
(EBOV). Efforts to reconstruct the dynamics of viral epidemics have gained considerable attention
as they may support the design of optimal disease control and treatment strategies (1, 2).
These analyses are able to provide answers to questions on the diverse processes underlying
disease epidemiology, including the (zoonotic) origin and timing of virus outbreaks, drivers of
spatial spread, characteristics of transmission clusters and factors contributing to enhanced viral
pathogenicity and adaptation (3–5).
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Molecular epidemiological techniques have proven to be
important and effective in informing public health and
therapeutic decisions in the context of viral pathogens (6, 7),
given that most of the viruses with a severe global disease
burden are characterized by high rates of evolutionary change.
These genetic changes are being accumulated in viral genomes
on a time scale similar to the one where the dynamics
of population genetic and epidemiological processes can be
observed, which has lead to the definition of viral phylodynamics
as the study of how epidemiological, immunological, and
evolutionary processes act and potentially interact to shape
viral phylogenies (8). As such, phylogenetic trees constitute a
crucial instrument in studies of virus evolution and molecular
epidemiology, elucidating evolutionary relationships between
sampled virus variants based on the temporal resolution in the
genetic data of these fast-evolving viruses that allows resolving
their epidemiology in terms of months or years. Through
the integration of population genetics theory, epidemiological
data and mathematical modeling, insights into epidemiological,
immunological, and evolutionary processes shaping genetic
variation can be inferred from these phylogenies. The field of
phylodynamics has generated new opportunities to obtain amore
detailed understanding of evolutionary histories—through time
as well as geographic space—and transmission dynamics of both
well-established viral epidemics and emerging outbreaks (9, 10).

The ability of molecular epidemiological analyses, and
phylodynamic analyses in particular, to fully exploit the
information embedded in viral sequence data has significantly
improved through a combination of technological innovations
and advances in inference frameworks during the past decades.
From a data perspective, genomic epidemiology is becoming
a standard framework driven by high-throughput sequencing
technologies that are associated with reduced costs and
increasing turnover. Moreover, the portability and potential of
rapid deployment on-site of these new technologies enable the
generation of complete genome data from samples within hours
of taking the samples (11). This rising availability of whole-
genome sequences increases the resolution by which historical
events and epidemic dynamics can be reconstructed. From
a methodological perspective, new developments in statistical
and computational methods along with advances in hardware
infrastructure have allowed the analysis of ever-growing data
sets, the incorporation of more complex models and the
inclusion of information related to sample collection, infected
host characteristics and clinical or experimental status (generally
known as metadata) (9, 10, 12, 13).

In contrast to a marked increase in the number of software
packages targetting increasingly efficient but complex approaches
to infer annotated phylogenies by exploiting genomic data
and the associated metadata, the intuitive and interactive
visualization of their outcomes has not received the same degree
of attention, despite being a key aspect in the interpretation
and dissemination of the rich information that is inferred.
Phylogenies are typically visualized in a rather simplistic manner,
with the concept of depicting evolutionary relationships using a
tree structure already illustrated in Charles Darwin’s notebook
(1837) and his seminal book “The Origin of Species” (14). Early

phylogenetic tree visualization efforts constituted an integral
part of phylogenetic inference software packages and as such
were restricted to simply showing the inferred phylogenies on
a command line or in a simple text file, often even without an
accompanying graphical user interface. The longstanding use of
phylogenies in molecular epidemiological analyses has however
led to the emergence of increasingly feature-rich visualization
tools over time. The advent of the new research disciplines such as
phylogenomics and phylodynamics necessitated more complex
visualizations in order to accommodate projections of pathogen
dispersal onto a geographic map, ancestral reconstruction of
various types of trait data and appealing animations of the
reconstructed evolution and spread over time. Tree visualizations
resulting from these analyses are also complemented by visual
reconstructions of other important aspects of the model
reconstructions, such as population size dynamics over time,
transmission networks and estimates of ancestral states for traits
of interest throughout the tree (15).

Across disciplines, adequate visualizations are pivotal to
communicate, disseminate and translate research findings into
meaningful information and actionable insights for clinical,
research and public health officials. The aim to improve data-
driven decision making fits within a broader scope to establish a
universal data visualization literacy (16). To this end, enhancing
collaborations and dissemination of visualizations is increasingly
achieved through sharing of online resources for hosting
annotated tree reconstructions (17), online workspaces (18) and
continuously updated pipelines that accommodate increasing
data flow during infectious disease outbreaks (19) (see further
sections for more information and examples of these packages).
Given the plethora of options for presenting and visualizing
results, and its importance for effectively communicating with
a wide audience, choosing the appropriate representation and
visualization strategy can be challenging. Recent work on this
topic focuses on navigating through all the available visualization
options by offering clear guidelines on how to turn large datasets
into compelling and aesthetically appealing figures (20).

2. A FRAMEWORK FOR VISUALIZATION

A large array of software packages for performing phylogenetic
and phylodynamic analyses have emerged in the last decade,
in particularly for fast-evolving RNA viruses [see (10) for a
recent overview]. A more recent but similar trend can be
seen for methodologies and applications aimed at visualization
of the output of these frameworks. In addition to the
need to communicate these outputs in a visual manner,
an increasing recognition for the added value of adequate
visualization for surveillance, prevention, control and treatment
of viral infectious diseases has resulted into the merging of
data analytics and visualization, with the visualization aspect
being increasingly considered as an elementary component
within all-round analysis platforms. This review illustrates the
evolution in phylogenetically-informed visualization modalities
for evolutionary inference and epidemic modeling based on
viral sequence data, evolving from an initial purpose to serve
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basic interpretation of the results to an in-depth translation of
complex information into usable data for virologists, researchers
and public health officials alike. Novel features and innovative
approaches often stem from a community need, which can be
translated into a specific challenge to be addressed by current and
future software applications. Throughout this article, we discuss
some of themajor bottlenecks for interpretation and visualization
of phylodynamic results, and subsequently solutions that have
addressed or can address these challenges.

A closer inspection of how tools for manipulation,
visualization and interpretation of evolutionary scenarios
have steadily grown over time reveals different trends of interest.
First, visualization needs for phylodynamic analyses are very
heterogeneous in nature, driven by the intrinsic objective
to better understand viral disease epidemiology. Due to the
increasing complexity and interactivity of the various aspects
that make up phylodynamic analyses, the gradual change in
visualization tools has resulted in a wide but incomplete range
of solutions provided (illustrated by the Wikipedia list of
phylogenetic tree visualization software1). Software applications
for phylodynamic analyses have extended into investigations
of population dynamics over time, trait evolution and spatio-
temporal dispersal, while still using a phylogenetic tree as
their core concept. While we will focus predominantly on the
concept of a phylogenetic tree as the backbone of phylodynamic
visualization, these analyses also produce other types of output
that go beyond visualizing phylogenies, especially when it
comes to trait data reconstruction. Second, the continuing
advances in visualization—which try to keep up with increasing
complexities in the statistical models employed—not only result
in more features being available for end users to exploit, they
may also come at an increased cost in terms of usability and
responsiveness. Formats for input and output files have increased
in complexity, from simple text files to XML specifications and
(Geo)JSON file formats for geographical features. Reading,
understanding and editing such files may prove to be a
challenging task for practitioners. However, most visualization
tools do not expose these complexities to their users and offer
an intuitive point-and-click interface and/or drag-and-drop
functionality for customizing the visualization (18). Despite
such intuitive interactivity, intricate knowledge and a certain
amount of programming/scripting experience is often required
for those users who want to customize and/or extend their
visualization beyond what the application has to offer. Third,
visualization goals tend to become context-dependent in that not
all phylodynamic analyses deal with the same sense of urgency,
with established epidemics requiring different prevention and
treatment strategies than outbreak detection and surveillance.
For example, in established epidemics (e.g., HIV-1) thefocus
may be on identifying (important) clusters within a very large
phylogeny (17), whereas analyses in ongoing outbreaks often
determine whether newly generated sequences correspond to
strains of the virus known to circulate in a certain region and try
to establish spillover from animal reservoirs (21). Finally, despite
the major achievements so far, visualization tools are reaching

1https://en.wikipedia.org/wiki/List_of_phylogenetic_tree_visualization_software

the limits of their capacity to comprehensibly present analysis
results of large datasets. Promising developments and strategies
are becoming available that move visualization beyond the goal
of communicating and synthesizing results, and actively play
an important role in providing analytics to better understand
evolutionary and demographic processes fueling viral dispersal
and pathogenicity.

3. VISUALIZATION CHALLENGES AND
SOLUTIONS

Phylogenetic tree visualizations have played a central role
since the earliest evolutionary and molecular epidemiological
analyses of fast-evolving viral pathogens. The first computer
programs aimed at constructing phylogenies [e.g., PAUP∗; (22,
23), and PHYLIP; (24)] were only equipped with minimal
tree drawing and printing facilities, limited by the available
operating systems and programming languages of that time.
Standalone, phylogenetically-oriented programs [e.g., MUST;
(25) and later on Treeview; (26)] were specifically developed
to interact with tree reconstruction output and to ease tree
editing and viewing. Even as phylogenetic inference became
inherently more sophisticated, for example with the development
of Bayesian phylogenetic inference and the release of initial
versions of MrBayes (27) which contained sophisticated search
strategies to ensure finding the optimal set of phylogenetic trees,
these software packages still contained their own text-based tree
visualization component(s).

However, over time a wide range tree visualization software
has been released, offering a continuous increase of tree
visualization and manipulation functionalities. These packages
have been developed as either standalone software packages
or have been integrated into larger data management and
analysis platforms [e.g., MEGA (28)]. The numerous all-round
programs available to date offer a range of similar basic tree
editing capabilities including the coloring and formatting of
tree nodes, edges and labels, the addition of numerical or
textual annotations, searching for specific taxa as well as the
re-rooting, rotation and collapsing of clades. Different tree
formats can be imported and again exported to various textual
and graphical formats (e.g., vector-based formats: portable
document format (pdf), encapsulated postscript (eps), scalable
vector graphics (svg), . . . ). A limited set of applications
provide more advanced visualization functionalities that enable
interactive visualization and management of highly customized
and annotated phylogenetic trees. Nevertheless, major hurdles
still exist that hinder adequate communication and interpretation
of phylodynamic analyses. These hurdles mainly relate to
the scalability of the visualization, highlighting uncertainty
associated with the results and the interactive rendering of
available metadata. Recent innovative developments attempt to
tackle these bottlenecks, although some tools are specifically
directed toward addressing a single (visualization) challenge. We
here provide an overview of such challenges, along with examples
of figures generated by software packages that aim to tackle these
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challenges. Note that all of our visualization examples are shown
in the Evolving visualization examples section below.

First, a major challenge is the ever-increasing size of data
sets being analyzed, leading to difficulties with navigating
through the resulting phylogenetic trees and to problems
with interpreting the inferred dynamics, not only from a
computational perspective (e.g., to render large images in a timely
manner) but also from the human capability to deal with high
levels of detail. Software packages that mainly aim to visualize
phylogenetic trees as well as those that target more broad
analyses have implemented various solutions to accommodate
systematic exploration of large phylogenies. Dendroscope (29)
was one of the first visualization tools aimed at large phylogenies,
with its own format to save and reopen trees that had been
edited graphically, offering a magnifier functionality to focus
on specific parts of the (large) phylogeny. Follow-up versions
(30) focused on rooted phylogenetic trees and networks, and
offered parallel implementations of demanding algorithms for
computing consensus trees and consensus networks to increase
responsiveness. Phylo.io (31) improves the legibility of large trees
by automatically collapsing nodes so that an overview of the tree
remains visible at any given time. iTOL [(18), but see below]
and IcyTree (32) also provide intuitive panning and zooming
utilities that make exploring large phylogenetic trees of many
thousands of taxa feasible. The PhyloGeoTool [(17); also see
Figure 4] eases navigation of large trees by performing an a
priori iterative clustering of subtrees according to a predefined
diversity ratio, as well as pre-rendering the visualization of
those subtrees enabling fluent navigation. PastML (33) allows
visualizing the tree annotated with reconstructed ancestral states
as a zoomable HTML map based on the Cytoscape framework
(34). PastView (35) offers synthetic views such as transitionmaps,
integrates comparative analysis methods to highlight agreements
or discrepancies between methods of ancestral annotations
inference, and is also available as a webserver instance. Grapetree
(36) initially collapses branches if there are more than 20,000
nodes in the tree and then uses a static layout that splits the tree
layout task into a series of sequential node layout tasks. With
the development of many packages targetting the visualization of
large phylogenies in recent years, the question arises whether they
will continue to be maintained and extended with novel features.

A second challenge lies with the fact that phylogenies
represent hypotheses that encompass different sources of error,
and the extent of uncertainty at different levels should be
presented accordingly. Bootstrapping (37) and other procedures
are often used to investigate the robustness of clustering in
estimated tree topologies,. Numerical values that express the
support of a cluster are generally shown on the internal
nodes of a single consensus summary tree [e.g., FigTree;
(38)] or by a customized symbol [e.g., iTOL; (18)]. Although
conceptually different, posterior probabilities on a maximum
clade credibility (MCC) tree, majority consensus tree or other
condensed trees from the posterior set of trees resulting from
Bayesian phylogenetic inference can be shown in a similar
manner. An informative and qualitative approach to represent
the complete distribution of rooted tree topologies is provided
by DensiTree [(39); also see Figure 10], which draws all trees in

a set simultaneously and transparently, and the different output
visualizations highlight various aspects of tree uncertainty.
For time-scaled phylogenetic trees, uncertainty in divergence
time estimates of ancestral nodes (e.g., 95% highest posterior
density (HPD) intervals) is usually displayed with a horizontal
(node) bar (see Figure 1 for an example). Additionally, ancestral
reconstructions of discrete or continuous trait states at the inner
nodes of a tree are increasingly facilitated by various probabilistic
frameworks, and these inferences are also accompanied by
posterior distributions describing uncertainty. To visualize this
uncertainty, PastML (33) inserts pie charts at inner nodes to
show likely states when reconstructing discrete traits such as the
evolutionary history of drug resistance mutations, while SpreaD3
(40) is able to depict uncertainty of continuous traits, e.g., as
polygon contours for (geographical) states at the inner nodes [see
(40) for an example]. Much like the visualization packages that
focus on large phylogenies (see above), the applications listed
here have their own specific focus with sometimes limited overlap
in functionality.

A third challenge consists of the visual integration of
metadata with phylogenetic trees—often in the form of
either a discrete and/or continuous trait associated with each
sequence—which is in part related to the previous challenge
concerning uncertainty of trait reconstructions. Incorporating
virus trait information (e.g., drug resistance mutations, treatment
activity scores) or host characteristics (e.g., gender, age, risk
group) in phylogenetic inference can substantially facilitate the
interpretation for end users and accelerate the identification
of potential transmission patterns. Tree reconstruction and
visualization software generally share a set of basic operations
for coloring taxa, branches or clades according to partial or
exact label matches. While these annotations can be performed
manually using a graphical user interface, this can be time-
consuming and is prone to errors. Hence, several software
programs offer functionalities to automate the selection and
annotation of clades of interest, for example through the use
of JavaScript libraries [e.g., PhyD3; (41), SpreaD3; (40)]—
also see Figure 3—or Python toolkits [e.g., ETE; (42), Baltic;
(43)]. Alternatively, drag-and-drop functionality of plain text
annotation files generated with user-friendly text editors facilitate
this process, as is for example the case in iTOL (18). These
scripting visualization frameworks also foster more intense tree
editing through their functionalities to annotate inner nodes,
clades and individual leaves with charts (pie, line, bar, heatmap,
boxplot), popup information, images, colored strips and even
multiple sequence alignments. Even more advanced integration
efforts entail the superimposition of tree topology with layers
of information on geographical maps, such as terrain elevation,
type of landcover and human population density [e.g., R package
seraphim; (44, 45)].

Finally, visualization and accompanying interpretation are
a critical component of infectious disease epidemiological
and evolutionary analyses. Indeed, many researchers use
visualization software during analyses for data exploration,
identifying inconsistencies, and refining their data set to ensure
well-supported conclusions regarding an ongoing outbreak. As
such, the visualizations themselves are gradually refined and

Frontiers in Public Health | www.frontiersin.org 4 August 2019 | Volume 7 | Article 208

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Theys et al. Visualization for Viral Phylodynamics

improved over the course of a research project, with the final
figures accompanying a publication often being post-processed
versions of the default output of a visualization package or
customly designed to attract a wide audience, both through
the journal’s website and especially social media [see e.g.,
(5)]. On the other hand, the advent of one-stop platforms
[MicroReact; (46) and Nextstrain; (19, 47), also see Figure 5] that
seamlessly connect the different steps of increasingly complex
analyses and visualization of genomic epidemiology and
phylodynamics allows automating this process. Applications that
are exclusively tailored toward tree manipulation and viewing
are starting to offer management services and registration of
user accounts [iTOL; (18)], while command-line tools (Gotree;
https://github.com/evolbioinfo/gotree) aimed at manipulating
phylogenetic trees and inference methods (PASTML; (33)
increasingly enable exporting trees that can directly be
uploaded to iTOL, supporting the automation of scripting
and analysis pipelines.

4. EVOLVING VISUALIZATION EXAMPLES

In the previous sections, we have already covered a wide range
of software packages for visualizing phylogenetic trees as well
as their associated metadata, which may or may not be used in
a joint estimation of sequence and trait data [for an overview
of integrating these data types in various inference frameworks
for pathogen phylodynamics, we refer to (9)]. We here organize
our visualization examples into different broader categories:
different approaches toward visualizing associated trait data
with a focus on phylogeography (Figures 1–3), browser-based
online applications (Figures 4, 5), applications that use existing
libraries such as those available in R, Python and JavaScript for
example (Figures 6, 7), non-phylogenetic visualizations typically
associated with pathogen phylodynamics (Figure 8), and finally
custom-written code or applications that focus on assessing
phylogenetic uncertainty (Figures 9, 10).

As a first example, we illustrate the development of innovative
visualization software packages on the output of a Bayesian
phylodynamic analysis of a rabies virus (RABV) data set
consisting of time-stamped genetic data along with two discrete
trait characteristics per sequence, i.e., the sampling location—in
this case the state within the United States fromwhich the sample
originated—and the bat host type. This RABV data set comprises
372 nucleoprotein gene sequences from North American bat
populations, with a total of 17 bat species sampled between 1997
and 2006 across 14 states in the United States (52). We used
BEAST 1.10 (51) in combination with BEAGLE 3 (13) to estimate
the time-scaled phylogenetic tree relating the sequences, along
with inferring the ancestral locations of the virus using a Bayesian
discrete phylogeographic approach (53) and, at the same time,
infer the history of host jumping using the samemodel approach.
Upon completion of the analysis, we constructed a maximum
clade credibility (MCC) tree from the posterior tree distribution
using TreeAnnotator, a software tool that is part of the BEAST
distribution. This MCC tree contains at its internal nodes the
age estimates of all of the internal nodes, along with discrete

probability distributions for the inferred location and host traits
at those internal nodes.

Figure 1 shows the visualization of the MCC tree in FigTree,
with internal nodes annotated according to the posterior
ancestral location state probabilities within the MCC tree file.
As expected, one can observe that posterior support for the
preferred ancestral location decreases from the observed tips
toward the root, in other words the further we go back in time,
the more uncertain the inferred location states become. All of
the information required to make the FigTree visualization in
Figure 1 is contained within a NEXUS file, containing all of the
ancestral trait annotations, which we use as the (only) input for
the FigTree (38). The standard Newick file format itself does not
contain such trait annotations but remains in popular use for
storing phylogenetic trees and is hence supported by most (if
not all) phylogenetic visualization packages. In general however,
Newick and other older formats (e.g., NEXUS) offer limited
expressiveness for storing and visualizing annotated phylogenetic
trees and associated data, which has lead to extensions for this
format being proposed [e.g., the extended Newick format; (54)].
FigTree allows users to upload annotation information for the
sequences in the analyzed alignment in the form of a simple tab-
delimited text file, and a parsimony approach can be used to infer
themost parsimonious state reconstruction for the internal nodes
from those provided for the tips. iTOL (18) is another application
that can take an MCC tree as its input file and allows annotating
branches and nodes of the phylogenetic tree using descriptions
provided through the use of simple text files in which custom
visualization options can easily be declared (Figure 2). iTOL is
even suited for showing very large trees (with more than 10,000
leaves) withWebkit-based browsers—such as Chromium/Google
Chrome, Opera and Safari—offering the best performance.

Newer input/output file formats for phylogenetic trees and
their accompanying annotations, including the XML-based
standards PhyloXML (55) and NeXML (56), have the benefit
of being more robust for complex analyses and easier to
process and extend. In particular, applications of phylodynamics
aimed at reconstruction and interpretation of spatio-temporal
histories have become broadly and increasingly applied in
viral disease investigations. The incorporation of geographical
and phylogenetic uncertainty into molecular epidemiology
dynamics is now well-established (53, 57), and dedicated
developments from a visualization perspective have soon
followed to accommodate the outcomes of these models. Early
attempts include the mapping of geo-referenced phylogenetic
taxa to their geographical coordinates [e.g., GenGis; (58),
Cartographer; (59)], while more recent efforts of joint ancestral
reconstruction of geographical and evolutionary histories enable
visual summaries of spatial-temporal diffusion through the
interactive cartographic projection using GIS- and KML-based
virtual globe software (60). The latest developments generalize
toward interactive web-based visualization of any phylogenetic
trait history and are based on data-driven documents (D3)
JavaScript libraries and the JSON format to store geographic
and other tree-related information (40). As an example, we
have created a web-based visualization of our analyzed RABV
data set by loading the obtained MCC tree into the SpreaD3
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FIGURE 1 | FigTree allows visualizing various tree formats, including maximum clade credibility trees from Bayesian phylogenetic analyses (38). External and internal

nodes can easily be annotated using the information in the source tree file, and the time information within the tree allows adding a time axis which facilitates

interpretation. Annotations shown here for the RABV data set are the 95% highest posterior density (HPD) age intervals and the most probable ancestral location state

at each internal node, with the circle width corresponding to the posterior support for the internal location state reconstruction.

(40) phylodynamic visualization software package (see Figure 3).
SpreaD3 actually consists of a parsing and a rendering module,
with the former obtaining the relevant information out of
the MCC tree and the latter converting this information into
a (Geo)JSON file format, potentially in combination with a
geographic map, which can easily be downloaded from websites
offering GeoJSON files of different regions of the world and
with different levels of detail. The generated output consists of
an in-browser animation that allows tracking a reconstructed
epidemic over time using a simple slider bar, with the possibility
to zoom into specific areas of the map. In Figure 3, we show
the reconstructed spread of RABV across the United States at
four different time points throughout the epidemic, starting with

the estimated location of origin in the state of Arizona and
tracking the RABV spread as it disperses to all of the 14 states
in our data set.

The SpreaD3 visualization in Figure 3 is an example of
an increasing trend toward web-based software tools that can
run in any modern browser, making them compatible with
all major operation systems, without requiring any additional
software packages to be installed by the user. A distinction can
be made between browser-based tools that are able to work
without internet access [Phylocanvas; (http://phylocanvas.org),
phylotree.js; (61), IcyTree; (32), SpreaD3; (40), PhyloGeoTool;
(17), see Figure 4] or that are only accessible online [iTOL;
(18), phylo.io; (31)]. Web-based visualization platforms enhance
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FIGURE 2 | Interactive tree of life [iTOL; (18)] visualization of the MCC tree for RABV. Rather than exploiting the annotations within an MCC tree, iTOL allows importing

external text files with annotations through an easy drag-and-drop interface. We have here colored the tip nodes according to the bat host species (outer circle) as

well as the sampling location (inner circle) corresponding to each sample. Many visual aspects can be set this way and an extensive online help page is available.

collaborations and output dissemination in a very efficient
and simple manner through their ability to share web links
of complex and pre-annotated tree visualizations. Transferring
genomic data and associated data to an online service may invoke
privacy issues which is not the case for tools that execute data
processing purely on the client side. By contrast, online accessible
visualization tools such as iTOL (18) offer tree management
possibilities to organize and save different projects, annotated
datasets and trees for their users. These online packages typically
also provide export functionalities to facilitate the production
of publication-quality and high-resolution illustrations [see also
MrEnt; (62), Mesquite; (59)], directed toward end-users with
minimal programming experience.

SpreaD3 also illustrates the growing movement toward
animated visualizations over time and (geographic) space and
as such focuses entirely on the visualization aspect of pathogen
phylodynamics. Recently, entire pipelines have emerged that

include data curation, analysis and visualization components,
with Nextstrain as its most popular example (19). On the
data side, Python scripts maintain a database of available
sequences and related metadata, sourced from public repositories
as well as GitHub repositories and other (more custom-made)
sources of genomic data. Fast heuristic tools enable performing
phylodynamic analysis including subsampling, aligning and
phylogenetic inference, dating of ancestral nodes and discrete
trait geographic reconstruction, capturing the most likely
transmission events. The accompanying Nextstrain website
(https://nextstrain.org/) provides a continually-updated view of
publicly available data alongside visualization for a number of
pathogens such as West Nile virus, Ebola virus, and Zika virus.
For the latter virus, we provide the currently available data
visualization in Nextstrain (at time of submission) in Figure 5,
showing a color-coded time-scaled maximum-likelihood tree
alongside an animation of Zika geographic transmissions over
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FIGURE 3 | Projecting an MCC tree onto a geographic map using SpreaD3 (40). In a discrete phylogeography setting, as is the case here, the ancestral location

states are combined with coordinates corresponding to the states in the US from which the RABV samples were obtained. We use centroid coordinates for the US

states to enable this visualization. SpreaD3 animates the reconstructed virus dispersal over time, and we here show four snapshots (starting from the estimated origin

of the epidemic at the root node) that capture the reconstructed dispersal over time and geographic space, i.e., in 1860, 1940, 1980, and the “present” (mid 2005).

The transitions between the US states are colored according to the US state of destination for that particular transition, whereas the size of the circles around a

location is proportional to the number of lineages that maintain that location.

time as well as the genetic diversity across the genome. Analysis
of such outbreaks relies on public sharing of data, and Nextstrain
has taken the lead to address data sharing concerns by preventing
access to the raw genome sequences, and by clearly indicating
the source of each sequence, while allowing derived data—such
as the inferred phylogenetic trees—to be made publicly available.
We note that these animated visualizations by their very nature
do not easily yield publication-ready figures, requiring alternative
approaches to be devised. Animations resulting from software
packages such as SPREAD, SpreaD3 andNextstrain can be hosted
on the authors’ website or they can be captured into a video
file format and uploaded as supplementary materials onto the
journal website. Alternatively, screenshots of the animation can
be taken at relevant time points throughout the visualization
and subsequently post-processed to include in the main or
supplementary publication text.

Finally, browser-based packages such as SpreaD3 employ
JavaScript libraries (e.g., D3) to produce dynamic, interactive
data visualizations in web browsers, known specifically for
allowing great control over the final visualization. Custom
programs are also typically written in R as a long list of popular
R libraries are readily available, with ggplot2 quickly rising to
popularity and finding use in both R and Python languages. A
system for declaratively creating graphics based on The Grammar
of Graphics (63), ggplot2 was built for making professional
looking figures with minimal programming efforts. Figure 6

shows an example of ggtree, which extends ggplot2 and is
designed for visualization and annotation of phylogenetic trees
with their covariates and other associated data (48). A recent
software package that is implemented in JavaScript and Python
is PastML (33), which uses the Cytoscape.js library (64) for
visualizing phylogenetic trees (Figure 7). Given that these types
of libraries contain many tried-and-tested functions that save
substantial time when creating novel software packages, future
visualization efforts are likely to see increased usage of readily
available visualization libraries in programming languages such
as R, Python and JavaScript.

5. OTHER COMMON VISUALIZATIONS IN
PHYLODYNAMICS

Phylogenies reconstructed from viral sequence data and their
corresponding annotated tree-like drawings and animations lie
at the heart of many evolutionary and epidemiological studies
that involve phylogenomics and phylodynamics applications.
Additional graphical output can be generated using visualization
packages that focus on other aspects than the estimated
phylogeny, but that are however in some manner dependent
on the phylogeny. Coalescent-based phylodynamic models that
connect population genetics theory to genomic data can infer
the demographic history of viral populations (65), and plots of
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FIGURE 4 | The PhyloGeoTool offers a visual approach to explore large phylogenetic trees and to depict characteristics of strains and clades—including for example

the geographic context and distribution of sampling dates—in an interactive way (17). A progressive zooming approach is used to ensure an efficient and interactive

visual navigation of the entire phylogenetic tree.

the effective population sizes over time—such as the one shown
in Figure 8 for our RABV data set, which uses the Skygrid
model (50) and its accompanying visualization in Tracer (49)—
are commonly used to visualize the inferred past population size
dynamics (50, 66, 67).

A variety of other summary statistics computed over the
course of a phylogeny also benefit from visual representations,
such as for the basic reproduction number and its rate
of change as a function through time (68). Closely related
are lineage-through-time plots (69) that allow exploring
graphically the demographic signal in virus sequence data
and revealing temporal changes of epidemic spread. Neher
et al. (70) plotted cumulative antigenic changes over time by
integrating viral phenotypic information into phylogenetic trees
of influenza viruses, thereby providing additional insights into
the rate of antigenic evolution compared to representations
of neutralization titers that are traditionally transformed
into a lower-dimensional space (71, 72). Another example
relates to reconstructions of phylogeographic diffusion in
discrete space, where patterns of migration links are typically
projected into a cartographic context, but quantitive measures

are additionally computed including the expected number
of effective location state transitions (known as “Markov
jumps”). Information on migrations in and out of a location
state can be obtained by visualizations of the number of
actual jumps between locations as well as the waiting times
for each location, either as a total or proportionally over
time (73–76).

The inference of transmission trees and networks (“who
infected whom and when”) using temporal, epidemiological
and genetic information is an application of phylodynamics
that has made substantial methodological progress in the
last decade (77–79). Different from phylogenetic trees that
represent evolutionary relationships between sampled viruses,
transmission trees describe transmission events between hosts
and require visualizations that are tailored to the analysis
objectives (80–82). Consensus transmission trees, such as
maximum parent credibility (MPC) trees (80) or Edmonds’
trees (83), visually alert the user on putative infectors (indicated
with arrows), corresponding infection times and potential super-
spreaders. (80) use the Cytoscape framework (34) for drawing
the transmission trees, and a similar adaptation of the original
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FIGURE 5 | Focusing on real-time tracking of several viruses, Nextstrain (19) provides up-to-date visualizations of phylogenetic and phylogeographic analyses, the

latter with an animation over time similar to SpreaD3 (40). Shown here is the current situation for Zika virus evolution, based on analyses of 506 genomes sampled

between February 2013 and September 2017 from 32 countries around the world (see the figure legend), corresponding to samples taken in 6 different regions of the

world: China, Southeast Asia, Japan and Korea, Oceania, South America, and North America.

biological network-oriented framework has been done by PastML
(33) (see above).

Finally, in order to compare two or more trees that
are estimated from the same set of virus samples, but
differ in the method used for tree construction or in the
genomic region considered, tanglegrams provide insightful
visualizations. The most popular use case is the comparison
of two trees displayed leaf-by-leaf-wise with differences in
clustering highlighted by lines connecting shared tips (84).
Alternatively, tanglegrams allow mapping tree tip locations
to mapped geographical locations using GenGis (58, 85).
The Python toolkit Baltic (https://github.com/evogytis/baltic)
provides functionalities to draw tangled chains, as shown in
Figure 9, which are advanced sequential tanglegrams to compare
a series of trees (43, 86). The use of phylogenetic networks,
which are a generalization of phylogenetic trees, can also
visualize phylogenetic incongruences, which could be due to
reticulate evolutionary phenomena such as recombination (e.g.,
HIV-1) and hybridization (e.g., influenza virus) events (30,
32, 87). Tanglegrams and related visualization of sets of trees
[e.g., DensiTree (39); see Figure 10] provide a qualitative and
illustrative comparison of trees, buy this may prove to be less

suited for the interpretation of extremely large trees or sets
of trees. Recent quantitative approaches allow the exploration
and visualization of the relationships between trees in a multi-
dimensional space of tree similarities, based on different tree-
to-tree distance metrics that identify a reduced tree space
that maximally describe distinct patterns of observed evolution
[Mesquite; (88), R package treespace; (89, 90)].

6. CONTEXT DEPENDENCE OF
VISUALIZATION REQUIREMENTS

We have discussed a wide range of visualization packages for
phylogenetic and phylodynamic analyses that allow improving
our understanding of viral epidemiological and population
dynamics. While these efforts may ultimately assist in informing
public health or treatment decisions, visualization needs can
differ according to the type of virus epidemics studied and
questions that need to be answered. For example, the required
level of visualization detail is high for (re-)emerging viral
outbreaks when actionable insights should be obtained in a
timely fashion in order to control further viral transmissions,

Frontiers in Public Health | www.frontiersin.org 10 August 2019 | Volume 7 | Article 208

https://github.com/evogytis/baltic
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Theys et al. Visualization for Viral Phylodynamics

FIGURE 6 | R package ggtree (48) visualization of a phylogenetic tree constructed from publicly available Zika virus (ZIKV) genomes. ggtree allows similar advanced

customized visualization of phylogenetic trees as e.g., iTOL, but by means of the traditional R scripting language. In this figure, tree leaves are colored according to

continent of sampling, with a size corresponding to the host status and shape indicating the completeness of the CDS, using a cutoff of 99% of nucleotide positions

being informative. A heatmap was added to denote the presence of amino acid mutations at three chosen genome positions. Finally, a particular clade was

highlighted in blue based on a given internal node and two additional links between chosen taxa were added.
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FIGURE 7 | PASTML summary visualization of the ancestral reconstruction of state locations of the ZIKV dataset used in Figure 6. The top-down visualization

corresponds to an iterative clustering starting from the root of the tree at the top, with the size of the dot corresponding to the number of taxa in a clade which share

the same ancestral state which is indicated on top of the dot. In this type of visualization, a compressed representation of the ancestral scenarios is visualized that

highlights the main facts and hides minor details by performing both a vertical and horizontal merge [but see (33)]. The branch width corresponds to the number of

times its subtree is found in the initial tree, and the circle size at a tip is proportional to the size of the compressed (or merged) cluster.

with real-time tracking of viral spread and the identification of
sources, transmission patterns and contributing factors being
key priorities (91). As a result, software packages that aim to
address these questions are typically developed with an explicit
emphasis on speed through the use of heuristics, and stress
the importance of connectivity and interactivity to quickly
respond to the availability of new data in order to develop
novel insights into an ongoing epidemic. One-stop and fully-
integrated analysis platforms such as MicroReact (46) and
Nextstrain (19) adhere to these needs by providing the necessary
visualizations of virus epidemiology and evolution across time
and space, and by implementing support for collaborative
analyses and sharing of genomic data and analysis outputs. A
strategy of interest in these settings is the ability for phylogenetic
placement of novel sequence data (92, 93), for example when
updated outbreak information suggests specific cases should
be investigated but the reconstruction of a new phylogeny
is not desirable, as this may prove too time consuming. To
avoid such de novo re-analyses of data sets, software tools
such as iTOL (18) and PhyloGeoTool (17) offer functionalities

to visualize placements of sequence data onto an existing
phylogeny. A key future challenge of these approaches is
to assess and visualize the associated phylogenetic placement
uncertainty, or if this information would be unavailable to at
least indicate the various stages in which novel sequences were
added onto the (backbone) phylogeny. While methodological
developments are rigorous in their accuracy assessment—for
example through simulation studies—and may even provide
visual options for representing the placement uncertainty [see
e.g., (92)], visualization packages themselves do not offer an
automated way of assessing or conveying this information and as
suchmay project overconfidence of the power of the phylogenetic
placement method used. Additionally, other flexible visualization
options based on real-time outbreak monitoring can be of great
interest such as highlighting locations from which cases have
been reported but for which genomic data are still lacking, to
clarify the potential impact of these missing data on the currently
available inference results.

Investigations of more established epidemics usually involve
much larger sample sizes, are more retrospective-oriented in
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FIGURE 8 | Population (size) dynamics over time visualization of our RABV

analysis (previous section) using Tracer (49). This type of output does not

directly depend upon the estimated MCC tree, but rather on the estimated

(log) population sizes of the Skygrid model (50), which are provided in a

separate output file by BEAST (51).

design and incorporate more heterogeneous information, and
therefore benefit from more extended visualization frameworks.
For most of these globally prevalent pathogens, clinical and
phenotypic information is often available and questions relate
to the population- or patient-level dynamics of viral adaptation
and the identification of transmission clusters. For example,
the selection of the virus strain composition of the seasonal
influenza vaccine is informed by analyses and visualizations
of circulating strains and their antigenic properties using
the nextflu framework (47, 91). Other diverse examples
include investigations of the impact of country-specific public
health interventions on transmission dynamics (94, 95), the
identification of distinctive socio-demographic, clinical and
epidemiological features associated with regional and global
epidemics (96–99) and large-scale modeling of epidemiological
links among geographical locations (100–102). In these settings,
relevant software packages should consider the scalability of large
phylogenies and allow user-friendly exploration of heterogeneous
and customized annotations. Overall, it is anticipated that
future work on visualization tools, accompanying analysis and
visualization software developments as described above, will
result in a merging of these two epidemic perspectives, with the
development of context-independent visualization software tools
that can handle both scenarios equally well.

7. CONCLUSIONS

Viral pathogens, in particular RNA viruses, have been responsible
for epidemics and recurrent outbreaks associated with high
morbidity and mortality in the human population, for a duration
that can span from hundreds of years [e.g., HCV (103) and
DENV (104)] to decades [e.g., HIV-1 (3)]. RNA viruses are
known for their potential to quickly adapt to host and treatment
selective pressure, but their rapid accumulation of genomic
changes also provides opportunities to study their population
and transmission dynamics in high resolution. Consequently,

the fields of phylogenomics and phylodynamics play a pivotal
role in studies on epidemiology and transmission of viral
infectious diseases, and have advanced our understanding of the
dynamical processes that govern virus dispersal and evolution at
both population and host levels. Compared to the tremendous
achievements in the performance of evolutionary and statistical
inference models and hypothesis testing frameworks, software
packages and resources aimed at visualizing the output of
these studies have experienced difficulties to handle the
increasing complexity and sizes of the analyses, for example
to display levels of uncertainty and to integrate associated
demographic and clinical information. Accurate and meaningful
visual representation and communication are however essential
tools for the interpretation and translation of outcomes into
actionable insights for the design of optimal prevention,
control and treatment interventions. With a plethora of
applications for phylodynamics having been introduced in the
last decades, in particular tailored toward reconstructions of
spatiotemporal histories—which start to become useful in public
health surveillance—visualization has substantially grown as an
elementary discipline for investigations of infectious disease
epidemiology and evolution. An extensive array of software and
tools for the manipulation, editing and annotation of output
visualizations in the field of pathogen phylodynamics is available
to date, characterized by varying technical specifications and
functionalities that respond to heterogeneous needs from the
research and public health communities.

The increasing recognition for visualization tools in support
of viral outbreak surveillance and control has stimulated the
advent of more complex and fully integrated frameworks
and platforms, all the while focusing on user experience and
ease of customisation. We anticipate that future visualization
developments will take further leaps in this ongoing trend by
tackling remaining challenges to display increasing amounts of
dense information in a human-readable manner and introducing
concepts from new disciplines such as visual analytics. In
particular, high expectations are stemming from the ensemble
of visualization methods that allow users to work at, and
move between, focused and contextual views of a data set
(105). Large scientific data sets with a temporal aspect have
been the subject of multi-level focus+context approaches for
their interactive visualization (106), which minimize the seam
between data views by displaying the focus on a specific situation
or part of the data within its context. These approaches are
part of an extensive series of interface mechanisms used to
separate and blend views of the data, such as overview+detail,
which uses a spatial separation between focused and contextual
views, and zooming, which uses a temporal separation between
these views (105). Phylogenetic trees can be interactively
visualized as three-dimensional stacked representations (107).
The field of phylogenomics and phylodynamics visualizations
will increasingly implement and adapt technologies from other
disciplines, as already illustrated by tools and studies using the
network-oriented Cytoscape package (33, 34, 78), or through
the use of virtual reality technologies including customizable
mapping frameworks and high-performance geospatial analytical
toolboxes. As such, concomitant to the ongoing developments

Frontiers in Public Health | www.frontiersin.org 13 August 2019 | Volume 7 | Article 208

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


Theys et al. Visualization for Viral Phylodynamics

FIGURE 9 | Tanglegrams are typically shown in a side-by-side manner, in order to easily and visually identify differences in clustering between two or more phylogenetic

trees, for example when inferred from different influenza proteins (PB1, PB2, PA, HA, NP, NA, M1, and NS1). Such a series of trees can also be visualized in a circle

facing inwards with a particular isolate highlighted in all plotted phylogenies (left figure), or with all isolates interconnected between all proteins (right figure).

FIGURE 10 | Bayesian phylogenetic inference software packages generate a large number of posterior trees, potentially annotated with inferred ancestral traits. This

collection of trees is often summarized using a consensus tree, allowing to plot a single tree with posterior support values on the internal nodes. DensiTree enables

drawing all posterior trees in the collection; areas where a lot of the trees agree in topology and branch lengths show up as highly colored areas, while areas with little

agreement show up as webs (39). We refer to Figure 2 for the color legend of the host species, as the legend drawn by DensiTree was not very readable and could

not be edited (in terms of its textual information).

in sample collection and sequencing, the design of more
complex analytical inference models and powerful hardware
infrastructure will be complemented by a new era in visualization

applications that will collaboratively foster visualizations that
track virus epidemics and outbreaks in real-time and with
high resolution.
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SEARCH STRATEGY

An initial but already comprehensive list of publications was
compiled from backward and forward citation searches of
the various visualization software packages the authors have
(co-)developed, as well as those packages that the authors have
used throughout their academic career. Complementing this
already extensive list, we searched PubMed and Google Scholar,
which keeps track of arXiv and bioRxiv submissions and hence
decreased the risk of missing potential publications. Additional
supplementary searches have been performed by backward
and forward citation chasing of all of the included references
throughout the writing process of writing the manuscript for the
initial submission on April 7th 2019. No date restrictions were
applied, but only visualization packages and publications written
in English were considered.
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